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Filamentation-assisted spatiotemporal dynamics of ultrashort laser pulses in the regime of extreme light powers
is shown to enable self-compression of subpetawatt laser pulses to relativistic field intensities and subcycle pulse
widths. Our supercomputer simulations demonstrate compression of 6-J, 30-fs laser pulses at a central wavelength
of 800 nm to 1.3-fs sub-100-TW broadband field waveforms and reveal the generation of relativistic-intensity
subfemtosecond field transients as a result of such a pulse evolution scenario, with multiple filamentation avoided
due to low gas pressures and the balance between Kerr and ionization nonlinearities steered toward optimal pulse
compression due to the depletion of outer-shell ionization in a high-intensity laser field.
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I. INTRODUCTION

Filamentation of ultrashort laser pulses is one of the key
effects in high-field ultrafast optical science [1–3]. The physics
behind this interesting and practically significant phenomenon
involves a complex, strongly coupled spatiotemporal dynamics
of optical field waveforms, which gives rise to a unique
regime of short-pulse propagation, where the self-focusing
of an intense laser beam induced by the Kerr optical
nonlinearity is counterbalanced by plasma refraction [2,3].
Laser-induced filamentation offers promising solutions for the
long-range transmission of high-power electromagnetic radi-
ation [4], spectral superbroadening of high-power ultrashort
laser pulses [2,3], terahertz radiation generation [5], and the
remote sensing of the atmosphere [6]. In ultrafast optical
science, this phenomenon finds growing applications as a
powerful technique for pulse compression [7,8], enabling the
generation of high-peak-power carrier-envelope-phase stable
few-cycle optical field waveforms within a broad frequency
range from the deep ultraviolet [9,10] to the near- and
mid-infrared [11].

Development of extreme-power advanced laser sources [12]
calls for an upscaling of filamentation-based strategies of
pulse compression to higher peak powers. Such an extension,
however, encounters fundamental physical difficulties related
to the instability of high-power laser beams with respect to
small intensity variations across the laser beam and small
spatial inhomogeneities in the optical properties of nonlinear
media [13], giving rise to a multifilamentary structure of the
laser beams at high levels of peak powers [2,3].

Here, we show that filamentation-assisted compression of
subpetawatt laser pulses is possible in low-pressure gases,
where the gas pressure is chosen in such a way as to avoid
multiple filamentation and where the depletion of outer-
shell ionization is used to steer the balance between Kerr-
nonlinearity–induced self-focusing and plasma defocusing
toward the optimum for self-compression of subpetawatt laser
pulses.

II. MODEL

To model the spatiotemporal dynamics of extreme-power
laser pulses in a nonlinear, fast-ionizing gas, we numerically
solve, in parallel codes, the generalized nonlinear Schrödinger
equation (GNSE) [2,3], modified to include effects related
to the multiple ionization of the gas as described below.
The formation of a robust, cylindrically symmetric single
filament was verified by numerically solving the full (3 + 1)-
dimensional GNSE:

∂A(ω)

∂z
= i

(
D(ω) + i∇2

⊥
2k(ω)

)
A(ω) + RNL + Rpl, (1)

where A ≡ A(t,r,z) is the complex field envelope, t is the
retarded time, z is the coordinate along the propagation
axis, Ft→ω[· · · ] denotes time-to-frequency Fourier transform,
A(ω) ≡ Ft→ω[A] is the field spectrum, D(ω) = (k(ω) − ω

Vgr
)

is the dispersion operator, k(ω) = n(ω)ω
c

is the wave number,
n(ω) is the frequency-dependent field-free refractive index,
Vgr stands for the group velocity at the central frequency ω0 of

the pulse, ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 is the transverse part of the Laplace
operator, x and y are the two transverse coordinates, RNL is the
nonlinear response of bound electrons, including the Kerr-type
nonlinearity, and Rpl is the nonlinear response of free electrons
produced by the high-power laser field.

Following this step, the details of the spatiotemporal
dynamics of the laser pulse were analyzed for the cylindrically
symmetric case using the (2 + 1)-dimensional GNSE, written
in the form of Eq. (1) with ∇2

⊥ = 1
r

∂
∂r

(r ∂
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), where r is the
radial coordinate.

The nonlinear response of bound electrons RNL is defined
as
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ω

c
Ft→ω

[
n2

(
|A|2A + 1

3
A3

)]

+ i
ω

c
Ft→ω

[
n4

(
|A|4A + 1

2
|A|2A3

)]
, (2)
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where n2 and n4 are the Kerr nonlinear refractive indices.
The |A|2A and |A|4A terms describe intensity-dependent
refraction, while the 1

3A3 and 1
2 |A|2A3 terms account for

third-harmonic generation through the third- and fifth-order
nonlinear susceptibilities.

