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Electromagnetic-continuum-induced nonlinearity
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A nonrelativistic Hamiltonian describing interaction between a mechanical degree of freedom and radiation
pressure is commonly used as an ultimate tool for studying system behavior in optomechanics. This Hamiltonian
is derived from the equation of motion of a mechanical degree of freedom and the optical wave equation with
time-varying boundary conditions. We show that this approach is deficient for studying higher-order nonlinear
effects in an open resonant optomechanical system. Optomechanical interaction induces a large mechanical
nonlinearity resulting from a strong dependence of the power of the light confined in the optical cavity on the
mechanical degrees of freedom of the cavity due to coupling with electromagnetic continuum. This dissipative
nonlinearity cannot be inferred from the standard Hamiltonian formalism.
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I. INTRODUCTION

Optomechanics attracted a lot of attention as a tool for
transferring purely theoretical quantum mechanical notion to
experimental labs [1]. Interaction of mechanical objects with
light resulted in an efficient cooling of mechanical degrees of
freedom [2–4] so single mechanical quanta became accessible.
The light is able to manipulate the mechanical quanta, squeeze
or entangle mechanical degrees of freedom [5–10]. Emission
of coherent phonon radiation became possible [11].

Mechanical systems influence light as well, creating quan-
tum entangled states between photons and phonons [12].
Quantum state transfer becomes possible between light and
a mechanical system [13]. Finally, mechanical systems can
modify the quantum properties of light, for instance, create
squeezed light [14–16].

Nonlinear physics also benefited from the optomechanics
[4,17,18]. High spectral purity optomechanical oscillators
were created [19,20]. Efficient optical frequency harmonics
arising from the stimulated Brillouin scattering were used to
generate narrow-linewidth light [21] as well as low-noise radio-
frequency signals [22]. Generation of a phonon frequency
comb as well as mode locking of a mechanical distributed
system were demonstrated [23].

The beauty of an optomechanical interaction is in its clear
physical picture based on Maxwell equations. Optical wave
impinging on a mechanical object transfers its momentum to
the object. Both cavity frequency and photon number changes
as the result of such an interaction. Intricate physical phenom-
ena can occur in the system if the mechanical body is moving
fast, if it absorbs or scatters light, if its size is comparable with
the optical wavelength, etc. However, the system simplifies
significantly when optical photons confined in a closed (loss-
less) cavity interact with the nonrelativistic movable totally re-
flective cavity boundaries. A Hamiltonian approach is usually
applied to describe this kind of optomechanical interaction.
In this paper, using an example of a one-dimensional (1D)
Fabry-Perot cavity we show that the Hamiltonian approach is

deficient if one considers an externally pumped cavity. The
energy exchange between the cavity and the optical pumping
strongly depends on the position of the mirror x, so the photon
number in the optical mode changes significantly if the mirror
motion is slow enough. This energy exchange dominates over
high-order nonlinear by x phenomena observed in the case of
closed (lossless) optical cavity, and this behavior cannot be
predicted using a conventional optomechanical Hamiltonian.
We show that the attenuation assisted nonlinearity can be so
large that high-order mechanical harmonics can be readily
generated in a mechanical system pumped with continuous
wave light.

II. HAMILTONIAN APPROACH TO OPTOMECHANICS

Interaction of a single optical mode and a single mechanical
degree of freedom can be presented in quasistatic approxima-
tion in form [15,24]

Hint = −h̄gâ†âx̂, (1)

where â and â† are photon creation and annihilation operators,
x̂ is a mechanical coordinate measured from the mechanical
equilibrium point in the case of no light present, and g is
an optomechanical coupling constant. In the case of a 1D
Fabry-Perot cavity with a movable mirror (Fig. 1), this coupling
constant is simply ω0/L [15], where ω0 is the carrier frequency
of the light and L is the distance between the mirrors. The
photon number does not change in this case. Motion of the
mirror results in change of the optical frequency.

Hamiltonian (1) is not exact. To obtain it one has to utilize
an adiabatic approximation in which the optical cavity is
considered as a lumped system. The Hamiltonian also neglects
by the nonlinear terms resulting from the change of the resonant
optical frequency when the cavity dimension changes.

We are interested in nonlinear behavior of the optomechan-
ical system and would like to derive a Hamiltonian that takes
into account terms nonlinear in the mechanical coordinate x̂.
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FIG. 1. Schematic of the 1D Fabry-Perot resonator with movable
mirror.

