

Journal of Alloys and Compounds 365 (2004) 168-172

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Sm–Ru–Ge system at 1070 K

A.V. Morozkin*, Yu.D. Seropegin

Department of Chemistry, Moscow Lomonosov State University, Leninskie Gory, Moscow, GSP-3, 119899, Russia

Received 5 November 2002; received in revised form 16 June 2003; accepted 16 June 2003

Abstract

Phase equilibria in the Sm–Ru–Ge system were investigated by X-ray powder diffraction and the isothermal section at 1070 K was obtained. We confirmed the compounds CeGa₂Al₂-type SmRu₂Ge₂ [a = 0.4229(1) nm, c = 0.9933(2) nm, space group *I4mmm*, No. 139], Y₃Co₄Ge₁₃-type Sm₃Ru₄Ge₁₃ [a = 0.9016(1) nm, space group *Pm3n*, No. 223], La₃Ni₂Ga₂-type Sm₃Ru₂Ge₂ [a = 0.5620(1) nm, b = 0.7808(1) nm, c = 1.3567(2) nm, space group *Pbcm*, No. 57], U₂Co₃Si₅-type Sm₂Ru₃Ge₅ [a = 0.9878(6) nm, b = 1.2437(8) nm, c = 0.5791(4) nm, space group *Ibam*, No. 72] and Zr₂CoSi₂-type Sm₂RuGe₂ [a = 1.0948(3) nm, b = 1.0839(3) nm, c = 0.4302(1) nm, γ = 123.23(2)°, space group *B*2/*m*, No. 12-1]. We found the following new compounds: TiNiSi-type SmRuGe [a = 0.7165(1) nm, b = 0.4476(1) nm, c = 0.7152(1) nm, space group *Pnma*, No. 62], CeRh_{1-x}Ge_{2+x}-type Sm₂RuGe_{5-x} [a = 0.4061(2) nm, b = 0.4179(2) nm, c = 1.6226(7) nm, space group *Pmmn*, No. 59-2], Cr₅B₃-type Sm₅Ru₂Ge [a = 0.7736(4) nm, c = 1.3426(8) nm, space group *I4/mcm*, No. 140] and Tb₃Co₂Ge₄-type Sm₃Ru₂Ge₄ [a = 1.0899(9) nm, b = 0.8139(8), c = 0.4319(3) nm, γ = 109.29(7)°, space group *B*2/*m*, No. 12-1]. The melting temperature for Sm₂Ru₃Ge₅ [T_m =1760(10) K], Sm₃Ru₄Ge₁₃ [T_m = 1600(10) K], Sm₃Ru₂Ge₂ [T_m = 1560(10) K] and Sm₂RuGe₂ [T_m = 1750(10) K] were measured. © 2003 Elsevier B.V. All rights reserved.

Keywords: Rare earth compounds; Transition metal compounds; Phase diagram; Crystal structure; X-ray diffraction

1. Introduction

The Ru–Ge, Sm–Ge and Sm–Ru binary systems have been studied in Refs. [1–12] (Table 1). The SmRu₂Ge₂, Sm₃Ru₄Ge₁₃, Sm₂Ru₃Ge₅, Sm₃Ru₂Ge₂ and Sm₂RuGe₂ ternary compounds have been studied in Refs. [13–18] (Table 2). The interaction of components at 870 K were studied in Ref. [18].

The goal of the present work was the updating the crystallographic data of Ref. [18] using Rietveld refinement [19,20] and the investigation of the phase equilibria in the Sm–Ru–Ge systems at 1070 K.

2. Experimental

The present study was carried out on about 20 alloys (Fig. 1). The alloys were made in an electric arc furnace under an argon atmosphere using a nonconsumable tungsten electrode and a water-cooled copper tray. Samarium, ruthenium and germanium (purity of each component \geq 99.99%)

were used as starting components. Titanium was used as a getter during the melting process. The alloys were remelted twice in order to achieve complete fusion and a homogeneous composition. The melted alloys were subjected to an anneal in evacuated quartz ampoules containing titanium chips as a getter. The ampoules were placed in a resistance furnace. The alloys were annealed at 1070 K for 2 weeks. The samples were quenched from the annealing temperature in ice-cold water. The phase equilibria in the Sm-Ru-Ge system were determined using X-ray phase analysis and microprobe X-ray analysis. X-ray data were obtained on a diffractometer Dron-3.0 (CuK α radiation, $2\theta = 20-70^{\circ}$, step 0.05° , for 5 s per step). The diffractograms obtained were identified by means of calculated patterns using the RIETAN program [19,20] in the isotropic approximation. A 'Camebax' microanalyser was employed to perform microprobe X-ray spectral analyses of the samples.

