Описание:Общий курс «Оптика» является частью курса общей физики. На лекциях студенты знакомятся с основными оптическими явлениями, методами их теоретического описания и способами их использования в физических проборах. На каждой лекции проводятся физические демонстрации изучаемых оптических явлений, либо их компьютерное моделирование.
Разделы лекций
Предмет изучения и разделы оптики. Электромагнитная теория света. Уравнения Максвелла и материальные уравнения. Волновое уравнение. Скорость света. Бегущие электромагнитные волны. Плоские и сферические волны. Гармоническая волна и комплексная форма ее представления. Модели реальных световых волн, модулированные волны - световые пучки и импульсы.
Свойства плоских волн. Ориентация и взаимосвязь полевых векторов. Поляризация света. Поток энергии электромагнитной волны. Вектор Умова-Пойнтинга. Интенсивность света. Энергетика световых пучков и импульсов. Закон изменения энергии электромагнитного поля. Объемная плотность импульса и давление электромагнитной волны.
Метод спектрального описания волновых полей. Фурье-анализ и фурье-синтез волновых полей. Преобразования Фурье. Спектральные амплитуда, фаза и плотность. Свойства преобразований Фурье. Соотношение между длительностью импульса и шириной спектра. Теорема Планшереля. Спектральная плотность интенсивности.
Классическое описание излучения света. Дипольное излучение осциллятора. Затухающий осциллятор как модель излучающего «атома», время радиационного затухания. Естественная форма и ширина линии излучения. Излучение ансамбля статистически независимых осцилляторов. Ударное и доплеровское уширения спектральной линии. Однородное и неоднородное уширения линии.
Интерференция света. Двухволновая интерференция монохроматических волн. Уравнение интерференции и функция видности. Линейная и угловая ширины интерференционных полос. Интерференция квазимонохроматического света. Спектральное описание, время и длина когерентности. Временное описание, функция временной корреляции. Взаимосвязь спектра и функции временной корреляции, понятие о фурье-спектроскопии. Степень временной когерентности и функция видности
Пространственная когерентность. Угол и радиус когерентности. Звездный интерферометр Майкельсона. Функция пространственно-временной корреляции. Степень пространственно-временной когерентности и функция видности.
Методы получения интерференционных картин - деление волнового фронта и деление амплитуды, реализации методов. Интерференция в тонких пленках. Полосы равной толщины и равного наклона. Многоволновая интерференция. Формулы Эйри. Интерферометр Фабри-Перо и пластинка Люммера-Герке. Интерференционные фильтры и зеркала.
Дифракция света. Принципы Гюйгенса и Гюйгенса-Френеля. Дифракционный интеграл Френеля. Теорема обратимости Гельмгольца. Принцип дополнительности Бабине. Метод зон Френеля. Радиус и площадь зоны Френеля. Число Френеля. Метод векторных диаграмм. Зонные пластинки и линза.
Простейшие дифракционные задачи. Дифракция на круглом отверстии и круглом экране, спираль Френеля. Пятно Пуассона. Дифракция на крае полубесконечных экрана и щели, спираль Корню. Ближняя и дальняя зоны дифракции. Дифракционная длина. Дифракционная расходимость пучка в дальней зоне. Фокусировка света, как дифракционное явление.
Недостатки принципа Гюйгенса-Френеля. Понятие о теории дифракции Кирхгофа. Дифракционный интеграл Френеля-Кирхгофа. Приближения Френеля и Фраунгофера. Дифракция в дальней зоне как пространственное преобразование Фурье. Угловой спектр пучка. Связь ширины спектра с поперечными размерами пучка.
Дифракция Фраунгофера на пространственных структурах: прямоугольном отверстии, круглом отверстии и щели. Функция пропускания. Амплитудные и фазовые дифракционные решетки. Распределение интенсивности в дифракционной картине, интерференционная функция. Дифракция на акустических волнах.