The expression (1) directly follows from Maxwell equations. It
is possible to write for electric field amplitude of light confined
in an empty 1D Fabry-Perot cavity with totally reflecting mir-
rors (strictly speaking for steady state) the following equation:

â(t) = â[t − 2(L + x̂)/c], (2)

where c is speed of light in the vacuum.
Assuming that x̂/L � 1, in quasistatic approximation

L/c � ˆ̇x/x, we can directly verify that expression

â = â(0)e±iπclt/(L+x̂), (3)

(where l is the mode number) is a solution of Eq. (2). The qua-
sistatic approximation is needed to prohibit photon exchange
between the modes and to require photon conservation in the
mode. Since the system is unitary, this is equivalent to saying
that the mode frequency depends on coordinate as πcl/(L + x̂)
and the total Hamiltonian of a selected mode of the system is

H = h̄ω0â
†â

L

L + x̂
, (4)

where the mode frequency is defined as ω0 = πcl0/L (l0 is
integer, corresponding wavelength λ0 = 2πc/ω0). The inter-
action Hamiltonian, defined as Hint ≡ H − h̄ω0â

†â, becomes

Hint = −h̄gâ†â
x̂

1 + x̂/L
. (5)

In general, this Hamiltonian should be utilized instead of (1)
to take the nonlinear terms x̂n into account.

The Hamiltonian can be derived in a more explicit way
using Eq. (2). Introducing slow amplitude Â, so that â =
Â exp(−iω0t), we rewrite Eq. (2) as

Â(t) = Â[t − 2(L + x̂)/c]e4iπx̂/λ0 . (6)

The slow amplitude does not change much during the cavity
round trip, which allows to use Taylor series

Â[t − 2(L + x̂)/c] � Â(t) − 2

c
(L + x̂) ˆ̇A (7)

to simplify Eq. (6),

ˆ̇A � (1 − e−4iπx̂/λ0 )
c

2(L + x̂)
(8)

or, for the case of small mechanical amplitude λ0 � 4π |〈|x̂|〉|
(〈. . . 〉 stands for the expectation value), to a simpler differential

equation

ˆ̇A � iω0A
x̂

x̂ + L
. (9)

This equation is generated by Hamiltonian in the interaction
picture

H̃int = −h̄ω0A
†A

x̂

L + x̂
, (10)

which is equivalent to Eq. (5) if g = ω0/L.
The Hamiltonian (5) results in the equation for the mechan-

ical degree of freedom

¨̂x + ω2
M

[
1 + αom1

(
1 − 3

2

x̂

L
+ 2

x̂2

L2

)]
x̂ = h̄g

m
â†â + Fs(t)

m
,

(11)

where we truncated the nonlinear terms of the order higher than
(x̂/L)3 and introduced a classical mechanical force Fs(t); m

and ωM are the mass and frequency of the mechanical system,
respectively. To derive this equation, we first differentiate
Eq. (5) by x̂ and then decompose the result by powers of small
parameter x̂/L.

The nonlinearity of the system is defined by a dimensionless
parameter

αom1 = h̄ω0â
†â

mω2
ML2

, (12)

where we utilized g = ω0/L. The magnitude of αom1 is defined
by the expectation value of the normalized dc shift of the mirror
αom1 ∼ 2〈x̂〉/L � 1.

Nonlinear terms appearing in Eq. (5), (x̂/L)n, where n > 1
is an integer, can result in generation of higher-order me-
chanical harmonics if the size of the cavity is small enough.
However, increase of the size to a kilometer range practically
nullifies the effect. Moreover, the intrinsic mechanical non-
linearity of a micromechanical structure can be much larger if
compared with the optomechanical part. For instance, similarly
normalized mechanical nonlinearity parameter found from the
Euler-Bernoulli theory applied to a microelectromechanical
system (MEMS) cantilever can exceed unity by an order of
magnitude [25–27]. The lossless cantilever motion obeys the
equation (please see [25] for derivation)

ẍ + ω2
M

[
1 + βgeom

mω2
M

x2

L2
+ βiner

mω2
M

ẋ2 + xẍ

L2

]
x = Fs(t)

m
, (13)

where L is the cantilever length scaling in the micrometer
range, βgeom and βiner are geometrical and inertial nonlinear
coefficients, respectively. It was shown that the effective
dimensionless nonlinearity parameter α = [βgeom/(mω2

M ) −
2βiner/(3m)] can exceed −20 for a real physical system.
This is a much larger value if compared with the expected
optomechanical nonlinearity αom1 involving reasonably small
optical power. Therefore, it is reasonable to neglect by the
ponderomotive mechanical nonlinearity in a unitary optome-
chanical system and consider only mechanical one.
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III. OPEN OPTOMECHANICAL SYSTEM

We found, though, that there is a dissipation-associated
mechanism that results in several orders of magnitude increase
of the light-mitigated mechanical nonlinearity. The effect
has common features with additional rigidity arising in an
optomechanical system when a mechanical degree of freedom
modulates the damping rate of a driven optical cavity [28,29].
In what follows, we derive the nonlinear terms using wave
equation.