The Rpl function on the right-hand side of Eq. (1) includes
ionization effects,

Rpl = −σ (ω)

2
(1 + iωτc)Ft→ω [ρ(t)A]

−Ft→ω

[
N∑

Z=0

UZ + Up

|A|2 WZA

]
, (3)

where σ (ω) = μ0e
2

mk(ω)(1+ω2τ 2
c ) is the inverse bremsstrahlung cross

section, μ0 is vacuum permeability, e and m stand for the
electron charge and mass, respectively, and τc is the electron
momentum transfer time. The last term on the right-hand side
of Eq. (3) accounts for the photoionization losses, UZ and
WZ are the ionization potential and photoionization rate for
an ion with a charge Z, and Up is the electron ponderomotive
energy. The time-dependent free electron density ρ(t) is found
by integrating the following set of equations [14]:

∂ρ0

∂t
= −W0ρ0, (4)

∂ρZ

∂t
= WZ−1ρZ−1 − WZρZ for Z = 1, . . . ,N, (5)

ρ =
N∑

Z=1

ZρZ, (6)

where ρZ is the density of ions with a charge Z, subject to the
initial conditions

ρZ(t = 0) = 0 for Z = 1, . . . ,N, (7)

ρ0(t = 0) = ρat, (8)

where ρat is the density of neutral atoms.
Simulations were performed for low-pressure argon. Dis-

persion was included in the model through the appropriate
Sellmeier equation for argon [15]. The nonlinear refractive
indices are calculated as n2,4 = n2,4

p

p0
, where p is the gas

pressure and p0 is the atmospheric pressure. The values of
the nonlinear refractive index n2 for argon available from
the literature vary within at least the range from 0.8 × 10−19

to 1.5 × 10−19 cm2 W−1 [16–19]. For our simulations, we
take n2 = 10−19 cm2 W−1. Since all the Kerr-type processes
in our system are controlled by the product of n2 and the
gas pressure p, the uncertainty in n2 simply implies an
additional adjustment of the gas pressure p. The critical
power for self-focusing at p = 1 bar for radiation with the

wavelength λ0 = 800 nm is then equal to Pcr = 3.77λ2
0

8πn2n0
≈

9.6 GW. The electron momentum transfer time was calculated
as τc = τ c

p0

p
with τ c = 190 fs for argon [2,3]. In electron

density calculations, it was sufficient to limit the sum in
Eqs. (3) and (4) with N = 11, as the number of Ar11+ ions was
negligibly small. Throughout the paper, we discuss simulations
performed for a Gaussian pulse with a FWHM pulse width
τ0 = 30 fs and the central wavelength λ0 = 800 nm. Light
pulses with such parameters and energies in the range of

a few joules can be routinely generated by the available
100–200-TW laser systems [20,21]. Simulations done with
other input pulse shapes, including flat-top, super-Gaussian
pulses, show that because of the highly nonlinear, strongly
coupled temporal and spatial field waveform dynamics, which
involves pulse and beam sectioning, it is nontrivial to identify
simple pulse-shaping strategies that would efficiently optimize
filamentation-assisted pulse compression or enhance its energy
throughput in the considered range of field intensities. The
input beam diameter and the focusing length were varied in our
(3 + 1)-dimensional simulations in order to achieve the highest
efficiency of pulse compression simultaneously avoiding the
multiple filamentation of a beam, as discussed below in this
paper. In what follows, we present the results of simulations
performed for a Gaussian laser beam with an initial FWHM
diameter of 2 cm and a linear focal length of 5 m. This beam
focusing geometry was found to provide the most promising
regime of pulse compression.

III. COMPUTATION

Numerical integration of Eqs. (1)–(4) was performed using
the split-step method. At each step in z, the variation in
the complex amplitude A due to RNL and Rpl is calculated
using the fourth-order Runge-Kutta method. For (3 + 1)-
dimensional GNSE simulations, the grid includes 1024 ×
4096 × 4096 = 234 points in t , x, and y, respectively,
with a time step 	t = 0.4 fs and a spatial step 	x = 	y =
20 μm. The integration step 	z was adaptively adjusted to
keep the nonlinear phase shift at each step below 0.01 rad. On
the average, about 6 × 103 steps in z are needed to simulate
the dynamics of a laser pulse within a 7-m propagation path.
In (2 + 1)-dimensional GNSE simulations, an exponential grid
in r was used. Simulations were performed on the Lomonosov
Moscow State University supercomputer using 1024 Intel
Xeon Nehalem cores for (3 + 1)-dimensional simulations and
64 cores for (2 + 1)-dimensional simulations with 75 000 and
400 CPU hours per run, respectively.

