УДК 539.171

ОЦЕНЕННЫЕ СЕЧЕНИЯ РЕАКЦИЙ σ(γ, nX) и σ(γ, 2nX) НА ИЗОТОПАХ ОЛОВА 112, 114, 116, 117, 118, 119, 120, 122, 124Sn

© 2010 г. В. В. Варламов¹, Б. С. Ишханов^{1, 2}, В. Н. Орлин¹, В. А. Четверткова¹

E-mail: Varlamov@depni.sinp.msu.ru

Для девяти изотопов Sn выполнен совместный анализ экспериментальных данных по сечениям полных и парциальных фотонейтронных реакций, полученным с помощью пучков тормозного γ -излучения и квазимоноэнергетических аннигиляционных фотонов. Выполнена оценка сечений парциальных реакций $\sigma^{\text{оцен}}(\gamma, nX)$ и $\sigma^{\text{оцен}}(\gamma, 2nX)$, свободная от проблем экспериментального определения множественности нейтронов. Она использует результаты расчетов в рамках модели фотоядерных реакций, основанной на ферми-газовых плотностях и учитывающей эффекты деформации ядра и изоспинового расщепления его гигантского дипольного резонанса (ГДР), а также экспериментальные данные по сечениям реакции полного выхода фотонейтронов $\sigma^{\text{эксп}}(\gamma, xn) = \sigma^{\text{эксп}}(\gamma, nX) + 2\sigma^{\text{эксп}}(\gamma, 2nX) = \sigma^{\text{эксп}}(\gamma, n) + \sigma^{\text{эксп}}(\gamma, np) + 2\sigma^{\text{эксп}}(\gamma, 2n) + 2\sigma^{\text{эксп}}(\gamma, 2np). Оцененные сечения реакций <math>\sigma^{\text{оцен}}(\gamma, 2nX)$ получены с помощью введенной переходной функции множественности $F^{\text{теор}} = \sigma^{\text{теор}}(\gamma, 2nX) / \sigma^{\text{теор}}(\gamma, xn) = \sigma^{\text{теор}}(\gamma, 2nX) / (\sigma^{\text{теор}}(\gamma, nX) + 2\sigma^{\text{эксп}}(\gamma, sn)) = (1 - 2F^{\text{теор}})\sigma^{\text{эксп}}(\gamma, xn). Оцененные сечения парциальных реакций использованы для оценки сечений полной фотонейтронной реакции <math>\sigma^{\text{оцен}}(\gamma, sn) = \sigma^{\text{оцен}}(\gamma, nX) + \sigma^{\text{оцен}}(\gamma, 2nX),$ в зависимости от массового числа *A*. Исследованы и обсуждаются особенности ГДР изотопов ^{112, 114, 116, 117, 118, 119, 120, 122, 124 Sn.}

ВВЕДЕНИЕ

В результате поглощения ядром γ-кванта в области энергий гигантского дипольного резонанса (ГДР) возбужденное ядро испускает отдельные нуклоны или их комбинации. С наибольшей вероятностью испускается один нуклон, с меньшей вероятностью — два и больше. Это обстоятельство вместе с соотношениями энергетических порогов соответствующих реакций определяет полное сечение фотопоглощения $\sigma(\gamma, abs)$ и основные каналы распада гигантского дипольного резонанса (ГДР):

$$\sigma(\gamma, abs) = \sigma(\gamma, n) + \sigma(\gamma, np) + \sigma(\gamma, n2p) + \sigma(\gamma, 2n) + \sigma(\gamma, 2np) + \sigma(\gamma, 2n2p) + \sigma(\gamma, 3n) + \sigma(\gamma, 3np) + \sigma(\gamma, 3n2p) + \dots + \sigma(\gamma, f).$$
(1)

Соотношение сечений фотонейтронных реакций с испусканием различного числа нейтронов является важной характеристикой процесса фоторасщепления, зависящей от механизмов возбуждения и распада ядра. Однако экспериментальное изучение фотоядерных реакций с испусканием различного числа образующихся нейтронов представляет собой задачу, сложность которой обусловлена прежде всего тем, что энергетические пороги различных парциальных реакций [1] близки друг к другу (табл. 1).

При регистрации нейтрона в области энергий выше энергетического порога B_{2n} реакции (γ , 2n) необходимо идентифицировать, в какой из реализующихся реакций (γ , n), (γ , 2n), (γ , 3n), ... он образовался. Без этого непосредственно в эксперименте при прямой регистрации фотонейтронов может быть получено лишь сечение реакции полного выхода фотонейтронов

$$\sigma(\gamma, xn) \approx \sigma(\gamma, n) + 2\sigma(\gamma, 2n) + + 3\sigma(\gamma, 3n) + 4\sigma(\gamma, 4n) + ...,$$
(2)

в которое сечения парциальных реакций $\sigma(\gamma, 2n)$, $\sigma(\gamma, 3n)$, $\sigma(\gamma, 4n)$, ... входят с соответствующими коэффициентами множественности – 2, 3, 4, ...

Как видно из данных табл. 1, при изучении фоторасщепления изотопов Sn кроме чисто нейтронных следует учитывать такие каналы, в которых вылет нейтронов сопровождается испусканием протонов. Так, например, для изотопов $^{112, 114, 116}$ Sn $B_p < B_n$, для некоторых изотопов $B_{np} \approx B_{2n}$. В связи с этим вместо (2) правильнее использовать соотношение

$$\sigma(\gamma, xn) \approx \sigma(\gamma, nX) + 2\sigma(\gamma, 2nX) + 3\sigma(\gamma, 3nX) + \dots, (3)$$

¹ Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына Московского государственного университета МГУ имени М.В. Ломоносова.

² Московский государственный университет имени М.В. Ломоносова.

