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Abstract—A hybrid control system with a discrete adaptive predictive model for a non-
stationary unstable third-order dynamic plant in continuous time is synthesized and modeled.
An adaptive state observer, estimating a variable parameter of the plant model with respect
to the a quadratic quality criterion, was synthesized. Continuous estimation of the plant pa-
rameter for a discrete sample is used in a discrete adaptive control algorithm with a predictive
model. A linear model of the control plant mimics the unstable vertical motion of plasma in
a tokamak with a vertical cross-section elongated along the vertical axis compared to a given
equilibrium position.
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1. INTRODUCTION

The model predictive control method is a modern control method applied to various technological
processes [1–4]. In this approach, one constructs the prediction of the plant’s behavior in the
model predictive controller (MPC), which, according to the prediction of the model’s input and
output at finite horizons, produces a control signal for each discrete-time clock cycle. Examples of
adaptive control with a predictive model are also known; in particular, it has been used to control
microaerobic processes [5], for climate control [6], and so on. Sometimes adaptation of control with
a predictive model is combined with methods of robust control [7] and other approaches.

This approach to control with the input and output predictions can also be used to control a
complex plant such as plasma in a tokamak’s magnetic field [8, 9]. In particular, in [10] a system
with prediction is used in the experiment with the COMPASS-D tokamak (England) to control
the vertical position of the plasma, in [11] a scalar plasma velocity stabilization system in the
ITER tokamak (France) reactor is developed and simulated relative to zero with CPM, in [12] the
model predictive control approach is used to solve the multivariable task of controlling the position,
current and plasma shape in ITER [13] with the DINA code (State Research Center of Russian
Federation Ttoitsk Institute for Innovation & Fusion Research), also for controlling the safety factor
profile in ITER with variable constraints in [14] on the RAPTOR code. In all these cases of plasma
control with MPC, a stationary model was used to predict the plant’s behavior.

In modern tokamaks with a vertically elongated cross-section [9], the problem of stabilizing
the unstable vertical position of the plasma is highly relevant and requires the development of
new methods for solving it. Therefore, in this work we pose and solve the problem of controlling
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the unstable vertical position of the plasma for a dynamic model of a tokamak with an unknown
variable parameter of the plasma by means of an adaptive MPC [15]. The plasma is stabilized by
the horizontal magnetic field of the control coil, and the voltage on the coil is controlled with a
multiphase controllable thyristor rectifier. To be definite, the numerical values of the plant’s model
parameters were chosen for a given operation mode of the T-15 tokamak currently constructed at
the Kurchatov Institute [16].

2. STATEMENT OF THE PROBLEM

Taking into account that the plasma model in the tokamak can vary with time, in this work we
solve the control problem with a predictive model with variable parameters. In addition, values
of variable parameters may not always be known, which requires their evaluation at the rate of
observation. This leads to the formulation of the problem of constructing an adaptive controller
able to evaluate parameters on the input and output signals of the plant and apply them in the
predictive model.

The plasma column is elongated vertically to increase the plasma pressure for the same toroidal
magnetic field [17]. A horizontal magnetic field BR is used to elongate the cross-section of the
column. In case of a perturbation such as, for example, an upward displacement of the plasma,
the symmetry of the distribution of currents and magnetic fields is violated, and the current in
the upper part relative to the equatorial plane becomes larger than in the lower part. Then,
according to Ampere’s law, the force F = [Ip ×Br] [18], where Ip is the plasma current acting
on the upper part of the plasma will be greater than the force acting on the lower part, so the
resultant force, directed upwards, will move the plasma up the Z axis. In the absence of a control
action, the displacement of the plasma is irreversible since the resultant force directed upwards will
increase [15, 19, 20] (Fig. 1).

The controlled plant model is represented as a series connection of the nonstationary plasma
model (1), the control coil model (2), and the thyristor rectifier model (3):

Tp(t)
dZ(t)

dt
− Z(t) = Kp(t)I(t), (1)

Tc
dI(t)

dt
+ I(t) = Kc(t)U(t), (2)

Ta
dU(t)

dt
+ U(t) = Ka(t)V (t), (3)

where Z is the vertical plasma displacement, I, U are the current and voltage in the control
coil, V is the rectifier input, Kp changes in the range [1.78; 7.61] cm/kA, Tp ∈ [20.8; 43.4] ms,
Kc = 11.11 Ohm−1, Tc = 46.7 ms, Ka = 2000, Ta = 3.3 ms [15, 20]. In the general case, the pa-
rameters of the plasma model vary with time, which is reflected in the Eq. (1) as variables of the

Fig. 1. The physics of vertical plasma instability arising in a tokamak.
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gain coefficient Kp and parameter Tp. In this case, all states of the plant model are available for
measurement.