IV. RESULTS AND DISCUSSION

To avoid multiple filamentation of the high-power laser
beam, the gas pressure in our analysis is chosen in such a way as
to keep the critical power for self-focusing Pcr approximately
at the level of the peak power P of the laser pulse. In particular,
for a 30-fs pulse with E0 = 6 J, the peak power becomes equal
to Pcr at an argon pressure of 5.11×10−5 bar.

As a first step of our analysis, we verify that the high-
power laser pulse with a given initial energy forms a single
filament as it propagates through the low-pressure gas, with
its beam profile remaining stable with respect to the buildup
of a small-scale multifilamentary beam structure. Figure 1(a)
presents the results of (3 + 1)-dimensional simulations for a
30-fs laser pulse with an energy of 6 J, propagating in argon
at p = 5.11×10−5 bar, with P = Pcr. The beam at the linear
focus point z = 0 displays perfect cylindrical symmetry with
no signatures of multiple filamentation.

However, avoiding multiple filamentation by keeping Pcr ≈
P at lower gas pressures is necessary, but not sufficient to
effectively scale filamentation-assisted pulse compression to
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FIG. 1. (Color online) (a) The fluence F = ∫ |A|2dt (kJ/cm2) as
a function of transverse coordinates x and y of a high-power beam
with E0 = 6 J, τ0 = 30 fs, and λ0 = 800 nm at z = 0.4 m in argon at
p = 5.11 × 10−5 bar simulated by solving the (3 + 1)-dimensional
GNSE. (b) The on-axis field intensity (PW/cm2) as a function of the
propagation distance and retarded time for E0 = 1 J, τ0 = 30 fs, and
P = Pcr.

extreme light powers. Since the ionization rate is typically
a much steeper function of the laser intensity than the Kerr
nonlinearity, efficient pulse compression of extreme-power
laser pulses at low gas pressures is prevented [Figs. 1(b)
and 2(a)] by a fast increase in the electron density along the
filament [dashed curve in Fig. 2(a)], which tends to defocus
the laser beam following the initial stage of beam self-focusing
[Fig. 1(b)]. To steer the balance between ionization-induced
defocusing and Kerr-nonlinearity–related self-focusing toward
more efficient pulse compression in longer filaments, we
use specific properties of argon, which features a large gap
(	U ≈ 280 eV) between the ionization potentials of M-
and L-shell electrons. When the laser field intensity is high
enough to deplete the M shell, the large gap 	U tends to
stabilize the electron density along the filament. This effect is
illustrated by Fig. 2(a), showing that 1- and 6-J laser pulses
generate filaments where the maximum field intensities differ
by two orders of magnitude, while the average ionization
degrees 〈Z〉 = ρ/ρat differ only by factor of 2. This result
is in striking contrast with filamentation at the atmospheric
pressure, when the electron density rapidly grows with the laser
intensity [2,3]. For E0 = 6 J, the average ionization degree
〈Z〉 is effectively clamped at 〈Z〉 = 8 (which corresponds to
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FIG. 2. (Color online) (a) The ionization degree (top) and
the maximum on-axis field intensity (bottom) vs the propagation
coordinate z for τ0 = 30 fs, P = Pcr, and E0 = 1 J (dashed lines)
and 6 J (solid lines). (b) The fluence (kJ/cm2) as a function of
the propagation distance z and radial coordinate r for E0 = 6 J,
τ0 = 30 fs, P = Pcr. The levels of 0.1 and 0.3 of the maximum field
intensity for a linearly focused beam are shown by white contour
lines.
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FIG. 3. (Color online) (a) The on-axis field intensity (EW/cm2)
as a function of the propagation distance and retarded time and
(b) the on-axis spectral intensity in arbitrary units on the log scale as
a function of the propagation distance and frequency for E0 = 6 J,
τ0 = 30 fs, and P = Pcr.

a complete depletion of the M shell) and remains unchanged
over more than 1 m.

Due to this electron density clamping effect, the
Kerr-nonlinearity–related phenomena can be decoupled within
a limited time interval and limited propagation path from
ionization-induced defocusing, as the laser intensity can
increase [Fig. 2(a)] without a noticeable growth in the electron
density [solid curve, the range of intensities from 0.2 to
0.8 EW/cm2 in Fig. 2(a)]. The spatial self-action of a high-
power laser beam under these conditions is dominated by
the Kerr nonlinearity, enabling efficient pulse compression
through pulse self-steepening and space-time focusing [2,3].

