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We present a simple and robust construction of a real-time quantum random number generator. Our minimalist
approach ensures stable operation of the device as well as its simple and straightforward hardware implementation
as a stand-alone module. As a source of randomness the device uses measurements of time intervals between clicks
of a single-photon detector. The obtained raw sequence is then filtered and processed by a deterministic random-
ness extractor, which is realized as a look-up table. This enables high-speed on-the-fly processing without the need
of extensive computations. The overall performance of the device is around 1 random bit per detector click,
resulting in 1.2 Mbit/s generation rate in our implementation. © 2015 Optical Society of America
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Random number generation has attracted a lot of attention
since quantum technologies became available to serve this
purpose. Quantum random number generation gives access
to the universal randomness of quantum mechanics, which
is unavailable, at least theoretically, in classical physics. Over
the last 20 years there has been a number of different quantum
random number generator (QRNG) approaches and sugges-
tions about its practical implementation. In the present work
we looked for a highly practical and easy way to implement
QRNG, which will ensure stable operation due to its overall
simplicity. To keep it simple we intentionally considered only
designs with one single-photon detector (SPD). Along with the
physical part, not less important was the choice of a random-
ness extraction algorithm, which, by itself, should guarantee
generation of independent and unbiased bits at the output
under any conditions.

There are many different approaches to quantum random-
ness generation described in the literature [1–11]. Still, it is
hard to clearly distinguish between what we call “quantum”
and what in some sense belongs to statistical physics. We asso-
ciate the former with the use of simple “quantum measure-
ments” and SPDs (or other particles), and believe that most
other methods belong to the latter case, where it is harder
to explain why the source is truly unpredictable and thus
whether it can in principle generate true randomness.
Among the SPD-based sources it is highly beneficial to use

a single SPD in the whole setup. Besides the obvious reliability
advantage, it also eliminates the need of any hardware calibra-
tion as SPDs typically have a large variation of performance
parameters even within a particular type. Using more than
one SPD also does not give an advantage in the generation rate:
typically the result is the same as the corresponding multiple of
single SPD devices.

The output of an SPD contains only timing information
(it could also be a number of photons, but conventional
SPDs do not resolve it), i.e., moments when a particular pho-
ton caused an avalanche in the detector. This is the only data
available for random numbers extraction. Realization of a quan-
tum measurement may require engineered light pulses, for ex-
ample in a “which way” experiment [3], or in a “multiple
choice” one [12], but from the standpoint of performance those
settings are suboptimal: instead of using any time moment
measurable by the clock, we intentionally limit ourselves to
only a few or several of them. Thus, in this sense the optimal
design should use a continuously running light source.

The simplest form of this method is detection of the arrival
times of photons from a cw coherent source [1,5,6,9,11]. This
gives purely Poissonian statistics, which are simple to work
with. A modification with a temporally shaped cw source is also
possible [13] and gives slightly better performance at the ex-
pense of an increased system complexity and reduced reliability,
which is unsuitable for our concept.
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Collecting timing information is commonly done in two
different forms: timestamping arriving photons by the value
of a free-running clock counter as in [1,5,11,14], or counting
the number of clock cycles between adjacent detection events
[6,9]. The two are completely identical by the amount of ob-
tained information (each form of data can be easily converted to
the other one), but the second form consists of independent
integers, while the first one unavoidably contains internal cor-
relations. The correlations come from the slowly changing most
significant bits of the time counter. A direct calculation [1]
shows that in order to make correlations negligible, one has
to ensure that bit values change some 15 times faster than
the average counting rate, which poses a significant limitation
on the amount of random data obtained. Thus, storing time
intervals between detector clicks is advantageous as, by the
definition of the Poisson process, all such values are perfectly
independent. They are distributed with the exponential distri-
bution, favoring small numbers and exponentially decaying
toward the large ones.

Another not less important aspect of this approach is light gen-
eration. In principle, it would be the best to use a single (trans-
verse, temporal, andpolarization)mode cwcoherent light source.
In practice, however, it is not possible. We use instead an alter-
native approach, based onmode averaging. Even if the statistic of
a single mode is not necessarily Poissonian, the more modes we
detect, the closer the outputwill resemble Poissonian process due
to the Palm–Khintchine theorem [15]. Thus, a substantially
multimode detection allows us to arrive at a Poissonian process
regardless of the photon statistic in each of the modes.

After a raw stream of random data is acquired one needs to
process it in order to obtain random and independent bits. This
processing, or extraction, can be done in many different ways
with two global approaches: using deterministic algorithms and
with seeded extractors. The second approach is much more
powerful as it is capable of extracting randomness from any type
of a partially random sequence; however, in this work we stick
to the first one. Seeded extractors need a perfectly random seed
to operate. Until recently such algorithms required more ran-
dom bits than they produced, e.g., using Toeplitz matrices
[11]. Later, a new Trevisan extractors family [16] was intro-
duced, which allows for generating more randomness than
was consumed as the seed. It also allows reusing the seed for
future conversions [17].