The high temperature differential thermal analysis of the compounds was carried out on an VDTA-8M2 (Institute of metallophysic of the Ukraine). The samples were heated in helium (10^5 Pa) twice in order to achieve an accurate value of the melting temperature. The heating rate was kept constant for all samples (80 K/min). The investigation was carried out with a ZrO₂ crucible. The temperature was measured with

^{*} Corresponding author. Fax: +7-95-932-8846.

E-mail address: morozkin@general.chem.msu.ru (A.V. Morozkin).

^{0925-8388/\$ –} see front matter @ 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0925-8388(03)00652-2

Table 1

Crystallographic data and temperature of the phase transition of compounds in the Sm–Ru, Sm–Ge and Ru–Ge systems. The reliability factors are $R_{\rm F} = 100 \cdot (\Sigma_k |(I_k^{\rm obs})^{1/2} - (I_k^{\rm cal})^{1/2}|)/\Sigma_k |(I_k^{\rm obs})^{1/2}|) \% (I_k^{\rm obs}$ is the integrated intensity evaluated from summation of contribution of the *k*th peaks to net observed intensity, $I_k^{\rm cal}$ is the integrated intensity calculated from refined structural parameters)

	Compound	Space group	Structure type	a (nm)	b (nm)	<i>c</i> (nm)	<i>R</i> _F (%)	T ^b (K)	Refs.
1	Sm ^a Sm ^a	R3m R3m	α-Sm α-Sm	0.3621 0.3611(4)		2.625 2.622(3)	3.6	1190	[1] _c
	Sm	Im3m	W	0.407				1350	[1]
2	Ru ^a Ru ^a	P6 ₃ /mmc P6 ₃ /mmc	Mg Mg	0.27058 0.2696(1)		0.42811 0.4269(2)	4.4	2583	[1] _c
3	Ge ^a Ge ^a	Fd3m Fd3m	C C	0.565754 0.5621(1)			5.6	1210.6	[1] _c
4	RuGe ^a RuGe ^a	<i>P</i> 2 ₁ 3 <i>P</i> 2 ₁ 3	FeSi FeSi	0.4846 0.4839(3)			5.1	~1670	[2,3] _c
5	$\begin{array}{l} Ru_2Ge_3 \ (HT) \\ Ru_2Ge_3 \ (LT)^a \\ Ru_2Ge_3 \ (LT) \end{array}$	P4c2 Pbcn Pbcn	Ru ₂ Sn ₃ Ru ₂ Si ₃ Ru ₂ Si ₃	0.5739 1.1436 1.144(2)	0.9238 0.9237(7)	0.9952 0.5716 0.5719(8)	2.2	~1670	[2,3] [2] _c
6	SmGe _{1.63} ^a	$I4_1/amd$	ThSi ₂	0.4183		1.3810		1030	[7–9]
7	SmGe _{1.5} ^a SmGe _{1.5} ^a	P6/mmm P6/mmm	AlB ₂ AlB ₂	0.4005 0.4002(1)		0.4250 0.4244(1)	2.6	1020	[7,9] _c
	SmGe _{1.5} (HT1) SmGe _{1.5} (HT2)	····						1360 1630	[9] [9]
8	SmGe ^a SmGe ^a	Cmcm Cmcm	CrB CrB	0.4374 0.4366(3)	1.0885 1.0853(3)	0.3996 0.3985(1)	4.9	1670	[2,6,9] _ ^c
9	$ m Sm_5Ge_4{}^a$ $ m Sm_5Ge_4{}^a$	Pnma Pnma	Sm5Ge4 Sm5Ge4	0.774 0.777(1)	1.495 1.5146(2)	0.784 0.783(1)	1.9	1770	[2,5,9] _°
10	$\mathrm{Sm}_5\mathrm{Ge}_3{}^{\mathrm{a}}$ $\mathrm{Sm}_5\mathrm{Ge}_3{}^{\mathrm{a}}$	P6 ₃ /mcm P6 ₃ /mcm	Mn ₅ Si ₃ Mn ₅ Si ₃	0.866 0.8607(2)		0.649 0.6497(2)	4.3	1970	[2,4,9] _c
11	$\mathrm{Sm}_3\mathrm{Ru}^a$	Pnma	Fe ₃ C	0.733	0.9508	0.6361		1090	[2,12]
12	$\mathrm{Sm}_5\mathrm{Ru}_2{}^a$	C2/c	Mn ₅ C ₂	1.6083	0.6438 $\beta = 96.89^{\circ}$	0.7314		1180	[2,12]
13	${ m Sm}_{44}{ m Ru}_{25}{}^{a} \ { m Sm}_{44}{ m Ru}_{25}{}^{a}$	Pnma Pnma	$\begin{array}{l} Y_{44}Ru_{25}\\ Y_{44}Ru_{25}\end{array}$	2.276(2)	1.509(1)	1.5033(9)	6.1	1220	[11] _c
14	SmRu ₂ (HT) SmRu ₂ (LT) ^a SmRu ₂ (LT) ^a	Fd3m P6 ₃ /mmc P6 ₃ /mmc	MgCu ₂ MgZn ₂ MgZn ₂	0.7577 0.5282 0.5287(2)		0.8854 0.8940(2)	5.3	2310	[2,10] [2,10] _c