Let us consider an empty 1D Fabry-Perot resonator pumped
with a plane wave ain(X,t) = Ain(X,t) exp[−i(ωt − kX)],
where k = ω/c is the wave vector and X is the coordinate
(Fig. 1). The front mirror of the resonator, characterized with
the power transmission T , is placed at position X1 = 0, and the
back, total, mirror is movable, so its coordinate becomes X2 =
L + x̂(t), where L is the distance between the mirrors and
x̂(t) is the time-dependent part of the total mirror coordinate.
Standard equations describing electric field inside and outside
of the resonator at the boundary of the input mirror (X = 0)
are

â(t) = √
1 − T b̂(t) + i

√
T âin(t), (14)

âout(t) = i
√

T b(t) + √
1 − T âin(t), (15)

b̂(t) � â

{
t − 2[L + x̂(t − L/c)]

c

}[
1 − 2

ˆ̇x(t)

c

]
. (16)

Here, the term proportional to ˆ̇x results from Doppler effect.
While this term is usually small, it is necessary to keep it to
sustain the right commutation relation for the coordinate and
momentum of the mechanical system [30].

Substituting Eq. (16) to Eq. (14), we arrive to the equation
for the field inside the resonator

â − √
1 − T â

{
t − 2[L + x̂(t − L/c)]

c

}[
1 − 2

ˆ̇x(t)

c

]

= i
√

T âin. (17)

Equation (17) coincides with Eq. (2) for the nonrelativistic case
and closed (lossless, T ≡ 0) resonator.

Equation (17) has to be supplied with with equation for the
coordinate of the movable mirror, that reads as

ˆ̈x(t) + 2γM
ˆ̇x + ω2

Mx̂(t)

= h̄ω0

2mL

{
â†

[
t − L + x̂(t)

c

]
â

[
t − L + x̂(t)

c

]

+ b̂†
[
t + L + x̂(t)

c

]
b̂

[
t + L + x̂(t)

c

]}
+ Fs(t)

m
. (18)

Here, force Fs(t) includes both the signal and Langevin terms;
mechanical attenuation γM is small.

In this equation, we notice that the ponderomotive force
acting at the mirror results from the falling and reflecting light.
In the particular case of the closed cavity, the photon number
in the cavity does not change. In an open cavity, a part of
the wave falling at the mirror can pass through the mirror, so
we have to distinguish between â(t) and b̂(t). In addition, the
time in our model is counted with respect of the light entering
the system. It means that the photons that hit the movable mirror

are delayed by the half of the round-trip time while the photons
that reflect from the mirror are advanced by the half of the
round-trip time. In other words, if at the fields, falling on and
reflecting from front mirror, are described by operators â(t)
and b̂(t), then on the back mirrors the fields are â(t − L̃/c)
and b̂(t + L̃/c). The distance between the mirrors (L̃) also
depends on time as the position of the back mirror changes
while the light front propagates from one mirror to the other.
That is why we consider the sum of the photon number at two
different times (one retarded and one advanced) in the equation
for the mechanical degree of freedom.

There are two general cases when set (17) and (18) can be
simplified: ωML/c � 1 and ωML/c = πj , where j is a natural
number. In the first case, the optomechanical interaction results
in generation of optical harmonics localized within a single
optical mode. In the second case, the mechanical frequency
corresponds to the free spectral range of the resonator, so
several optical modes (optical frequency comb) are generated
due to the optomechanical interaction. For the case of a small
optical cavity (a microcavity), the frequency of the mechanical
mode is usually much smaller than the free spectral range of
the cavity, so condition ωML/c � 1 works. For the case of
a large optical cavity, it is possible to find a configuration
when ωML/c = πj . In this paper, we consider both the cases.
There are other configurations when the set of equations can
be simplified. For instance, in a LIGO-type interferometer it is
possible to find a mechanical mode that has frequency equal
to the frequency difference of two optical modes belonging to
two different mode families. We do not consider them here.