The main difficulty with seeded extractors is that they are
constructed for a particular rate of min-entropy provided by the
source. After it is defined the extractor gives a certain rate of
compression, which does not depend on anything, including
the actual quality of the raw sequence. This creates a possible
flaw in the system: if for any reason the raw sequence degrades,
the output of the seeded extractor will cease to be truly random.
Such algorithms intrinsically lack any adaptivity and may easily
fail with a temporal drift of experimental parameters affecting
the amount of generated entropy.

Other problems include estimation of min-entropy of the
source and real-time realization of such an extractor, especially
Trevisan. Strictly speaking, it is impossible to measure min-
entropy of any given source in finite time. Knowing the internal
structure of the source helps but does not make the problem

trivial. At the same time this parameter remains the only param-
eter that defines whether the QRNG output is random or not.
It may become even more critical with reusing the extractor
output as the seed. Real-time processing is rather a technical
but nevertheless one more important issue. Recent results
show that realization of Trevisan construction with modern
computers yields some 17 kbits/s output bit rate [18].
Apparently, this is orders of magnitude slower than the entropy
generation rate by a typical SPD. Such a computational-hungry
algorithm is hard to run when the system performance is not
ignored.

Based on the given discussion, we think that deterministic
algorithms, if applicable, are better suited for our goals. Here
we should notice that a popular approach [6,8,13] of using
standard hash functions such as SHA-256 is, strictly speaking,
invalid [9] as it does not extract randomness, but rather only
compresses the raw data in some peculiar fashion. It does not
guarantee independence of output bits and possesses similar
weaknesses as seeded extractors. Talking about deterministic
extractors, one needs to know properties of the input data.
As was shown earlier we consider a stream of positive and in-
dependent integers with the exponential probability distribu-
tion. The goal of the extractor is to convert this stream into
unbiased and independent bits.

The most trivial but inefficient method is to convert the
stream into independent but biased bits by taking the integers
modulo 2 and then eliminate the bias using the von Neumann
algorithm [19]. We use a generalization of this method to a
finite alphabet of M > 2 letters—the extended Elias algorithm
[20], which is asymptotically efficient, converging to the
entropy of the source (see also [21]). Importantly, here any
deterministic conversion of the obtained positive integers into
the finite alphabet may be used, as it does not affect the quality
of the extractor output. It is desirable, however, to approach
the uniform probability distribution within the alphabet to
decrease the entropy loss.

Realization of the Elias extraction algorithm is explicitly
given in [22]. Briefly, the input sequence is cut into words
of N letters each. A probability of getting a particular word
is exactly the same as for all the words, which are permutations
of letters of the original one. The total number of such permu-
tations gives the number of equiprobable states, one of which is
obtained as the original word. All such states can be numbered,
and the number of the one obtained can be converted into
random bits using its binary representation.

An example of extraction forM � N � 4 is shown in Fig. 1.
The strings AAAA,…, DDDD are mapped onto the empty set
because they all have different probabilities of appearance unless
the probability of obtaining the individual letters A, B, C, andD
is exactly equal. The patterns ABBB, BABB, BBAB, and BBBA,
and the like, generate two output bits because if the letter-
generating events are independent, each combination of letters
has four equiprobable permutations irrespective of the probabil-
ity of obtaining the individual letters A, …, D. The largest
number of permutations is obtained for the word ABCD, giving
24 variants; each results in 3 or 4 output bits.

Following our minimalist doctrine we wanted to simplify
required processing as much as possible. Taking into account
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that the expected throughput of the extractor should be in
Mbits/s range, we sacrificed the efficiency of extraction but
made it suitable for realization as a look-up table in a standard
memory chip. In our implementation we use an alphabet of
M � 4 letters and make conversions using blocks of N �
10 such values. This matches the 20-bit address space of the
2 MB flash memory chip used. Another limitation that favors
smaller alphabets and shorter processing blocks is the require-
ment of the process to be stationary: if parameters of the process
drift, the output sequence may not be random anymore. The
process must be stationary during the time required to run
through all possible combinations within a processing block,
whose number is of the order of MN . Thus, a substantial in-
crease of the alphabet size and the block length will also require
a guarantee of stability not for seconds, but for hours and even
days, which is almost impossible to guarantee in practice. Any
feedback loop in the system, e.g., for keeping the constant
count rate, should be substantially slower than this time, ren-
dering the system to be extremely slow and impractical.

Figure 2 shows the simulated efficiency of the extraction
algorithm for a varying size of the binary buffer b �
N ⌈log M⌉ needed to store the whole processing block. The

data are calculated for a uniform distribution of the input sym-
bols and contain traces for different alphabet sizesM , which are
conveniently chosen as the powers of 2. One can see that for a
chosen pair ofM � 4 andN � 10 the algorithm generates 1.2
bits per input symbol. It is easy to note that scaling with the
memory size is rather poor: even for a 40-bit address space,
which is unrealistic and raises temporal stability concerns,
the efficiency only approaches 1.8 bits per symbol. Thus, even
as we sacrificed the bit generation rate for system simplicity and
better output quality, we are still not too far from potential lim-
its of this scheme.