Изотоп	Содержа-	Пороги реакций, МэВ									
	ние, %	<i>B</i> _n	B _p	B _{2n}	B _{2p}	B _{np}	<i>B</i> _{3n}	<i>B</i> _{3p}	B _{2np}	B _{4n}	
112 Sn	0.97	10.8	7.6	19.0	12.9	17.6	30.2	21.8	25.6	38.9	
114 Sn	0.65	10.3	8.5	18.0	14.6	17.9	28.8	24.2	25.6	37.0	
¹¹⁶ Sn	14.53	9.6	9.3	17.1	16.1	18.3	27.4	26.4	25.6	35.2	
117 Sn	7.68	6.9	9.4	16.5	16.9	16.2	24.1	27.3	25.3	34.4	
118 Sn	24.23	9.3	10.0	16.3	17.5	18.8	25.8	28.5	25.6	33.4	
¹¹⁹ Sn	8.59	6.5	10.1	15.8	18.2	16.5	22.8	29.4	25.3	32.3	
¹²⁰ Sn	32.59	9.1	10.7	15.6	19.0	19.2	24.9	30.7	25.6	31.9	
122 Sn	4.63	8.8	11.4	15.0	20.6	19.6	24.1	33.3	25.7	30.6	
¹²⁴ Sn	5.79	8.5	12.1	14.4	22.1	20.0	23.3	35.4	25.8	29.4	

Таблица 1. Содержание исследуемых стабильных изотопов Sn в естественной смеси и пороги основных фотоядерных реакций на изотопах Sn

в котором X обозначает сумму всех процессов, в которых вылет соответственно одного, двух, трех, ... нейтронов сопровождается другими частицами (или их комбинациями). В рассматриваемой области энергий (E < 25 МэВ) сечения реакций $\sigma(\gamma, 3nX)$, а тем более сечения реакций с вылетом большего количества нейтронов малы. Кроме того, в настоящее время для изотопов олова надежные данные для сечений реакций $\sigma(\gamma, 3nX)$, $\sigma(\gamma, 4nX)$, ... отсутствуют.

Для идентификации образующихся в реакциях (γ , nX) и (γ , 2nX) нейтронов обычно используются разные методы. Так, в экспериментах на пучках квазимоноэнергетических аннигиляционных (KMA) фотонов множественность образующихся нейтронов определялась с помощью измерения их средних энергий, а в экспериментах на пучках тормозного γ -излучения (TИ) для учета вклада нейтронов с различной множественностью использованы соотношения статистической теории ядерных реакций [2].

Существенное различие процедур разделения вкладов в ГДР реакций различной множественности нейтронов является причиной того, что между результатами разных экспериментов наблюдаются заметные различия. Системному выявлению причин этих различий, разработке методов их преодоления, а также совместной оценке результатов разных экспериментов для большого числа ядер был посвящен ряд специальных исследований [3–6].

Эксперименты по фоторасщеплению изотопов ^{112, 114, 116, 117, 118, 119, 120, 122, 124}Sn [7–11] дают обширный материал для анализа и совместной оценки результатов различных экспериментов по определению сечений полных и парциальных фотонейтронных реакций. В настоящей работе предлагается подход, по существу свободный от недостатков экспериментальных процедур разделения нейтронов по множественности. Он использует экспериментальные данные только о сечении реакции полного выхода фотонейтронов $\sigma^{\mathfrak{sксn}}(\gamma, xn)$, а для определения вкладов реакций с образованием 1 и 2 нейтронов – результаты расчетов, описывающих конкуренцию различных каналов распада ГДР. Такой подход стал возможен в последнее время, так как в теоретическом описании отдельных каналов формирования и распада ГДР и их конкуренции между собой для большого числа ядер, в том числе и нескольких изотопов Sn. достигнут очевидный прогресс [12–14]. В рамках теоретической модели, базирующейся на ферми-газовых плотностях [13, 14], оказалось возможным детально проследить влияние на процессы формирования и распада ГДР эффектов, обусловленных деформацией ядра, конфигурационным и изоспиновым расшеплениями ГДР.

1. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ ПО СЕЧЕНИЯМ ФОТОНЕЙТРОННЫХ РЕАКЦИЙ НА ИЗОТОПАХ 112, 114, 116, 117, 118, 119, 120, 122, 124Sn

Сечения реакции полного выхода фотонейтронов (3) и составляющих ее парциальных реакций $\sigma^{\text{эксп}}(\gamma, nX)$ и $\sigma^{\text{эксп}}(\gamma, 2nX)$ на изотопах Sn были получены в экспериментах с использованием пучков как тормозного γ -излучения (ТИ) [7–9], так и квазимоноэнергетических аннигиляционных (КМА) фотонов [10, 11]. Сведения об экспериментах, в которых были получены сечения фотонейтронных реакций на изотопах Sn, приведены в табл. 2.

В ТИ-экспериментах [7-9] сечения парциальных реакций определялись следующим образом. При различных значениях максимальной энергии тормозного спектра E^{max} измерялись экспериментальные выходы $Y(E^{max})$ реакции полного выхода нейтронов (3)

Изотоп	$\sigma^{3\kappa c \pi}$	(γ, xn)	σ ^{эксп} ((γ, n <i>X</i>)	σ ^{эκсп} ($σ^{ m эксп}(\gamma, 2nX)$	
HSOTON	ТИ	КМА	ТИ	KMA	ТИ	KMA	
¹¹² Sn	[7]		[7]*		[7]**		
114 Sn	[8]		[8]*		[8]**		
¹¹⁶ Sn	[8]	[10, 11]	[8]*	[10, 11]	[8]**	[10, 11]	
¹¹⁷ Sn	[8]	[10, 11]	[8]*	[10, 11]	[8]**	[10, 11]	
¹¹⁸ Sn	[7]	[12, 13]	[7]*	[10, 11]	[7]**	[10, 11]	
¹¹⁹ Sn	[8, 9]	[10]	[9]*	[10]	[9]**	[10]	
¹²⁰ Sn	[7]	[10, 11]	[7]*	[10, 11]	[7]**		
¹²² Sn	[8]		[8]*		[8]**		
¹²⁴ Sn	[8]	[10, 11]	[8]*	[10, 11]	[8]**	[10, 11]	

Таблица 2. Сведения о данных по сечениям фотонейтронных реакций на исследованных изотопах Sn

* Данные по сечениям реакции $\sigma^{3\kappa cn}(\gamma, nX)$, полученные (см. далее (7)) по данным [7–9].

