Моделирование капсулированных источников с 75 Se с целью их потенциального использования в брахитерапии

А. В. Белоусов 1,a , А. А. Белянов 1 , Г. А. Крусанов 1,2 , А. П. Черняев 1,2

Статья поступила 20.06.2017, подписана в печать 14.07.2017.

Физические характеристики радионуклида 75 Se делают его перспективным гамма-излучателем для применения в качестве закрытого брахитерапевтического источника. Данный радионуклид сочетает относительно низкоэнергетичное фотонное излучение, испускаемое при распаде, с достаточно большим периодом полураспада (около 120 дней) и возможность получения высокой удельной активности. Все это делает данный радионуклид привлекательным для брахитерапии с автоматическим введением. Целью настоящей работы является изучение дозиметрических характеристик 75 Se для его потенциального использования в брахитерапии с высокой и средней мощностью дозы. Согласно формализму TG-43 рассчитаны радиальная дозовая функция g(r) и функция анизотропии $F(r,\theta)$. 75 Se в качестве радионуклида для брахитерапии закрытыми источниками обладает многими преимуществами по сравнению с широко применяемыми изотопами и может служить альтернативой иридиевым источникам.

Ключевые слова: брахитерапия, источники, селен-75, метод Монте-Карло, Geant 4, TG-43. УДК: 53.06. PACS: 87.53.Dq.

Введение

В клинической брахитерапии используется несколько радионуклидов, испускающих фотонное излучение. Главным образом это 60 Co, 137 Cs, 192 Ir, 125 I и 103 Pd [1-4]. Предлагается использовать ^{153}Gd [5] в качестве источника фотонов промежуточных энергий. Некоторые авторы считают перспективным использование 131 Сѕ [6, 7] в качестве альтернативы йоду и палладию, а ^{169}Yb в брахитерапии с высокой мощностью дозы [8, 9]. Кроме того, предлагается использовать ⁵⁷ Co [10] и ¹⁷⁰ Tm [11, 12]. Однако эти радионуклиды обладают недостатками по сравнению с иридием. Иттербий обладает коротким периодом полураспада и поэтому неудобен для применения в клинической практике, несмотря на очевидное преимущество, связанное с высокой удельной активностью. 170 Tm обладает существенным вкладом тормозного излучения и «загрязнен» бета-излучением на расстояниях до 5 мм. Кроме того, гамма-постоянная $^{170}\,\mathrm{Tm}$ почти на два порядка меньше чем у иридия, что при сравнимой мощности дозы требует увеличения размеров источника. Производство ⁵⁷ Со весьма дорого, поскольку требует производства мишеней, обогащенных изотопом $^{57}\,\mathrm{Ni}.$

Возможной альтернативой иридию и перспективным кандидатом является ⁷⁵ Se, который обладает клинически значимыми преимуществами, определяемыми его физическими свойствами: 1) период полураспада составляет около 119.78 дней; 2) возможно получение достаточно высокой удельной активности; 3) энергия основных испускаемых линий 121, 136,

265, 280 и 400 кэВ со средней энергией в районе 215 кэВ. ⁷⁵ Se может быть получен в ядерных реакциях на элементах, не требующих изотопного обогащения. Более низкие энергии по сравнению с ¹⁹² Iг и тем более с ⁶⁰ Со предъявляют существенно меньшие требования к радиационной защите. Таким образом, ⁷⁵ Se является удачным кандидатом на роль источников для брахитерапии. Кроме того, следует отметить, что данный изотоп широко используется в качестве радионуклида для мобильных дефектоскопов и методики его получения и выделения достаточно отработаны с технической точки зрения.

Целью настоящей работы является расчет дозиметрических характеристик гипотетического источника для брахитерапии на основе радионуклида ⁷⁵ Se. Радиальная дозовая функция и функция анизотропии вычисляются методом Монте-Карло с помощью собственного программного кода, написанного на основе библиотек Geant 4.