^a Compounds belongs to the isothermal cross-section at 1070 K.

^b The temperatures listed refer to a solid-phase transition (normal font), to the melting temperature (italic bold font) or to the melting temperature for peritectic (bold font).

^c This work.

a W–W (20% Re) thermocouple. As reference we used the melting temperature of Cu (1356 K) and the phase transitions temperatures of Fe (1041, 1183, 1663, 1812 K). The purity of all standard metals was 99.999% at. The accuracy of the temperature measurements was ± 10 K.

3. Results and discussion

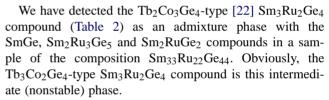
The results obtained were used in the construction of the isothermal section of the Sm–Ru–Ge system at 1070 K, presented in Fig. 2.

Crystallographic data and the temperature of the phase transition of the binary compounds in the Sm-Ru, Sm-Ge

and Ru–Ge systems and the crystallographic data of the binary compounds that were detected in the isothermal section at 1070 K are shown in Table 1. A high-temperature MgCu₂-type modification of SmRu₂ was found in which Ge substitutes for Ru, leading to the Sm₃₃Ru₅₂Ge₁₅ compound (Table 2). The other binary compounds do not show any visible solubility.

The compounds $SmRu_2Ge_2$, $Sm_2Ru_3Ge_5$, $Sm_3Ru_4Ge_{13}$, $Sm_3Ru_2Ge_2$, Sm_2RuGe_2 and the new compounds SmRuGe, Sm_5Ru_2Ge and Sm_2RuGe_{5-x} were detected in the isothermal section at 1070 K (Table 2).

The SmRuGe compound belongs to the well-known TiNiSi-type structure. We have not detected the CeFeSi-type SmRuGe compound [17] in the present work. Table 2


Crystallographic data and the melting temperature $T_{\rm m}$ of compounds in the Sm–Ru–Ge systems. The reliability factors are $R_{\rm F} = 100 \cdot (\Sigma_k |(I_k^{\rm obs})^{1/2} - (I_k^{\rm cal})^{1/2}|)/\Sigma_k |(I_k^{\rm obs})^{1/2}|)/\Sigma_k |(I_k^{\rm obs})^{1/2}|)/\Sigma_k |(I_k^{\rm obs})^{1/2}|)/\Sigma_k |(I_k^{\rm obs})^{1/2}|$ is the integrated intensity evaluated from summation of contribution of the *k*th peaks to net observed intensity, $I_k^{\rm cal}$ is the integrated intensity calculated from refined structural parameters)