** Данные по сечениям реакции σ^{эксп}(γ, 2nX), полученные (см. далее (6)) по данным [7–9].

$$Y(E^{max}) = \alpha \int_{E_{+}}^{E^{max}} W(E^{max}, E)\sigma(E)dE, \qquad (4)$$

где $\sigma(E)$ – сечение реакции $\sigma(\gamma, xn)$ с порогом E_{th} при энергии фотонов E; $W(E^{max}, E)$ – спектр тормозного γ -излучения с верхней границей E^{max} ; α – нормировочная константа, а сечение $\sigma(E)$ реакции (γ , xn) определялось решением системы интегральных уравнений (4) методом Пенфолда– Лейсса с переменным шагом обработки.

Для учета двойных вкладов сечений реакций $\sigma^{\text{эксп}}(\gamma, 2nX)$ в сечение реакции $\sigma^{\text{эксп}}(\gamma, xn)$ вводились поправки, рассчитанные по формулам статистической теории [2] с использованием параметров плотности уровней конкретного ядра. С помощью этих поправок определялось сечение полной фотонейтронной реакции $\sigma(\gamma, sn)$:

$$\sigma^{\mathfrak{scn}}(\gamma, \mathfrak{sn}) = \sigma^{\mathfrak{scn}}(\gamma, \mathfrak{n}X) + \sigma^{\mathfrak{scn}}(\gamma, 2\mathfrak{n}X) =$$

= $\sigma^{\mathfrak{scn}}(\gamma, \mathfrak{xn}) - \sigma^{\mathfrak{scn}}(\gamma, 2\mathfrak{n}X).$ (5)

Опубликованные [7–9] данные по сечениям реакций $\sigma^{3\kappa cn}(\gamma, xn)$ и $\sigma^{3\kappa cn}(\gamma, sn)$ были использованы нами для получения (обозначены символами "*" и "**" в табл. 2) сечений реакций $\sigma^{3\kappa cn}(\gamma, nX)$ и $\sigma^{3\kappa cn}(\gamma, 2nX)$:

$$\sigma^{\mathfrak{skcn}}(\gamma, 2nX) = \sigma^{\mathfrak{skcn}}(\gamma, xn) - \sigma^{\mathfrak{skcn}}(\gamma, sn), \qquad (6)$$

$$\sigma^{\mathfrak{scn}}(\gamma, \mathbf{n}X) = \sigma^{\mathfrak{scn}}(\gamma, \mathbf{sn}) - \sigma^{\mathfrak{scn}}(\gamma, 2\mathbf{n}X) =$$

= $\sigma^{\mathfrak{scn}}(\gamma, \mathbf{xn}) - 2\sigma^{\mathfrak{scn}}(\gamma, 2\mathbf{n}X).$ (7)

В КМА-экспериментах (Национальная Ливерморская лаборатория США [10], Центр ядерных исследований, Саклэ, Франция [11]) измерения проводились в 3 этапа: 1) измерялся выход $Y_{e^+}(E)$ (4) реакции под суммарным действием фотонов от аннигиляции позитронов и их тормозного γ -излучения;

2) измерялся выход $Y_{e^-}(E)$ (4) реакции под действием фотонов только от тормозного γ -излучения электронов;

3) результатом являлась (после соответствующей нормировки и в предположении, что спектры тормозного γ -излучения позитронов и электронов идентичны) разность экспериментальных выходов $Y_{e^+}(E)$ и $Y_{e^-}(E)$, которая интерпретировалась как искомое сечение

$$Y_{e^+}(E) - Y_{e^-}(E) = Y(E) \approx \sigma(E).$$
 (8)

Для разделения фотонейтронных реакций с образованием одного и двух (и более) нейтронов в [10, 11] использовалась зависимость множественности нейтронов от их средней энергии. Для ее определения в [10] применялся "метод кольцевых отношений", в котором предполагалось, что отношение числа отсчетов в счетчиках, расположенных на различных расстояниях от мишени, монотонно возрастает с увеличением средней энергии нейтронов. В [11] для определения средней энергии нейтронов использовалась прецизионная калибровка жидкого сцинтиллятора с помощью радиоактивного источника.

2. СИСТЕМАТИЧЕСКИЕ РАЗЛИЧИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО СЕЧЕНИЯМ ФОТОНЕЙТРОННЫХ РЕАКЦИЙ НА ИЗОТОПАХ ^{112, 114, 116, 117, 118, 119, 120, 122, 124}Sn

В силу существенно разных процедур разделения вкладов в ГДР реакций (ү, nX) и (ү, 2nX), между результатами экспериментов [7–11] наблюда-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 74 № 6 2010