1. Материалы и методы

1.1. Распад ⁷⁵ Se

 75 Se распадается по схеме электронного захвата до стабильного изотопа 75 As. Основные испускаемые линии характеристического излучению имеют энергию ~ 11 кэВ и практически полностью поглощаются оболочкой капсулы. Энергия основных линии для испускаемых электронов не превышает 300 кэВ, и они практически полностью поглощаются внутри источника. Основные линии гамма-излучения: 66 кэВ (~ 1), 96 кэВ (~ 3 ,5), 121 кэВ (~ 17), 136 кэВ (~ 59), 199 кэВ (~ 1), 264 кэВ (~ 59),

¹ Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра ускорителей и радиационной медицины.

 $^{^2}$ Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына (НИИЯФ МГУ). Россия,119234, Москва, Ленинские горы, д. 1, стр. 2. E-mail: a belousovav@physics.msu.ru

 $280~{\rm кэB}~(\sim25),~303~{\rm кэB}~(\sim1)$ и $400~{\rm кэB}~(\sim11)$ (в скобках указано количество испущенных фотонов на $100~{\rm распадов}$). Полное количество испускаемых на $100~{\rm распадов}$ фотонов ~178 . Средняя энергия испускаемых фотонов $215~{\rm кэB}$. Мощность воздушной кермы $48.25~{\rm mk\Gamma p/(m^2 \cdot \Gamma B \kappa \cdot \nu)},~{\rm что}~{\rm примерно}$ в $2~{\rm раза}~{\rm меньше},~{\rm чем}~{\rm y}~{\rm ^{192} Ir}.$ Таким образом, требуемая удельная активность при сохранении такой же мощности дозы примерно в два раза выше. Для ослабления мощности дозы в $10^6~{\rm pas}~{\rm необходимая}$ толщина свинца составляет $\sim4.2~{\rm cm},~{\rm тогда}~{\rm как}~{\rm для}$ иридия $\sim10~{\rm cm}.$

1.2. Получение ⁷⁵ Se

В настоящее время селен-75 широко используется в качестве источника гамма-излучения для дефектоскопов. Основные реакции, в которых может быть получена значительная активность 75 Se, $-\frac{^{72}}{^{32}}$ Ge $(\alpha, n\gamma)_{34}^{75}$, $\frac{^{73}}{^{32}}$ Ge $(\alpha, 2n\gamma)_{34}^{75}$ Se, $\frac{^{74}}{^{34}}$ Se $(\alpha, \gamma)_{34}^{75}$ Se, $\frac{^{74}}{^{34}}$ Se $(\alpha, \gamma)_{34}^{75}$ Se, $\frac{^{76}}{^{36}}$ Se $(\alpha, t)_{34}^{75}$ Se, $\frac{^{76}}{^{34}}$ Se $(\alpha, t)_{34}^{75}$ Se, Для использования в качестве источника для брахитерапии, во-первых, необходимо получить требуемую удельную активность (размеры капсул достаточно малы и масса активного вещества в них составляет порядка 0.05 г); во-вторых, крайне желательно не иметь радиоактивных изотопов, характеристики которых сильно отличаются от селена-75. Из этих соображений реакции на селене далеко не оптимальны, поскольку для получения высокой удельной активности необходимо выделение ⁷⁵ Se среди других изотопов. Данная процедура достаточно трудоемка и очень дорогостояща. В реакциях на германии выделение химическим путем селена позволяет получить требуемую удельную активность, однако из-за наличия в природном германии большого количества изотопов, полученная смесь будет сильно «загрязнена» другими радиоактивными изотопами селена. В качестве альтернативы возможно использование изотопного обогащения германия, это снимет часть проблем, однако стоимость получения существенно возрастет. Наработка в ядерных реакторах с помощью реакций радиационного захвата страдает теми же недостатками. Оптимальным представляется получение в реакциях на мышьяке. При энергии протонов менее 22 МэВ единственным радиоактивным изотопом селена является $^{75}{
m Se.}$ По оценкам с помощью программного комплекса TALYS выход в данной реакции составляет $Y = 2.53 \; \Gamma \text{Бк/(мA·ч)}$. При облучении на сильноточном ускорителе с током порядка 500 мА в течение 100 ч накопленная активность составит около 120 ТБк, а удельная активность порядка может достигать 50 ТБк/г без дополнительной очистки выделенного вещества. Увеличив энергию протонов, можно существенно повысить выход, однако потребуется «охлаждение» 1 , чтобы уменьшить интенсивность других изотопов селена. Из них наибольшей активностью обладает 72 Se с периодом полураспада около 9 дней и 73 Se с периодом полураспада около 40 минут.