Let us introduce slow amplitude for the intracavity field
â(X,t) = Â(X,t) exp[−i(ωt − kX)]. The Taylor decomposi-
tion results in transformation of the equations involving oper-
ators depending on retarded time to standard ordinary differ-
ential equations [see Eq. (7) for the transformation details]. In
the case of short enough optical cavity (Â � L ˙̂A/c) we derive
from Eq. (17) a simplified equation for the slow intracavity
field amplitude

ˆ̇A + [�(x̂) − i	(x̂)]Â = i
√

T

τ
Âin, (19)

where the coordinate-dependent optical attenuation and dis-
persion are given by formulas

�(x̂) = 1

τ
(1 − √

1 − T cos{2k[L + x̂(t)]}), (20)

	(x̂) = 1

τ

√
1 − T sin{2k[L + x̂(t)]}, (21)

τ = 2L/c is the cavity round-trip time. Neglecting by the small
terms associated with the Doppler effect as well as assuming
ωMτ � 1 we also simplify Eq. (18) for the mechanical system

ˆ̈x + 2γM
ˆ̇x + ω2

Mx̂ = h̄ω0

mL
Â†(t)Â(t) + Fs(t)

m
. (22)

To solve this set of equations, we assume that Fs(t) is small
and look for the solution in the vicinity of steady state defined
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by expectation values for the field and mechanical amplitudes

A � i
√

T

τ

Âin

�0 − i	0
, (23)

x0 � h̄ω0

mω2
ML

|A|2, (24)

where

�0 = 1

τ
{1 − √

1 − T cos[2k(L + x0)]}, (25)

	0 = 1

τ

√
1 − T sin[2k(L + x0)]. (26)

It is also assumed for convenience that x0 includes all the
smaller order dc terms appearing during the analysis of the
nonlinear system. In the following analysis, we consider only
time-dependent part of coordinate δx̂ = x̂ − x0.

General analysis of the optomechanical system is rather
involved. We are interested in evaluation of the nonlinear
response and consider the exact resonant case (	0 = 0). We
formally solve Eq. (19) for the field amplitude and substitute
the solution into Eq. (18). Linear in the coordinate terms
responsible for the well-known ponderomotive attenuation and
rigidity disappear for the resonant tuning of the pump light.
The cubic nonlinearity terms also proportional to the optical
detuning disappear as well. Only quadratic in coordinate terms
survive.

The nonlinear equation for the mechanical degree of free-
dom with excluded optical variables can be presented in the
form (see Appendix)

δ ˆ̈x + 2γMδ ˆ̇x + ω2
M

[
1 + αom2

δx̂

L

]
δx̂ = Fs

m
, (27)

where the dimensionless quadratic nonlinearity parameter
αom2 depends on the frequency of the forced oscillation. For
instance, for the case of resonant mechanical force (Fs =
fs cos ωMt) and relatively low quality factor of the optical
cavity (�0 � ωM ) the nonlinearity parameter is

αom2 = −4
h̄ω0|A|2
mω2

M

Q2

L2
. (28)

It is obtained using expression Q = ω0/(2�0) for the optical
quality factor.

Equation (11) for the mechanical coordinate obtained for
the closed (unitary) optomechanical system also contains a
quadratic term αom1 [Eq. (12)] which is 4Q2 � 1 times smaller
than αom2. Therefore, to find the nonlinearity in a correct way,
the unitary model has to be adjusted.

An approximate solution of the equation with respect to the
expectation value of coordinate is

δx � fs

2mγMωM

sin(ωMt) + αom2

L

(
fs

2mγMωM

)2

cos(2ωMt),

(29)

where we omitted the zero-frequency term assuming it to be a
part of x0. Equation (29) shows that analysis of the mechanical
spectrum allows evaluating the optomechanical nonlinearity.

For some practical applications it is useful to consider
the case of high-frequency force Fs = fs cos(ωf t), where

ωf � ωm, but ωf τ � 1. In this case the nonlinearity reduces,
but still is large:

δx � − fs

mω2
f

sin(ωf t)

+ ω2
M

16ω2
f L

[
αfm

om2e
2iωf t + αfm∗

om2e
−2iωf t

]( fs

mω2
f

)2

, (30)

αfm
om2 = 4

h̄ω0|A|2
mω2

M

Q2

L2
S, S = −�3

0

(� + iωf )2(�0 + 2iωf )
.