Ядро	<i>Е</i> _{инт-мин} , МэВ	$E_{_{\text{инт-макс}}},$ МэВ	$R(\mathbf{n}) = \sigma_{_{\mathrm{HHT}}}^{\mathrm{C}}(\gamma, \mathbf{n}X) / \sigma_{_{\mathrm{HHT}}}^{\Pi}(\gamma, \mathbf{n}X),$ oth. eq.	$R(2n) = \sigma_{_{\rm ИНТ}}^{\rm C}(\gamma, 2nX) / \sigma_{_{\rm ИНT}}^{^{ m J}}(\gamma, 2nX),$ отн. ед.
¹¹⁶ Sn	17.1	22.1	1.10	0.92
¹¹⁷ Sn	16.7	21.1	1.02	0.93
118 Sn	16.3	21.6	1.07	0.86
¹²⁰ Sn	15.6	22.4	1.00	0.86
¹²⁴ Sn	14.6	21.6	0.93	0.94

Таблица 3. Данные [6] по отношениям интегральных сечений реакций (γ , n*X*) и (γ , 2n*X*), полученным в Саклэ [11] и Ливерморе [10] ($E_{\text{инт-мин}}$ и $E_{\text{инт-макс}}$ – нижний и верхний пределы интегрирования)

ются определенные различия [3, 5, 6, 15], в наибольшей степени проявляющиеся в области энергий выше порогов B_{2n} реакций с образованием двух нейтронов. В табл. 3 приведены результаты сравнения данных по сечениям парциальных реакций, полученным в КМА-экспериментах [10, 11].

Характер наблюдающихся различий результатов КМА- и ТИ-экспериментов иллюстрирует рисунок 1 на примере ядра ¹²⁰Sn:

сечения реакции $\sigma^{3\kappa cn}(\gamma, nX)$ [11] имеют абсолютную величину, большую, чем сечения [10] и [7–9], которые близки между собой;

сечения реакции $\sigma^{3\kappa cn}(\gamma, 2nX)$ [11] имеют абсолютную величину, меньшую, чем сечения [10] и [7–9], при этом сечения [7–9] имеют наибольшие значения.

Рис. 1. Сравнение экспериментальных (\Box – данные из [7], соотношения (8) и (9), \bigcirc – данные [10], \triangle – данные [11]) и оцененных ($\sigma^{\text{оцен-совм}}$, \star , см. далее ((14), (15)) сечений парциальных фотонейтронных реакций на изотопе ¹²⁰Sn ($B_{2n} = 15.6 \text{ МэВ}$)): $a - 1^{20}$ Sn(γ , nX); $\delta - 1^{20}$ Sn(γ , 2nX).

Данные, приведенные в табл. 3, в целом подтверждают наличие проблем, рассмотренных в работах [3–6] и связанных с недостаточной надежностью методов разделения парциальных фотонейтронных реакций по множественности в КМА-экспериментах. В ТИ-экспериментах недостатком является использование для определения вклада парциальной реакции $\sigma^{\text{эксп}}(\gamma, nX)$ в сечение полного выхода нейтронов реакции $\sigma^{\text{эксп}}(\gamma, xn)$ соотношений статистической теории, тогда как, известно [16, 17], что достаточно заметный вклад (до ~20%) в фоторасщепление ядер вносят прямые процессы.

Вместе с тем данные табл. 3 (см. также рис. 1) свидетельствуют о том, что для исследуемых изотопов Sn обсуждаемые различия сечений реакций с разной множественностью относительно невелики, что позволяет сравнить оцененные в рамках предложенного метода сечения реакций $\sigma^{\text{оцен}}(\gamma, nX)$ и $\sigma^{\text{оцен}}(\gamma, 2nX)$ с экспериментальными данными.

3. НОВЫЙ ПОДХОД К АНАЛИЗУ ДАННЫХ ПО СЕЧЕНИЯМ ПАРЦИАЛЬНЫХ ФОТОНЕЙТРОННЫХ РЕАКЦИЙ

В связи со сказанным для совместной оценки сечений парциальных фотонейтронных реакций на изотопах Sn предлагается новый подход, в определенной степени свободный от недостатков экспериментального разделения фотонейтронов по множественности. В качестве исходной экспериментальной информации он использует только данные по сечениям реакции $\sigma^{3\kappa cn}(\gamma, xn)$, а для разделения вкладов в это сечение парциальных реакций (ү, nX) и (ү, 2nX) используются соотношения между сечениями реакций $\sigma^{\text{теор}}(\gamma, xn)$, $\sigma^{\text{теор}}(\gamma, nX)$ и $\sigma^{\text{теор}}(\gamma, 2nX)$, рассчитанными в рамках теоретической модели [13, 14, 18] описания конкуренции каналов распада ГДР. Основные соотношения предравновесной модели фотонуклонных реакций, базирующейся на ферми-газовых плотностях, приведены в работе [15].

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 74 № 6 2010

В качестве примера (124 Sn) на рис. 2 представлены сечения реакций, рассчитанные [13, 14] до энергий ~100 МэВ для чисто нейтронных (γ , 0pkn) каналов распада ГДР и каналов распада, наиболее сильных среди остальных, с присутствием одного (γ , 1pkn) и двух (γ , 2pkn) протонов. Хорошо видно, как различные каналы распада ГДР ядра 124 Sn конкурируют между собой.