	Compound	Space group	Structure type	a (nm)	<i>b</i> (nm)	c (nm)	<i>R</i> _F (%)	T _m (K)	Refs.
1	SmRu ₂ Ge ₂ SmRu ₂ Ge ₂	I4/mmm I4/mmm	$\begin{array}{c} CeGa_2Al_2\\ CeGa_2Al_2 \end{array}$	0.4236 0.4229(1)		0.9944 0.9933(2)	5.4	>2000	[13] _a
2	Sm ₂ Ru ₃ Ge ₅ Sm ₂ Ru ₃ Ge ₅	Ibam Ibam	$\begin{array}{l} U_2 Co_2 Si_3 \\ U_2 Co_2 Si_3 \end{array}$	0.9867 0.9878(6)	1.244 1.2437(8)	0.579 0.5791(4)	1.8	1760(10)	[14] _ ^a
3	Sm ₃ Ru ₄ Ge ₁₃ Sm ₃ Ru ₄ Ge ₁₃	Pm3n Pm3n	$\begin{array}{c} Y_3Co_4Ge_{13}\\ Y_3Co_4Ge_{13} \end{array}$	0.9020 0.9016(1)			3.4	1600(10)	[15] _ ^a
4	Sm_2RuGe_{5-x}	Pmmn	$CeRh_{1-x}Ge_{2+x}$	0.4061(2)	0.4178(2)	1.6223(7)	6.3		
5	Sm ₂ RuGe ₂	<i>B</i> 2/ <i>m</i>	Zr ₂ CoSi ₂	1.0948(3)	1.0839(3)	0.4302(1) $\gamma = 123.23(2)^{\circ}$	1.8	1750(10)	_a
6	SmRuGe SmRuGe	P4/nm Pnma	CeFeSi TiNiSi	0.4244 0.7165(1)	0.4476(1)	0.6711 0.7152(1)	6.2		[17] _ ^a
7	Sm ₃ Ru ₂ Ge ₂ Sm ₃ Ru ₂ Ge ₂	Pbcm Pbcm	$La_3Ni_2Ga_2$ $La_3Ni_2Ga_2$	0.5611 0.5620(1)	0.7818 0.7808(1)	1.3473 1.3567(2)	4.6	1560(10)	[16] _ ^a
8	Sm5Ru2Ge	I4/mcm	Cr ₅ B ₃	0.7736(4)		1.3426(8)	2.0		_a
9	Sm33Ru52Ge15	Fd3m	MgCu ₂	0.7557(1)			3.6		_a
10	Sm ₃ Ru ₂ Ge ₄	<i>B</i> 2/ <i>m</i>	Tb ₃ Co ₂ Ge ₄	1.0899(9)	0.8139(8)	0.4319(3) $\gamma = 109.29(7)^{\circ}$	6.9		_a

^a This work.

The Sm₂RuGe_{5-x} compound forms in the Sm₃Ru₄Ge₁₃– SmGe_{1.5}–Sm₂Ru₃Ge₅ domain of the Sm–Ru–Ge system after annealing at 1070 K. The Sm₂RuGe_{5-x} compound belongs to the orthorhombic structure type. The CeRh_{1-x}Ge_{2+x}-type structure [21] is the best model for this compound.

Substitution of Ge for Ru in the Mn_5Si_3 -type Sm_5Ge_3 compound leads to the formation of the Cr_5B_3 -type Sm_5Ru_2Ge compound.

The atomic position parameters of the ternary compounds of the Sm–Ru–Ge system are shown in Table 3.

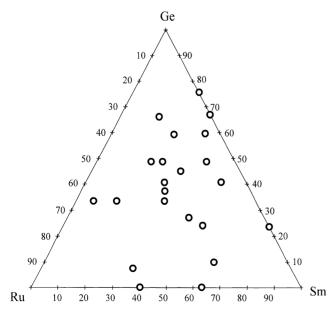


Fig. 1. Composition of samples investigated in the Sm-Ru-Ge system.

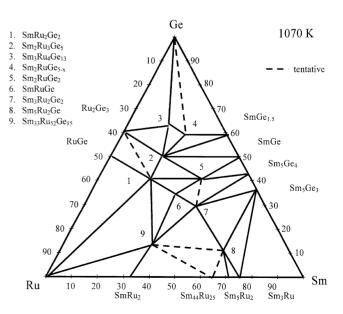


Fig. 2. Isothermal section of the Sm-Ru-Ge system at 1070 K.