(31)

Presence of the strong quadratic optomechanical nonlinear-
ity contrasts with the absence of the similar term in the purely
mechanical nonlinearity of the system. The physical nature of
this optomechanical nonlinearity is related to the reduction of
the intracavity power when the system deviates from the optical
resonance. The power drops independently on the direction of
the mechanical motion.

The pure mechanical nonlinearity is of cubic nature
[Eq. (13)]. The nonlinearity of the unitary system contain
a small cubic part 2αom1 for the normalization selected in
Eq. (11). The cubic nonlinearity terms are also introduced to the
open optomechanical system for 	0 ∼ �0. Omitting lengthy
derivations, we write for the corresponding cubic nonlinear
coefficient

αom3 � k3Lh̄ω0|A|2
mω2

MT 3
. (32)

It is easy to see that this nonlinearity is k3L3/T 3 � 1 times
larger than the nonlinearity αom1 of the optically closed (loss-
less) optomechanical system. The reason for the nonlinearity
enhancement is again the interaction of the optomechanical
system with continuum resulting in the change of the optical
power in the cavity when the position of the mirror changes.

The magnitudeαom3 can exceed the unity and be comparable
with MEMS nonlinearity parameter α for a small number of
optical photons in the cavity. Really, for an optomechanical
system with MEMS mirror we get αom3 � 103 for λ = 532 nm,
L = 0.1 cm, |A|2 = 102, m = 1 mg, ωM = 2π×1 MHz, and
T = 10−3.

The results of our calculations have qualitative match with
experimental data. Optomechanical systems used to demon-
strate generation of multiple equidistant optical harmonics
separated by the mechanical frequency. The neighboring har-
monics are approximately of the same magnitude. It means
that the system has both strong odd and even nonlinear terms.
Pure mechanical nonlinearity tends to have mostly odd terms.
Presence of even terms is also possible if the system is pre-
stressed, however, their magnitude is usually small. Presence
of the significant quadratic nonlinearity of the optomechanical
system explains observed experimentally efficient generation
of the optical sidebands separated from the pump carrier by
the doubled mechanical frequency.

IV. FREE-MASS INTERFEROMETER

It is interesting to estimate the optomechanical nonlinearity
in the case of ωM → 0 since the nonlinearity increases with
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ωM decrease. Such a configuration is practically realized in
the Advanced Laser Interferometric Gravitational Observatory
(aLIGO) [31,32] which can be reduced to an equivalent 1D
Fabry-Perot cavity [33] (corresponding to so-called signal
recycling mode) with movable mirror having mass m = 10
kg and frequency ωM/2π ∼ 0.1 Hz. The bandwidth of the
optical cavity is about working bandwidth of aLIGO (it is
varied by position of signal recycling mirror), in estimates
below we assume �0/2π ∼ 300 Hz. The zero- and first-order
optomechanical effects are very important in this case. The
zero-order ponderomotive effect associated with the radiation
pressure results in accelerated motion of the mirror that cannot
be tolerated. To handle this effect, an electronic feedback is
involved [31,34]. Because of the feedback loops, the optome-
chanical system cannot be considered using the simplest model
presented above, however, the mirror can be treated as a free
mass in 30–1000 Hz frequency range.

We can use Eq. (31) to evaluate nonlinearity in this case for
LIGO parameters [31]. Selecting �0 = 2π×300 rad/s, ωf =
2π×102 rad/s, P = 800 kW, m = 10 kg (reduced mass), L =
4 km, h̄ω0|A|2 = 2LP/c, λ = 1064 nm, we arrive at

∣∣αfm
om2

∣∣ω2
M

8ω2
f L

= Q2

(
P

mω2
f L2c

)
|S| � 8× 106 m−1 . (33)

In other words, if the magnitude of the first mechanical
harmonic is fs/(mω2

f ) = 0.01 nm, the magnitude of the second
mechanical harmonic is about 8×10−16 m.

This can be easily detected in Advanced LIGO [31,32,35].
The unitary model predicts the magnitude to be many orders
of magnitude smaller, which is practically undetectable in the
system.