В рамках предложенного метода разделения конкурирующих реакций (γ, nX) и (γ, 2nX) оценка сечений реакций с образованием одного и двух нейтронов была выполнена следующим образом:

– теоретически рассчитанные [13, 14] сечения реакций $\sigma^{\text{теор}}(\gamma, nX), \sigma^{\text{теор}}(\gamma, 2nX)...$ объединялись в сечение реакции полного выхода фотонейтронов

$$\sigma_{(\gamma,\text{xn})}^{\text{reop}}(E) = \sigma_{(\gamma,nX)}^{\text{reop}}(E) + 2\sigma_{(\gamma,2nX)}^{\text{reop}}(E) + \dots;$$
(9)

— для каждого значения энергии фотонов E строилась переходная функция множественности F(E), описывающая вклад сечения реакции с образованием двух нейтронов в сечение реакции полного выхода нейтронов (рис. 3)

$$F(E) = \sigma_{(\gamma, 2nX)}^{\text{reop}}(E) / \sigma_{(\gamma, xn)}^{\text{reop}}(E) =$$

$$= \sigma_{(\gamma, 2nX)}^{\text{reop}}(E) / [\sigma_{(\gamma, nX)}^{\text{reop}}(E) + 2\sigma_{(\gamma, 2nX)}^{\text{reop}}(E) + \dots];$$
(10)

– с использованием F(E) и экспериментальных данных по полному сечению реакции выхода фотонейтронов $\sigma^{
m эксп}(\gamma, xn)$ (3) для каждого эксперимента [7, 8, 10, 11] были получены сечения, оцененные по экспериментальным данным

$$\sigma_{\mathfrak{s}\kappa \mathfrak{c}\pi(\gamma,2nX)}^{\mathfrak{oleH}}(E) = F(E)\sigma_{(\gamma,xn)}^{\mathfrak{s}\kappa\mathfrak{c}\pi}(E); \tag{11}$$

$$\sigma_{{}_{3\kappa c\pi(\gamma,nX)}}^{\text{oueH}}(E) = \sigma_{(\gamma,xn)}^{{}_{3\kappa c\pi}}(E) - 2\sigma_{{}_{3\kappa c\pi(\gamma,2nX)}}^{{}_{0ueH}}(E) =$$
(12)

= $\sigma_{(\gamma,xn)}^{\mathfrak{sксn}}(E) - 2F(E)\sigma_{(\gamma,xn)}^{\mathfrak{skcn}}(E) = (1 - 2F(E))\sigma_{(\gamma,xn)}^{\mathfrak{skcn}}(E).$ Следует отметить, что учет в модели [13, 14] ос-

следует отметить, что учет в модели [13, 14] основных механизмов, определяющих конкуренцию различных каналов распада возбужденных состояний ядер в области ГДР, и свойства функции *F*, вытекающие из ее определения (10), делают ее весьма удобным инструментом анализа надежности выделения вкладов процессов с образованием одного и двух нейтронов.

На рис. 3 представлены энергетические зависимости переходной функции F(E), рассчитанные для всех исследованных изотопов Sn. Все они имеют следующие характерные особенности:

– по определению (10) F(E) имеет пороговый характер из-за наличия в ее числителе пороговой величины $\sigma(\gamma, 2nX)$: F(E) = 0 в области энергий ниже порога B_{2n} реакции $\sigma(\gamma, 2n)$, сразу выше порога B_{2n} F(E) резко возрастает и через 2–3 МэВ достигает максимума;

— согласно определению (10), ни при каких значениях энергии фотонов функция F(E) не должна принимать значений, больших 0.5; для всех исследованных изотопов Sn функция F(E) достигает максимума на плоском участке шириной ~ 4–6 МэВ, на

Рис. 2. Вычисленные [13, 14] сечения реакций (сверху вниз – (γ, 0pkn), (γ, 1pkn) и (γ, 2pkn)) для изотопа ¹²⁴Sn. Сплошные кривые – полное сечение, штриховые – вклад квазидейтронной компоненты.

Рис. 3. Энергетические зависимости переходной функции F(E), описывающей вклад сечения парциальной реакции $\sigma^{\text{теор}}(\gamma, 2nX)$ в сечение реакции полного выхода фотонейтронов $\sigma^{\text{теор}}(\gamma, xn)$ для исследованных изотопов Sn (стрелками внизу указаны пороги B_{3n} реакций $(\gamma, 3n)$): $-\blacksquare - {}^{112}\text{Sn}, -\square - {}^{114}\text{Sn}, -● - {}^{116}\text{Sn}, -\bigcirc - {}^{112}\text{Sn}, -▲ - {}^{118}\text{Sn}, -\triangle - {}^{119}\text{Sn}, \lor - {}^{120}\text{Sn}, \nabla - {}^{122}\text{Sn}, -\bigstar - {}^{124}\text{Sn}.$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 74 № 6 2010

σ, мбн 300 F 140 250 200 150 120 б а 100 80 60 100 40 50 20 0 0 –50 Блана 36.6°.e0 8 12 16 20 24 28 18 20 22 24 26 28 30 16 ¹⁴⁰E 300 F 250 120 6 г 100 200 80 150 60 100 40 50 20 0 0 12 16 20 24 18 20 22 24 26 28 30 8 28 16 140 120 300 250 д е 200 100 80 150 100 60 40 50 20 0 0 -50<u>lilililili</u> 12 16 20 24 28 16 18 20 22 24 26 28 30 8 Е, МэВ

Рис. 4. Сравнение экспериментальных (\bigcirc) и оцененных (соотношения (11), (12)) —) данных по сечениям парциальных реакций $\sigma_{3ксп}^{0ueH}(\gamma, nX) - (a, b, d)$ и $\sigma_{3ксп}^{0ueH}(\gamma, 2nX) - (b, c, e)$ на изотопе ¹¹⁶Sn: a, b - данные [8]; b, c - данные [10]; d, e - данные [11].

котором $F(E) \approx \text{const} = 0.46-0.48$. Следует отметить, что появление значений, превышающих 0.5, в соответствующем отношении экспериментальных сечений реакций $\sigma_{(\gamma,2n\lambda)}^{\text{эксп}}(E)/\sigma_{(\gamma,xn)}^{\text{эксп}}(E)$ будет свидетельствовать о наличии существенных погрешностей в определении сечения парциальных реакций прежде всего при появлении в сечении парциальной реакции $\sigma(\gamma, nX)$ нефизических отрицательных значений;

– при энергиях за максимумом ГДР функция F(E) достаточно быстро уменьшается до значения ~0.40–0.45; сопоставление этих данных с данными табл. 1 позволяет сделать вывод о том, что уменьшение значений F(E) в области энергий за максимумом ГДР обусловлено тем, что в этой области энергий открывается новый канал распада ГДР с испусканием трех нуклонов (проявление в соотношении (10) члена $3\sigma_{(\gamma,3n\lambda)}^{\text{теор}}(E)$);

– значения E, при которых заметно уменьшаются значения F(E), плавно изменяются от ~23 до ~30 МэВ при переходе от наиболее тяжелого (¹²⁴Sn) к наиболее легкому (¹¹²Sn) изотопу.