Table 3 Atomic position parameters of ternary compounds in the Sm-Ru-Ge system

Atom	Type of position	x/a	y/b	z/c	Occupation factor
(a)					
Sm	2(a)	0	0	0	
Ru	4(d)	0	1/2	1/4	
Ge	4(<i>e</i>)	0	0	0.3664(6)	
(b)					
Sm	8(<i>j</i>)	0.266(1)	0.137(1)	0	
Ru1	4(<i>a</i>)	0	0	1/4	
Ru2	8(<i>j</i>)	0.092(2)	0.354(2)	0	
Ge1	4(b)	1/2	0	1/4	
Ge2	8(g)	0	0.204(2)	1/4	
Ge3	8(<i>j</i>)	0.324(2)	0.415(2)	0	
(c)					
Sm	6(<i>b</i>)	1/4	1/2	0	
Ru	8(c)	1/4	1/4	1/4	
Ge1	2(a)	0	0	0	
Ge2	24(f)	0	0.318(1)	0.160(1)	
(d)					
Sm1	2(c)	1/4	1/4	0.148(2)	1.00
Sm2	2(c)	1/4	3/4	0.651(2)	1.00
T1*	2(c)	1/4	1/4	0.949(6)	1.00
T2	2(c) 2(c)	1/4	3/4	0.293(6)	1.00
Gel	2(c) 2(c)	1/4	1/4	0.793(7)	1.00
Ge2	2(c) 2(c)	1/4	1/4	0.494(5)	1.00
Ge3	2(c) 2(c)	1/4	3/4	0.008(5)	1.00
Ge4	2(c) $2(c)$	1/4	3/4	0.436(9)	0.20(1)
(e)					
Sm1	4(j)	0.176(1)	0.677(1)	0	
Sm2	4(j)	0.421(1)	0.111(1)	0	
Ru	4(j)	0.144(2)	0.370(2)	0	
Ge1	4(j)	0.424(2)	0.575(2)	0	
Ge2	4(j)	0.127(2)	0.125(2)	0	
	+(<i>j</i>)	0.127(2)	0.125(2)	0	
(f) Sm	4(-)	0.482(1)	1/4	0.214(1)	
	4(c)		1/4 1/4	0.314(1)	
Ru	4(c)	0.149(1)		0.563(1)	
Ge	4(<i>c</i>)	0.808(2)	1/4	0.600(2)	
(g)	0()	0.154(0)	0.100/0	0.100(1)	
Sm1	8(<i>e</i>)	0.154(2)	0.100(2)	0.102(1)	
Sm2	4(<i>d</i>)	0.624(4)	0.244(3)	1/4	
Ru	8(<i>e</i>)	0.350(4)	0.470(2)	0.090(1)	
Ge1	4(d)	0.141(7)	0.378(4)	1/4	
Ge2	4(<i>c</i>)	0.618(8)	1/4	0	
(h)					
Sm	8(<i>a</i>)	0	0	0	
Ru _{0.77} Ge _{0.23}	16(<i>d</i>)	1/8	1/8	1/8	
(i)		0.055 (7)	0.000	<u>^</u>	
Sm1	4(i)	0.379(5)	0.301(4)	0	
Sm2	2(a)	0	0	0	
Ru	4(i)	0.685(6)	0.303(6)	0	
Ge1	4(i)	0.122(9)	0.376(8)	0	
Ge2	4(i)	0.739(7)	0.069(9)	0	

*, $T1 = T2 = Ru_{0.4}Ge_{0.6}$.

^a CeGa₂Al₂-type SmRu₂Ge₂ compound [a = 0.4229(1) nm, c = 0.9933(2) nm, space group *I*4/*mmm*, No. 139].

^b U₂Co₃Si₅-type Sm₂Ru₃Ge₅ compound [a = 0.9878(6) nm, b = 1.2437(8) nm, c = 0.5791(4) nm, space group *Ibam*, No. 72].

^c Y₃Co₄Ge₁₃-type Sm₃Ru₄Ge₁₃ compound [a = 0.9016(1) nm, space group *Pm*3*n*, No. 223].

^d CeRh_{1-x}Ge_{2+x}-type Sm₂RuGe_{5-x} compound [a = 0.4061(2) nm, b = 0.4178(2) nm, c = 1.6223(7) nm, space group *Pmmn*, No. 59-2].

^e Zr₂CoSi₂-type Sm₂RuGe₂ compound [a = 1.0948(3) nm, b = 1.0839(3) nm, c = 0.4302(1) nm, $\gamma = 123.23(2)^{\circ}$, space group B2/m, No. 12-1].

^f TiNiSi-type SmRuGe compound [a = 0.7165(1) nm, b = 0.4476(1) nm, c = 0.7152(1) nm, space group Pnma, No. 62].