This regime of pulse self-compression is illustrated in
Figs. 3(a) and 3(b), which present the spatiotemporal dynamics
and dynamics of spectral broadening of a laser pulse with
τ0 = 30 fs and energy 6 J in argon at p = 5.11×10−5

bar with n4 = 0. Behind the linear focus [z = 0, shown by
white contour lines in Fig. 2(b)], the beam continues to focus
due to the Kerr nonlinearity [Fig. 2(b)], which dominates
within this section of propagation path over ionization-induced
defocusing, suppressed due to the depletion of ionization from
the outer shell of argon. This beam self-focusing dynamics is
accompanied by pulse reshaping and compression in the time
domain, as well as by efficient supercontinuum generation
in the spectral domain. At z = 0.5 m, the spectrum of this
supercontinuum stretches into the UV region, where it starts
to interfere with the third harmonic (the spectral component
centered at 1.2 PHz).

Maximum pulse compression is achieved at a certain
distance inside a filament (z = 0.6 m for the chosen set of
parameters, see Figs. 4 and 5). This distance of maximum
compression depends on the gas pressure. As the pressure
of argon is increased from 5.11×10−5 bar (the pressure that
provides compression to the shortest pulse width) to 6×10−5

bar, maximum compression to a pulse width of about 3 fs is
achieved at z = 0.5 m.

In Fig. 4(a), we show the FWHM pulse width, the rms pulse
width

τrms =

√√√√∫ r0

0 rdr
∫

dt |A|2t2∫ r0

0 rdr
∫

dt |A|2 −
(∫ r0

0 rdr
∫

dt |A|2t∫ r0

0 rdr
∫

dt |A|2
)2

,

where r0 is the aperture of, e.g., a pinhole used to select the
central part of the beam at z = 0.6 m. With r0 = 0.14 mm,
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FIG. 4. (Color online) (a) The FWHM pulse width (solid blue
line), the rms pulse width (dashed green line), and the total energy
(red dotted line) for the compressed pulse transmitted through an
aperture with a radius r0 at z = 0.6 m, (b) the power in the pulse
(log scale) transmitted through an aperture with a radius of 0.14 mm
at z = 0.6 m. The vertical dashed lines show the initial pulse width.
(c) The maps of the field intensity (PW/cm2) vs retarded time and
radius at z = 0.65 m. White contour lines are the isolines of the
temporal phase. (d) The on-axis field intensity vs the retarded time at
z = 0.6 m for n4 = 0 (blue solid line), −1 × 10−39 cm4/W2 (green
dashed line), −1 × 10−38 cm4/W2 (red dotted line). In all cases E0 =
6 J, τ0 = 30 fs, and P = Pcr.

pulses with an FWHM pulse width of 1.3 fs and a total energy
of about 0.3 J can be generated [Fig. 4(b)]. The contrast of
this pulse is 20 with respect to a prepulse at t = −τ0/2 =
– 15 fs and 200 with respect to a postpulse at t = +τ0/2 =
15 fs. The steep trailing edge of this pulse is indicative of
the key role of self-steepening and space-time focusing effects
in this regime of pulse compression. The FWHM width of
the temporal envelope of |A|2 on the beam axis at z = 0.6 m
is 0.86 fs, which corresponds to 0.3 field cycles [Fig. 5(a)].
Generation of such an extremely short pulse is facilitated by
the interference of the spectrally broadened fundamental field
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FIG. 5. (Color online) (a) The on-axis electric field (solid blue
line) and its envelope (blue dotted line) vs the retarded time and
(b) the spectrum of this field waveform at z = 0.6 m for E0 = 6 J,
τ0 = 30 fs, and P = Pcr. The green dashed line shows (a) the temporal
and (b) the spectral phase of the field. The spectrum of the input pulse
is shown in (b) by the dotted red line.

and its third harmonic, which gives rise to fringes, visible
in Fig. 3(a). This process enhances the central peak of the
field that undergoes the most efficient self-focusing [Fig. 3(a)],
giving rise to a solitary peak in the radial profile of the field
intensity, which is manifested as a plateau in the dependence
of the pulse width on the pinhole diameter in Fig. 4(a). The
light intensity achieved in transient field waveforms on the
beam axis as a part of this pulse self-compression dynamics
is as high as 0.8 EW/cm2 [z = 0.2 m in Figs. 2(a) and 3(a)],
falling in the range of relativistic field intensities.