Относительно слабая зависимость значений F(E) от энергии γ -квантов при ее дальнейшем уве-

личении свидетельствует об относительно слабой зависимости сечения поглощения γ -квантов от энергии в этой области — за максимумом ГДР ($E \ge 35 \text{ M} \Rightarrow \text{B}$).

Следует отметить также, что для изотопов Sn, ситуация с сечениями реакции $\sigma(\gamma, 3nX)$ для которых была описана выше, вклады процессов с испусканием трех нейтронов не оказывают сколько-нибудь заметного влияния на предложенный подход разделения сечений реакций $\sigma(\gamma, nX)$ и $\sigma(\gamma, 2nX)$. Однако в тех случаях, когда пороги B_{3n} реакций ($\gamma, 3nX$) оказываются особо низкими, а их величины — заметными по сравнению с сечениями реакций $\sigma(\gamma, 2nX)$, предложенный подход должен быть модифицирован (обобщен) путем введения дополнительных переходных функций множественности

$$F_i(E) = \sigma_{(\gamma,in\chi)}^{\text{reop}}(E) / \sigma_{(\gamma,xn)}^{\text{reop}}(E), \qquad (13)$$

каждая из которых будет описывать вклад соответствующей *i*-той парциальной реакции в сечение реакции $\sigma(\gamma, xn)$.

Для всех исследованных изотопов ^{112, 114, 116–120,} ^{122, 124}Sn оцененные по экспериментальным данным для сечений реакции $\sigma_{(\gamma,xn)}^{^{9KC\Pi}}$ данные о сечениях обеих парциальных реакций $\sigma_{_{9KC\Pi}(\gamma,2n\lambda)}^{^{0UEH}}$ [7, 8], [10], [11] и $\sigma_{_{9KC\Pi}(\gamma,n\lambda)}^{^{0UEH}}$ [7, 8, 10, 11] сравнивались с результатами соответствующих экспериментов (на рис. 4 приводится пример для ядра ¹¹⁶Sn). Выполненное сравнение позволяет сделать вывод о том, что в целом для всех исследованных изотопов Sn наблюдается хорошее согласие по энергетическому положению, абсолютной величине и форме сечений парциальных реакций $\sigma(\gamma, nX)$ и $\sigma(\gamma, 2nX)$, полученных четырьмя различными способами:

разделение вкладов парциальных реакций в сечение полного выхода фотонейтронов с использованием соотношений статистической модели фотоядерных реакций в ТИ-экспериментах;

прямое разделение фотонейтронов по множественности в КМА-эксперименте [10];

прямое разделение фотонейтронов по множественности в КМА-эксперименте [11];

определение вкладов сечений парциальных реакций в экспериментальное сечение полного выхода фотонейтронов $\sigma(\gamma, xn)$ с использованием предложенного метода.

На следующем этапе оцененные по экспериментальным данным отдельных экспериментов сечения парциальных реакций были использованы в процедуре совместной оценки

$$\sigma^{\text{outer-cobm}}(E) = \frac{\sum_{i} (\Delta \sigma(E)_{i})^{-2} \sigma(E)_{i}}{\sum_{i} (\Delta \sigma(E)_{i})^{-2}},$$
 (14)

Ядро	<i>B</i> _n , МэВ	$\sigma_{\rm инт}(B_{2n}-B_n), \ { m M} ightarrow { m B} \cdot { m M} otag$	<i>B</i> _{2n} , МэВ	$\sigma_{\rm инт}(B_{3n}-B_{2n})$	<i>B</i> _{3n} , МэВ		
		(γ, n <i>X</i>)		(γ, n <i>X</i>)	(γ, 2n <i>X</i>)		
¹¹² Sn	10.8	1370	19.0	163*	359*	30.2	
114 Sn	10.3	1150	18.0	249*	442*	28.8	
¹¹⁶ Sn	9.6	1030	17.1	284	408	27.4	
¹¹⁷ Sn	6.9	928	16.5	390	402	24.1	
¹¹⁸ Sn	9.3	851	16.3	339	510	25.8	
¹¹⁹ Sn	6.5	775	15.8	456	409	22.7	
¹²⁰ Sn	9.1	799	15.6	423	607	24.9	
¹²² Sn	8.8	591	15.0	456	493	24.1	
¹²⁴ Sn	8.5	503	14.4	535	635	23.3	

Таблица 4. Сравнение интегральных характеристик $\sigma_{\text{инт}}$ оцененных сечений реакций $\sigma_{(\gamma, nX)}^{\text{оцен-совм}}(E)$ и $\sigma_{(\gamma, 2nX)}^{\text{оцен-совм}}(E)$, определенных для различных областей энергий γ -квантов

* Измерения выполнены до энергии E = 27 МэВ (ниже B_{3n} порога реакции (γ , 3n)).