^g La₃Ni₂Ga₂-type Sm₃Ru₂Ge₂ compound [a = 0.5620(1) nm, b = 0.7808(1) nm, c = 1.3567(2) nm, space group *Pbcm*, No. 57].

^h MgCu₂-type Sm₃₃Ru₅₂Ge₁₅ compound [a=0.7557(1) nm, space group Fd3m, No. 227-1].

ⁱ Tb₃Co₂Ge₄-type Sm₃Ru₂Ge₄ compound [a = 1.0899(9) nm, b = 0.8139(8) nm, c = 0.4319(3) nm, $\gamma = 109.23(7)^{\circ}$, space group B2/m, No. 12-1].

The SmRu₂Ge₂ compound has the maximal melting temperature of all the ternary compounds of the Sm–Ru–Ge system (Table 2).

4. Conclusion

It is obvious that the phase equilibria in the $\{Y, Gd-Tm\}$ -Ru-Ge systems will be close to those of the Sm-Ru-Ge system. So, we can detect compounds with the same structure type in the $\{Y, Gd-Tm\}$ -Ru-Ge systems. Possibly, Cr₅B₃-type Gd₅Ru₂Ge or Tb₅Ru₂Ge may be interesting as magnetic materials.

References

- [1] J. Emsley, The Elements, 2nd Edition, Clarendon Press, Oxford, 1991.
- [2] Pearson's Handbook of Crystallographic Data for Intermetallic Phases, American Society for Metals, Metals Park, OH, Vol. 3, 1985.
- [3] E. Raub, W. Fritzsche, Z. Metallkd. 53 (12) (1962) 779-781.
- [4] K.H.J. Buschow, I.F. Fast, Phys. Status Sol. 21 (1967) 593-600.
- [5] G.S. Smith, Q. Johnson, A.G. Tharp, Acta Crystallgr. 22 (2) (1967) 269–272.
- [6] A.G. Tharp, G.S. Smith, Q. Johnson, Acta Crystallgr. 20 (4) (1966) 583–585.

- [7] I. Mayer, Y. Eshdat, Inorg. Chem. 7 (9) (1968) 1904–1908.
- [8] K.H.J. Buschow, J.F. Fast, Phys. Status Sol. 16 (1966) 467-473.
- [9] J. Ghosh, H.L. Lukas, L. Delaey, Calphad 12 (3) (1988) 295– 299.
- [10] J.F. Cannon, D.L. Robertson, H.T. Hall, J. Less-Common Met. 29 (2) (1972) 141–146.
- [11] A. Palenzona, F. Canepa, J. Less-Common Met. 66 (2) (1979) L31– L33.
- [12] A. Palenzona, J. Less-Common Met. 66 (2) (1979) 27-33.
- [13] M. Francois, G. Venturini, J.F. Mareche, B. Malaman, B. Roques, J. Less-Common Met. 113 (2) (1985) 231–237.
- [14] G. Venturini, M. Meot-Meyer, J.F. Mareche, B. Malaman, B. Roques, Mater. Res. Bull. 21 (1) (1986) 33–39.
- [15] L. Serge, Ternary superconductors, in: Proc. Int. Conf., Lake Geneva, 1980, p. 243.
- [16] O.I. Bodak, Izv.Akad.Nauk SSSR, Met. 5 (1990) 217–219, in Russian.
- [17] R. Welter, G. Venturini, B. Malaman, E. Ressouche, J. Alloys Comp. 202 (1–2) (1993) 165–172.
- [18] A.V. Morozkin, Yu.D. Seropegin, O.I. Bodak, J. Alloys Comp. 234 (1996) 143–150.
- [19] F. Izumi, Rigaku J. 6 (N1) (1989) 10-19.
- [20] F. Izumi, in: R.A. Young (Ed.), The Rietveld Method. Oxford University Press, Oxford, 1993, Chapter 13.
- [21] B.I. Shapiev, Interaction of components in the Ce-{Ru,Rh}-(Si,Ge} systems at 870 K, Dissertation of candidate of chemical science, Moscow, MSU, 1988 (in Russian).
- [22] P.K. Starodub, I.R. Mokraya, O.I. Bodak, V.K. Pecharskii, V.A. Bruskov, Kristallografiya 31 (1986) 394–396 (in Russian).