The discussed principles and ideas were fulfilled in our ex-
perimental realization (see Fig. 3) based on a silicon SPD with a
thin depletion layer and a∅30 μm sensitive area. All processing
is made in a field-programmable gate array (FPGA) attached to
a 2 MB flash memory chip. A red LED (λ ≈ 627 nm, spectral
width Δλ ≈ 45 nm) driven with a ≈10 μA current is used as a
light source, while the whole pair of the LED and the SPD is
temperature stabilized at �25°C. A feedback loop is used for
stabilization of the count rate by adjustment of the LED cur-
rent. The last one has a time constant of 16 s to ensure that the
process is stationary on the time scale of MN counts.

A major flaw in the experimental system with respect to the
theory is nonideal characteristics of the SPD. For the presented
QRNG structure it is, first of all, temporal parameters of the
SPD. While the photon arrival process is the Poissonian one,
the generation of SPD clicks is not. It has a highly suppressed
probability of detection right after the previous click, known as
a dead time. It may also have the opposite effect with another
temporal shape called afterpulsing, i.e., triggering further detec-
tor clicks by a previous one even when no other photons are
present.

Our study of the actual process was performed at the same
average count rate as used in the final device, namely 1.2 MHz.
Figure 4 shows count frequency histogram as a function of a
delay between successive clicks. It ideally fits the expected ex-
ponential distribution except for the intervals shorter than
150 ns. A deviation from the expected distribution fits well
by an exponential decay function with the time constant
of 40 ns.

Whatever is the nature of these nonidealities, as long as we
can measure the maximal time period which is still affected, we
can easily filter out dependent events by making sure that not a

Fig. 1. Extraction of random bits for M � N � 4. The first line
shows a word pattern, i.e., a sorted list of repetition numbers of each
letter. The corresponding extraction process is given below on the ex-
ample of one permutation family. The value f shows the share of a
particular pattern in all MN � 256 possible input words; it coincides
with the actual frequency of appearance if all letters are equiprobable.

Fig. 2. Extraction efficiency of the implemented algorithm versus
the size of the buffer for different alphabet sizes. The actual generator
uses a 20-bit buffer and a four-symbol alphabet, yielding 1.2 bits per
raw symbol.

Fig. 3. Block diagram of the experimental setup.
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single time interval shorter than the specified time is used for
random number generation. In general, we model the real SPD
as an ideal detector giving Poissonian statistics, with a pertur-
bation function with a maximal memory of τ. To get rid of
dependent events we use a simple digital filter that rejects
all time intervals shorter than 160 ns, reducing the events rate
from 1.2 to 1.0 MHz.

Another significant flaw of the actual system is the presence
of dark counts. The dark count rate of the detector used is
around 200 Hz, which is almost 4 orders of magnitude smaller
than the regular count rate. Although the nature of dark counts
is much more complicated and not obviously as “quantum” as
photodetection events, it still has nearly Poissonian statistics
and does not affect any obtained results. We can only say
that 0.01% of the generated entropy may not be enough
“quantum.”

The detector clicks are time tagged with a resolution of
16 ns and corresponding time intervals are calculated. All in-
tervals shorter than 160 ns are discarded, while the remaining
ones are converted into a four-symbol alphabet, as shown in
Fig. 5. The particular conversion scheme gives a more uniform
distribution than the trivial modulo operation. Blocks of 10
successive symbols represented as ten 2-bit strings form a
20-bit address in the memory chip pointing to a 2-byte precal-
culated value. The number of output bits varies depending on
the symbols obtained from zero (when all 10 symbols are the
same) to 14 bits (the maximum number of permutations is
10!∕�3!3!2!2!� � 25200). To enable this variable size output,
a simple binary coding is used when the actual output data is
left-padded with 1 and zeroes to form a 16-bit string
0…0
|ffl{zffl}

15−k

1ab…yz
|fflfflffl{zfflfflffl}

k

, where k is the output string size and ab…yz

is the string itself.
Generated random bit sequences were characterized using

the NIST statistical test suite. Testing 1 Gbit consecutive data
chunks with α � 0.01 using 1000 bit streams by 106 bits
showed the pass ratio well above 0.98 for all tests. The

P-valueT of the uniformity chi-square test among P-values
obtained for each stream is 0.68, which is above the 0.0001
confidence level. All obtained results suggest that generated se-
quences are indistinguishable from truly random ones by the
particular tests. The broad scope of the NIST suite and clear
implemented QRNG operation principles confirm that the
generated random data are of high quality and may be used
in critical applications.

In conclusion, we have experimentally demonstrated a
quantum random number generator based on the measurement
of waiting times in the process of photon arrival at the SPD.
The main concept of the device is its simplicity, robustness, and
real-time operation. The used deterministic randomness extrac-
tor together with a straightforward raw data processing enables
adaptive random bits extraction that guarantees output quality
regardless of the actual entropy of the source.

Funding. Government Future Research Fund (FPI).
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