где i = 1, 2, 3 нумерует одно из сечений $\sigma_i(\sigma_{_{3KC\Pi}}^{_{01eH}}(\gamma, nX)$ или $\sigma_{_{3KC\Pi}}^{_{01eH}}(\gamma, 2nX))$, оцененных с погрешностью $\Delta\sigma_i$ описанным выше методом. Для расчета погрешностей значений оцененного сечения используется соотношение

$$\Delta \sigma^{\text{ouen-cobm}} = \frac{1}{\sum_{i} (\Delta \sigma(E)_i)^{-2}} \sqrt{\sum_{i} (\Delta \sigma(E)_i)^{-2}}.$$
 (15)

Сравнение оцененных по результатам нескольких экспериментов сечений парциальных реакций $\sigma_{(\gamma,n\chi)}^{\text{оцен-совм}}(E)$ и $\sigma_{(\gamma,2n\chi)}^{\text{оцен-совм}}(E)$ с данными, полученными в отдельных экспериментах (пример приведен на рис. 1), свидетельствует о том, что предложенная модель адекватно описывает экспериментальные данные для сечений обеих парциальных фотоядерных реакций, соответствующих двум основным каналам распада ГДР.

В табл. 4 представлены данные об интегральных сечениях парциальных реакций, рассчитанных по оцененным сечениям для двух энергетических областей — от порога B_n реакции (γ , 2n) до порога B_{2n} реакции (γ , 2n) и от B_{2n} до порога B_{3n} реакции (ү, 3n). Они свидетельствуют о сложном соотношении процессов с испусканием нескольких нейтронов в области максимума ГДР. Так, уже для самого легкого изотопа ¹¹²Sn вследствие относительно невысокого порога $B_{2n} = 19.0 \text{ M} \Rightarrow \text{B}$ реакции (ү, 2n) значительная часть сечения реакции (γ, nX) в области максимума ГДР попадает в область энергий, в которой возможно испускание двух нейтронов. При переходе к тяжелому изотопу¹²⁴Sn порог реакции с испусканием одного нейтрона *B*_n уменьшается на 2.3 МэВ, реакции с испусканием двух нейтронов B_{2n} – на 4.6 МэВ, а реакции с испусканием трех нейтронов B_{3n} – на 6.9 МэВ. При увеличении числа нейтронов в ядре область энергий, в которой распады ГДР с испусканием одного нейтрона могут быть идентифицированы однозначно, непрерывно сужается, а область конкуренции таких процессов с процессами испускания двух нейтронов расширяется. Так, начиная с изотопа ¹¹⁷Sn, интегральные сечения реакций $\sigma_{(\gamma,n\lambda)}(E)$ и $\sigma_{(\gamma,2n\lambda)}(E)$ в области энергий $B_{3n} - B_{2n}$ оказываются практически сравнимыми. При этом уже начиная с энергии ~23–24 МэВ к конкурирующим реакциям добавляется реакция (γ , 3n).

В табл. 5 основные параметры оцененных сечений реакции $\sigma^{\text{оцен-совм}}(\gamma, sn) = \sigma^{\text{оцен-совм}}(\gamma, nX) +$ $+ <math>\sigma^{\text{оцен-совм}}(\gamma, 2nX)$, рассчитанные по лоренцовским кривым, сравниваются с соответствующими параметрами экспериментальных сечений реакций [7, 8, 10, 11].

В табл. 6 проведено сравнение значений интегральных сечений, рассчитанных по экспериментальным и оцененным данным. Указаны максимальные энергии, до которых рассчитывались интегральные сечения реакций.

Видно, что оцененные сечения, хорошо описывающие соотношения сечений реакций $\sigma^{\text{оцен-совм}}(\gamma, nX)$ и $\sigma^{\text{оцен-совм}}(\gamma, 2nX)$, согласуются с экспериментальными данными по полным фотонейтронным сечениям. Приведенные данные позволяют сделать определенные выводы относительно характера изменений параметров ГДР при изменении массового числа *A* изотопа:

в соответствии с известными закономерностями при переходе к более тяжелому изотопу положение максимума ГДР E_m смещается к меньшим энергиям γ -квантов;

¶no		E_m , 1	МэВ	ІэВ σ _{<i>m</i>} , мб					Г, МэВ			
лдро	[7, 8]	[10]	[11]	Оц.	[7, 8]	[10]	[11]	Оц.	[7, 8]	[10]	[11]	Оц.
112 Sn	15.8	_	_	15.8	268	_	_	270	5.9	_	_	5.3
114 Sn	15.7	_	_	15.8	265	_	_	265	7.0*	_	_	5.5
116 Sn	15.6	15.7	15.6	15.6	260	266	270	270	6.0*	4.2	5.2	4.7
117 Sn	15.4	15.7	15.7	15.6	260	254	255	260	5.5*	5.0	5.3	4.8
118 Sn	15.5	15.6	15.4	15.5	272	255	278	265	5.8	4.8	5.0	4.5
¹¹⁹ Sn	15.4	15.5	_	15.6	270	253	_	255	6.0*	4.9	_	5.0
120 Sn	15.3	15.4	15.4	15.4	297	280	284	285	5.7	4.8	5.3	4.5
122 Sn	15.6	—	—	15.2	270	_	—	270	5.0*	_	_	4.3
124 Sn	15.5	15.2	15.3	15.1	270	283	275	280	5.5*	5.2	5.0	4.3

Таблица 5. Сравнение основных параметров ГДР в оцененных сечениях реакции $\sigma^{\text{оцен-совм}}(\gamma, sn) \approx \sigma(\gamma, abs)$ с экспериментальными данными (E_m – положение максимума, σ_m – сечение в максимуме, Γ – ширина максимума)

* Данные, отсутствующие в оригинальных публикациях, взяты из [19].