Спектральный анализ световых полей. Спектроскопия с пространственным разложением спектров. Дисперсионные, дифракционные и интерференционные спектральные приборы. Их основные характеристики – аппаратная функция, угловая и линейная дисперсии, разрешающая способность и область дисперсии.
Преобразование и синтез световых полей. Понятие о дифракционной теория формирования изображений. Роль дифракции в приборах, формирующих изображение: линзе, телескопе и микроскопе. Специальные методы наблюдения фазовых объектов: метод темного поля и метод фазового контраста. Запись и восстановление светового поля. Голография
Распространение света в веществе: микроскопическая картина. Поляризуемость среды и молекулы. Дисперсия света. Классическая электронная теория дисперсии. Поглощение света (закон Бугера).
Зависимости показателя преломления и коэффициента поглощения от частоты. Дисперсионная формула Зелмеера. Фазовая и групповая скорости. Формула Рэлея. Дисперсионное расплывание волновых пакетов. Дисперсионная длина.
Оптические явления на границе раздела изотропных диэлектриков. Законы отражения и преломления света. Формулы Френеля. Эффект Брюстера и явление полного внутреннего отражения. Энергетические соотношения при преломлении и отражении света.
Распространение света в анизотропных средах. Описание диэлектрических свойств анизотропных сред. Плоские электромагнитные волны в анизотропной среде. Структура световой волны, фазовая и лучевая скорости. Уравнения Френеля для фазовых и лучевых скоростей. Эллипсоид лучевых скоростей и лучевая поверхность. Одноосные и двухосные кристаллы.
Оптические свойства одноосных кристаллов. Обыкновенный и необыкновенный лучи. Отрицательные и положительные кристаллы. Построение Гюйгенса. Двойное лучепреломление и поляризация света. Поляризационные приборы, четвертьволновая и полуволновая пластинки. Анизотропия оптических свойств, наведенная механической деформацией, электрическим и магнитным полями.
Рассеяние света. Излучение элементарного рассеивателя. Индикатриса рассеяния, поляризация рассеянного света и закон Рэлея. Молекулярное рассеяние. Элементы статистической теории рассеяния, формулы Эйнштейна и Рэлея. Основные особенности молекулярного рассеяния. Рассеяние света в мелкодисперсных и мутных средах.
Излучение света. Тепловое излучение. Излучательная и поглощательная способности вещества и их соотношение. Модель абсолютно черного тела. Формула Рэлея-Джинса. Ограниченность классической теории излучения. Закон Стефана-Больцмана. Формула смещения Вина. Формула Планка.
Основные представления квантовой теории излучения света атомами и молекулами. Квантовые свойства света: фотоэлектрический эффект и эффект Комптона. Квантовые свойства атомов, постулаты Бора. Модель двухуровневой системы. Взаимодействие двухуровневой системы с излучением.
Типы радиационных переходов. Коэффициенты Эйнштейна. Взаимодействие при термодинамическом равновесии. Вывод формулы Планка. Многоуровневые системы. Структура энергетических уровней атомов, молекул и твердых тел. Явление люминесценции: основные закономерности, спектральные и временные характеристики, интерпретация в рамках квантовых представлений.
Резонансное усиление света. Инверсная заселенность энергетических уровней и коэффициент усиления. Получение инверсной заселенности в трехуровневой системе. Ширина линии усиления. Лазеры – устройство и принцип работы. Принципиальная схема лазера. Условия стационарной генерации (баланс фаз и амплитуд). Продольные и поперечные моды. Спектральный состав излучения лазера. Синхронизация мод, генерация сверхкоротких импульсов.
Нелинейные оптические явления. Поляризация среды в поле высокоинтенсивного лазерного излучения. Среды с квадратичной нелинейностью, оптическое детектирование и генерация второй гармоники. Среды с кубической нелинейностью, самофокусировка волновых пучков и генерация третьей гармоники.