1.3. Характеристики источника

Моделирование методом Монте-Карло выполнено для цилиндрического инкапсулированного стальным корпусом источника, похожего на источник для брахитерапии с высокой мощностью дозы на основе иридия — VariSourceTM. Его геометрия и размеры показаны на рис. 1. Активное ядро источника выполнено из чистого (химическая чистота более 99%) селена (плотность $\rho = 4.28$ г/см 3). Изотопный состав: 75 Se $\sim 33\%$, 74 Se $\sim 66\%$, 76 Se $\sim 1\%$, что соответствует получениию в ядерных реакциях на мышьяке при облучении протонов с энергией 22 МэВ. Активное ядро окружено стальной оболочкой, ее массовый состав: Fe – 68%, Cr – 19%, Ni – 10%, Mn – 2%, Si – 1%, плотность $\rho = 8$ г/см³. Масса источника 0.0042 г, активность ~ 2 ТБк, соответствующая мощность дозы ~ 1 кГр/час, что в 2.5 раза выше, чем у источника 192 Ir Vari-SourceTM. Подробности вычисления радиальной дозовой функции и функции анизотропии можно найти в работе [13].

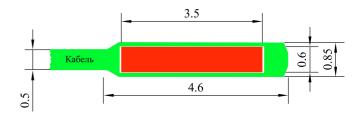
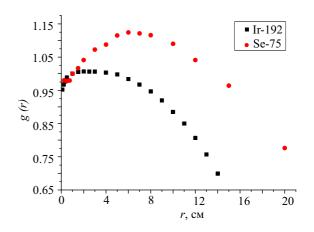
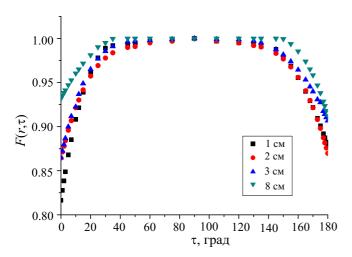



Рис. 1. Дизайн капсулы гипотетического источника с изотопом ⁷⁵ Se (все размеры приведены в миллиметрах)



Puc. 2. Радиальная дозовая функция для иридиевого и селенового источников

¹Из-за разного периода полураспада ⁷⁵ Se и других радиоактивных изотопов селена количество последних со временем будет уменьшаться гораздо быстрее, и их активность спустя некоторое время станет пренебрежимо мала.

2. Результаты и обсуждение

На рис. 2 представлена радиальная дозовая функция модельного источника с изотопом ⁷⁵ Se и такого же по размерам источника с радионуклидом ¹⁹² Iг, вычисленная в шаровом водном фантоме радиуса 40 см. Дозное распределение предлагаемого источника имеет более ярко выраженный максимум, чем иридиевые источники. Смещение максимума на глубину 6–8 см позволит в перспективе разработать методики лечения с меньшей нагрузкой на критические органы. Угловая зависимость двумерной функции анизотропии для различных расстояний приведена на рис. 3. По сравнению с иридиевыми источниками

Puc. 3. Угловая зависимость двумерной функции анизотропии модельного источника для различных расстояний

функция анизотропии более равномерно покрывает область вокруг источника, что также может быть отнесено к достоинствам источника.

Заключение

 $^{75}\,\mathrm{Se}$ в качестве радионуклида для брахитерапии закрытыми источниками обладает многими преимуществами по сравнению с широко применяемыми изотопами, такими как $^{60}\,\mathrm{Co},~^{192}\,\mathrm{Ir},~^{137}\,\mathrm{Cs}$ и неко-

торыми другими предлагаемыми радионуклидами, в частности ¹⁶⁹ Yb. По сравнению с цезиевыми и кобальтовыми источниками требует существенно меньшей радиационной защиты, имеет больший период полураспада, чем иттербий. Может выступать в качестве альтернативы иридиевым источникам, по сравнению с которыми имеет несколько преимуществ. Радиальная дозовая функция обладает более ярко выраженным максимумом, что может позволить более гибко составлять планы лечения. Функция анизотропии более плавная и имеет хорошее дозиметрическое покрытие. Производство требуемой удельной активности возможно на пучках протонов высокой интенсивности. Методики выделения достаточно хорошо отработаны.