Таблица 6. Сравнение данных об интегральных сечениях σ_{uht} , оцененных сечений полной фотонейтронной реакции $\sigma^{oueh-cobm}(\gamma, sn) \approx \sigma(\gamma, abs)$ с экспериментальными данными

		Интегральные сечения $\sigma_{_{\rm ИНT}}$ полной фотонейтронной реакции $\sigma(\gamma, sn)$									
Ядро	<i>B</i> _{3n} , МэВ	[7, 8], <27 МэВ	[10], <30 МэВ	[11], <30 МэВ	Оценка, (< <i>B</i> _{3n})	Оценка, полн.	Дип. правило сумм, 60 NZ/A				
	МэВ		МэВ мб								
112 Sn	30.2	1900*			1893	1893	1661				
114 Sn	28.8	1860*			1841	1841	1684				
¹¹⁶ Sn	27.4	1850	1667	1860	1719	1778	1707				
117 Sn	24.1	1860	1939	1570**	1720	1956	1718				
118 Sn	25.8	1920	1898	1690**	1700	1840	1729				
¹¹⁹ Sn	22.8	1860	2078		1640	2042	1739				
120 Sn	24.9	2070	2092	2140	1855	2013	1750				
122 Sn	24.1	2030			1685	1887	1770				
¹²⁴ Sn	23.3	1930	2077	1620**	1674	1925	1790				

* Измерения выполнены до энергии ниже порога B_{3n} реакции (γ , 3n).

** Данные до энергии E = 23 МэВ.

при переходе от изотопа ¹¹²Sn к изотопу ¹²⁴Sn наблюдается уменьшение ширины Г, обусловленное приближением числа нейтронов в ядре к магическому числу N = 82;

величина сечения σ_m в максимуме резонанса остается приблизительно постоянной.

Приведенные данные свидетельствуют о том, что интегральное сечение ГДР (оцененное в рамках описанного выше подхода сечение $\sigma^{\text{оцен-совм}}(\gamma, sn) \approx$ $\approx \sigma(\gamma, abs))$ при переходе от легкого изотопа ¹¹²Sn к тяжелому изотопу ¹²⁴Sn практически не изменяется. При этом интегральное сечение реакции $\sigma^{\text{оцен-совм}}(\gamma, nX)$ уменьшается, а реакции $σ^{\text{оцен-совм}}(\gamma, 2nX)$ – увеличивается (см. также табл. 4), что обусловлено уменьшением разности $E_m - B_{2n}$ между положением максимума ГДР и порогом реакции (γ, 2n). Интегральное сечение реакции $σ^{\text{оцен-совм}}(\gamma, sn) \approx \sigma(\gamma, abs)$ остается практически неизменным, в то время как, согласно оценкам дипольного правила сумм, величина ГДР должна возрастать.

Работа поддержана Федеральным агентством по науке и инновациям (контракт 02.740.11.0242 по мероприятию 1.1 "Проведение научных исследований коллективами научно-образовательных центров"), грантом поддержки ведущих научных школ 02.120.21.485-НШ, Госконтрактом № 2009-1.1-125-055 и грантом РФФИ № 09-02-00368. Fultz S.C., Berman B.L., Caldwell J.T. et al. // Phys. Rev. 1969. V. 186. P. 1255.

СПИСОК ЛИТЕРАТУРЫ

- 1. Калькулятор и графическая система для параметров атомных ядер и характеристик ядерных реакций и радиоактивных распадов. URL – http:// cdfe.sinp.msu.ru/services/calc_thr/calc_thr.html.
- Бор О., Моттельсон Б. // Структура атомного ядра. Т. 2. М.: Мир, 1977.
- Wolynec E., Martins M.N. // Revista Brasileira Fisica. 1987. V. 17. P. 56.
- Berman B.L., Pywell R.E., Dietrich S.S. et al. // Phys. Rev. C. 1987. V. 36. P. 1286.
- 5. Varlamov V.V., Ishkhanov B.S. // INDC(CCP)-433, IAEA NDS, Vienna, Austria, 2002.
- 6. Варламов В.В., Песков Н.Н., Руденко Д.С. и др. // ВАНТ. Ядерные константы. 2003. Т. 1–2. С. 48.
- 7. Сорокин Ю.И., Юрьев Б.А. // ЯФ. 1974. Т. 20. С. 233.
- 8. *Сорокин Ю.И., Юрьев Б.А.* // Изв. АН СССР. Сер. физ. 1975. Т. 39. № 1. С. 114.
- 9. Сорокин Ю.И., Хрущев В.А., Юрьев Б.А. // Изв. АН СССР. Сер. физ. 1972. Т. 36. № 1. С. 180.

- 11. Lepretre A., Beil H., Bergere R. et al. // Nucl. Phys. A. 1974. V. 219. P. 39.
- 12. Chadwick M.B., Oblozinsky P., Hodgson P.E. et al. // Phys. Rev. C. 1991. V. 44. C. 814.
- 13. Ишханов Б.С., Орлин В.Н. // ЭЧАЯ. 2007. Т. 38. С. 460.
- 14. Ишханов Б.С., Орлин В.Н. // ЯФ. 2008. Т. 71. С. 517.
- Варламов В.В., Ишханов Б.С., Орлин В.Н. и др. // Препринт НИИЯФ МГУ-2009-3/847, М., 2009.
- Berman B.L., Fultz S.C. // Rev. Mod. Phys. 1975. V. 47. P. 713.
- Варламов В.В., Гуденко Ю.Ю., Комаров С.Ю. и др. // Сб. тез. докл.: 56-я Междунар. конф. по проблемам ядерной спектроскопии и структуре атомного ядра "Ядро-2006". 4–8 сентября 2006 г. Саров, РФЯЦ ВНИИЭФ, 2006. С. 37.
- Laget J.M. // Lecture Notes in Physics. V. 137 / Ed. Arenhovel H., Saruis A.M. Berlin: Springer-Verlag, 1981. P. 148.
- Varlamov A.V., Varlamov V.V., Rudenko D.S. et al. // INDC(NDS)-394, IAEA NDS, Vienna, Austria, 1999.