V. CONCLUSION

In this paper, we have shown theoretically that optomechan-
ical nonlinearity induced due to the open nature of the system
can be much larger if compared with the nonlinearity of an
optically closed (lossless) optomechanical system having the
same other parameters. The effect arises due to the variation of
the intracavity photon number in the open system as a function
of the mechanical coordinate. In contrast, the photon number
of the lossless optomechanical system is conserved and only
the frequency of the photons changes due to variations of the
mechanical degree of freedom. We found that the mechanical
nonlinearity induced by the optical degree of freedom can be
comparable with purely mechanical nonlinearity both in small
scale for micromechanical cantilevers and in large scale for
40-kg free masses (mirrors) in Advanced LIGO interferometer.
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APPENDIX

We provide derivation of Eqs. (19) and (27) in this appendix.
Let us start from Eq. (17) and introduce slow field amplitudes

â = Â exp[−i(ωt − kX)]. (A1)

Assuming nearly resonant tuning of the optical system
[exp(ikL) � 1], neglecting by the Doppler term (∼ ˆ̇x/c),
assuming that the mechanical frequency is small enough,
T/2τ � ωM [so that x̂(t − τ ) ∼ x̂(t)], and using Taylor series

Â(t − τ ) � Â(t) − τ ˆ̇A(t) (A2)

we arrive at

ˆ̇A
√

1 − T [1 − D(t − τ )]︸ ︷︷ ︸
�1

+ Â

τ
{1 − √

1 − T [1 − D(t − τ )]}

= i
√

T Âin(t)

τ
, D = 1 − e2ikx̂(t−τ ) � 1 − e2ikx̂(t). (A3)

Equation (A3) results in Eqs. (19) and (21).
To find the nonlinearity introduced to the mechanical degree

of freedom by the optical degree of freedom, we decompose
the mechanical coordinate into time-independent and time-
dependent parts

x̂(t) = x0 + δx̂(t). (A4)

In this case,

�(x̂) ≈ �0 + ω0
k(δx̂)2

L
,

	(x̂) ≈ 	0 + ω0
δx̂

L
. (A5)

For the sake of simplicity, we consider a particular case
and assume that the mechanical force is monochromatic [Fs =
fs cos(ωMt)], that optical pump is resonant 	0 = 0, and that
the optical pump is classical and its phase selected so that
iÂin = |Ain|. The optical and mechanical amplitudes can be
presented in a form of decomposition by the harmonics of the
frequency defined by the mechanical force

A =
∞∑

j=−∞
Aje

ijωMt ,

δx =
∞∑

j=−∞
xj e

ijωMt . (A6)

Substituting the decompositions into the nonlinear equations,
we obtain

A+1 � iω0
x+1

L(�0 + iωM )
A0, (A7)

A−1 � iω0
x−1

L(�0 − iωM )
A0. (A8)

Because we assumed that A0 = A∗
0 and since x∗

−1 = x+1, we
have A∗

−1 = −A+1.
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For the second-order harmonics we derive

A+2 � iω0
x+2A0

L(�0 + 2iωM )

− ω2
0x

2
+1

L2(�0 + iωM )(�0 + 2iωM )
A0, (A9)

A−2 � iω0
x−2A0

L(�0 − 2iωM )

− ω2
0x

2
−1

L2(�0 − iωM )(�0 − 2iωM )
A0. (A10)

Using similar reasoning, we obtain expressions for mechan-
ical harmonics

x+1 � h̄ω0

2iγMωMmL
A0(A+1 + A∗

−1) + f+, (A11)

x−1 � − h̄ω0

2iγMωMmL
A0(A−1 + A∗

+1) + f−, (A12)

f± ≡ ±fs

4iγMωMm
, (A13)

x+2 � − h̄ω0

3mLω2
M

(A∗
−1A+1 + A0A+2 + A0A

∗
−2)

= − h̄ω0

3mLω2
M

(A∗
−1A+1 + A0[A+2 + A∗

−2]), (A14)

x−2 � − h̄ω0

3mLω2
M

(A−1A
∗
+1 + A0A

∗
+2 + A0A−2)

= − h̄ω0

3mLω2
M

(A−1A
∗
+1 + A0[A∗

+2 + A−2]). (A15)

Using the expressions presented above, we derive expressions
for the first and second harmonics of the mechanical and optical
amplitudes

A+1 = −A∗
−1 = fs

4γMωMmL

ω0

�0 + iωM

, (A16)

x+1 = x∗
−1 = fs

4iγMωMm
; (A17)

and

x+2 = x∗
−2 = − h̄ω0

3mLδ2
(−β2 + 2ββ2)f 2

+, (A18)

A+2 = β2x+2 + ββ2f
2
+

A0
, (A19)

A−2 = −β∗
2 x−2 + β∗β∗

2 f 2
−

A0
, (A20)

β = iω0A0

L(�0 + iωM )
, (A21)

β2 = iω0A0

L(�0 + 2iωM )
. (A22)

Comparing these expressions with Eq. (29), we get Eq. (28)
for αom2.
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