Список литературы

- 1. Nath R., Anderson L.L., Luxton G. et al. // Med. Phys. 1995. **22**. P. 209.
- Rivard M.J., Coursey B.M., DeWerd L.A. et al. // Med. Phys. 2004. 31. P. 633.
- Venselaar J.L.M., Pérez-Calatayud J. A Practical Guide to Quality Control of Brachytherapy Equipment. Estro, 2004.
- 4. Nath R., Anderson L.L., Meli J.A. et al. // Med. Phys. 1997. **24**. P. 1557.
- Enger S.A., Fisher D.R., Flynn R.T. // Phys. Med. Biol. 2013. 58. P. 957.
- 6. Rivard M.J. // Med. Phys. 2007. 34. P. 754.
- 7. *Tailor R., Ibbott G., Lampe S.* et al. // Med. Phys. 2008. **35**. P. 5861.
- 8. *Medich D.C., Tries M.A., Munro J.J.* // Med. Phys. 2006. **33**. P. 163.
- 9. Lymperpoulou G., Papagiannis P., Sakelliou L. et al. // Med. Phys. 2005. **32**. P. 3832.
- 10. Enger S.A., Lundqvist H., D'Amours M., Beaulieu L. // Med. Phys. 2012. **39**, N 5. P. 2342.
- 11. Ballester F., Granero D., Pérez-Calatayud J. et al. // Med. Phys. 2010. **37**, N 4. P. 1629.
- Enger S.A., D'Amours M., Beaulieu L. // Med. Phys. 2011. 38, N 10. P. 5307.
- 13. Белоусов А.В., Калачев А.А., Осипов А.С. // Вестн. Моск. ун-та. Физ. Астрон. 2014. № 6. С. 95. (Belousov A.V., Kalachev A.A., Osipov A.S. // Moscow University Phys. 2014. **69**, N 6. P. 535.)

Simulation of Se-75 encapsulated sources for their potential use in brachytherapy

A. V. Belousov^{1,a}, A. A. Belianov¹, G. A. Krusanov^{1,2}, A. P. Chernyaev^{1,2}

¹Department of Accelerators' Physics and Radiation Medicine, Faculty of Physics, Lomonosov Moscow State University. Moscow 119991, Russia.

² Skobeltsyn Institute of Nuclear Physics, Moscow State University. Moscow 119191, Russia. E-mail: ^a belousovav@physics.msu.ru.

The physical characteristics of the radionuclide 75 Se make it a promising gamma radiant for its use as a sealed brachytherapy source. This radionuclide combines relatively low-energy photon radiation emitted at decay with a sufficiently long half-life (*about 120 days*), and the possibility of obtaining a high specific activity. All this makes this radionuclide attractive for brachytherapy with automatic injection. The aim of this work is to study the dosimetric characteristics of 75 Se for its potential use in brachytherapy with high and medium dose rates. According to the TG-43 formalism, a radial dose function g(r) and the anisotropy function $F(r,\theta)$ are calculated. 75 Se as a radionuclide for brachytherapy with sealed sources has many advantages over widely used isotopes and can serve as an alternative to iridium sources.

Keywords: brachytherapy, sources, selen-75, Monte Carlo, Geant 4, TG-43.

PACS: 87.53.Dq. Received 20 June 2017.

English version: Moscow University Physics Bulletin. 2018. 72, No. 3. Pp. .

Сведения об авторах

- 1. Белоусов Александр Витальевич канд. физ.-мат.наук., доцент; тел.: (495) 939-49-46, e-mail: belousovav@physics.msu.ru.

- 2. Белянов Александр Александрович мл. науч. сотрудник.

 3. Крусанов Григорий Андреевич аспирант; тел.: (495) 939-49-46.

 4. Черняев Александр Петрович доктор физ.-мат.наук, профессор, зав. кафедрой; тел.: (495) 939-13-44.