Generation of relativistic-intensity subcycle field wave-
forms is quite sensitive to variations in the parameters of the
input laser pulse, as well as variations in the gas pressure.
Stretching of the input pulse by 3% of its width or a decrease
in the input pulse energy by 200 mJ would increase the pulse
width at the point of maximum compression inside the filament
up to approximately 3.5 fs. As the gas pressure is increased
by 20%, the shortest pulse width achieved in the filament is
increased to 3 fs.

Even higher field intensities can be generated as a result
of filamentation-assisted pulse self-compression dynamics for
laser beams with higher input energies. In particular, a laser
pulse with E0 = 7 J and τ0 = 30 fs inducing a filament in argon
at p = 3.1 × 10−5 bar generates subcycle field transients with
the field intensity as high as 2 EW/cm2. The filament length
tends to increase with the growth in the input energy in this
regime in agreement with the tendency illustrated in Fig. 2(a).
Technically, the computer code remains perfectly stable and
fully functional in this range of extreme light intensities, while
the small-scale features in the spatiotemporal structure of the
field can be analyzed using finer adaptive computation steps
in space and time. However, since the relativistic physics
of light-matter interaction at these cites of extremely high
light intensity in filaments is not included in our model and
falls beyond the scope of this study, we restrict our analysis
here to the regimes where the regions of relativistic light
intensity are localized within very small areas, exerting no
influence on the overall spatiotemporal dynamics of the laser
beam.

We emphasize here that relativistic-intensity subcycle field
transients are generated as a part of the considered pulse-
compression scenario at a certain propagation distance inside
the filament. Filtering this extreme-intensity subcycle field
waveform for experiments in the far field is a challenging
issue, which may limit the utility of the proposed pulse
compression strategy. One possible solution to this problem
is to perform relativistic laser-particle interaction experiments
(e.g., experiments on particle acceleration) right inside the
filament. Our simulations show that by increasing the energy
of the input laser pulse up to 7 J, it is possible to generate
relativistic-intensity subcycle field transients on a centimeter
spatial scale. An alternative solution would be to filter such
extreme-intensity subcycle pulses using appropriate pinholes
for far-field experiments in the single-shot mode, which is not
uncommon for extreme-intensity laser science.

The residual chirp of the pulse at the point of maximum
compression [see the contour lines in Fig. 4(c), as well as the
profiles of the temporal and spectral phases in Figs. 5(a) and
5(b)] suggests that a further compression of this pulse would
be possible with an appropriate dispersion of a medium behind
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the filter or a properly designed dispersion-compensating
component. The transform-limited pulse width supported by
the full spectrum of the pulse at the point of maximum
compression is 0.53 fs, which corresponds to 0.2 field
cycles.

While argon has been shown to be ideally suited for
filamentation-assisted pulse compression to subcycle pulse
widths and relativistic field intensities, a similar spatiotem-
poral dynamics of high-power ultrashort light pulses can
be implemented using other gas media. Specifically, neon
and krypton, the nearest neighbors of argon in the Periodic
Table in the family of rare gases, would be other promising
candidates, enabling the expansion of the parameter space
for the considered regime of pulse compression. In particular,
neon, due to its higher ionization potential, would be suitable
for the compression of ultrashort pulses with even higher
initial energies (up to 30 J according to our simulations),
while krypton would be promising for compression of laser
pulses with lower energies (in the range of 0.5–2 J). Obviously,
the initial beam diameter and focusing geometry need to be
appropriately adjusted for efficient pulse compression in other
gas media.

Higher-order nonlinearities, included in our model through
the n4 terms in Eqs. (1) and (2), may play a significant
role in pulse self-compression in the regime of extreme light
intensities. While positive n4 values tend to assist filamentation
and pulse compression, negative n4 may stop self-focusing
before the optimal conditions for pulse self-compression are

achieved [Fig. 4(d)]. Under these conditions, the optimal gas
pressure and initial beam focusing should be redefined with
the inclusion of the n4 effects for the maximum efficiency of
pulse self-compression.

V. CONCLUSION

We have shown that filamentation-assisted spatiotemporal
dynamics of ultrashort laser pulses in the regime of extreme
light powers can enable self-compression of subpetawatt laser
pulses to subcycle pulse widths and relativistic field intensi-
ties. Supercomputer simulations presented here demonstrate
compression of 6-J, 30-fs laser pulses to 1.3-fs sub-100-TW
broadband field waveforms and reveal the generation of
relativistic-intensity subfemtosecond field transients as a result
of such a pulse evolution scenario, with multiple filamentation
avoided due to low gas pressures and the balance between
Kerr and ionization nonlinearities steered toward optimal pulse
compression due to the depletion of ionization from the outer
shell of atoms by a high-power laser field.
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