The model (1)–(3) in the state space has the form

ẋ(t) = Ac(t)x(t) +Bcu(t), y(t) = Ccx(t) (4)

where t denotes continuous time and

Ac(t) =



1

Tp(t)

Kp(t)

Tp(t)
0

0 − 1

Tc

Kc

Tc

0 0 − 1

Ta


, Bc =

[
0 0

Ka

Ta

]
, Cc =

[
1 0 0

]
, x =

ZI
U

 .

The control objective for the unstable plant model (1)–(3) is to suppress instability and track
the output Z for a reference action r. In this case, the problem statement consists of two stages.
First, the problem is to stabilize an unstable plant with known variable parameters Kp(t), Tp(t),
i.e.,

|Z(t)− r(t)| < ε, t ∈ [t0, t1],

where ε specifies the stabilization accuracy, for example for a T-15 tokamak ε = 1 cm on the finite
control interval [t0, t1]. Then the task becomes more complicated: the controlled plant has an
unknown variable parameter a(t) = Kp(t)/Tp(t) (with a known variable parameter b(t) = 1/Kp(t)),
which should be evaluated at the rate of observation in order to use the estimate in the control
algorithm. The accuracy level ε should be maintained.

3. MODEL PREDICTIVE CONTROL

To design the MPC with variable parameters, we assume quasi-stationarity of the controlled
plant model, since at each time moment parameters of the plant vary slowly enough compared to
the processes that occur in the control system. By a continuous system of Eqs. (4) of the controlled
plant, we construct a discrete implementation of the model (Am(t), Bm, Cm) with sampling time
interval T0 by a zero order extrapolation in MATLAB [21]. To construct the MPC, we move
from the discrete implementation (Am(t), Bm, Cm) of the discrete-time model k = 0, 1, 2, . . . , with
sampling period T0, discrete-time state vector xm(k), and time-variable matrix Am(k)

xm (k + 1) = Am(k)xm (k) +Bmu (k) , y (k) = Cmxm (k) ,

to the extended discrete implementation (A(k), B, C) of the system model [4] in order to introduce
a discrete integrating unit into the feedback that would be built into the predictive model at its
output. For this purpose, we introduce increments of the state vector and the input action

∆xm (k) = xm (k)− xm (k − 1) , ∆u (k) = u (k)− u (k − 1)

and the difference equation of the extended model is represented in the new variables x, y and with
a new input, namely the increment at each time step ∆u(k), in the form

x(k+1)︷ ︸︸ ︷[
∆xm (k + 1)

y (k + 1)

]
=

A(k)︷ ︸︸ ︷[
Am(k) oᵀm

CmAm(k) 1

] x(k)︷ ︸︸ ︷[
∆xm (k)

y (k)

]
+

B︷ ︸︸ ︷[
Bm

Cm

]
∆u (k) ,

y (k) =

C︷ ︸︸ ︷
[om 1]

[
∆xm (k)

y (k)

]
.
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The predicting controller at each time step finds a set of increments of input actions, Nc in total,
that minimize the functional

J = (Rs − Y )ᵀ (Rs − Y ) + ∆UᵀR̄∆U, (5)

where Rs =

Nc︷ ︸︸ ︷
[1 1 . . . 1]ᵀ r (ki) = Rsr (ki), ki is the instant discrete time moment, r(ki) is the desired

output signal’s trajectory, R is the weight matrix on the input interval of length Nc ticks, Y is the
vector of output values on the output horizon of Np ticks, ∆U is an array of increments of the input
signal of length Nc. The index i is introduced into the variable k in order to take into account the
predictions of future impacts in the controller’s predictive model relative to the current moment ki.

The predicted values of the input and output horizons are calculated according to the extended
implementation (A(k), B, C) one by one, successively. Introducing the notation x(ki +m | ki) for
the predicted value on m steps forward at the (ki)th tick, we can write the vectors of the resulting
states, output and input signals Y and ∆U , as

x (ki +m | ki) = A(ki)
mx (ki) +A(ki)

m−1B∆u (ki)

+A(ki)
m−2B∆u (ki + 1) + . . .+B∆u (ki +m− 1) ,

Y = [y(ki + 1 | ki) y(ki + 2 | ki) y(ki + 3 | ki) . . . y(ki +Np | ki) ]ᵀ, dimY = Np,

∆U = [∆u(ki) ∆u(ki + 1) ∆u(ki + 2) . . . ∆u(ki +Nc − 1) ]ᵀ, dim∆U = Nc.

Then the array of signal values at the output horizon is represented in the form

Y = F (ki)x (ki) + Φ(ki)∆U,

where the matrices equal

F (ki) =



CA(ki)

CA(ki)
2

CA(ki)
3

...

CA(ki)
Np


,

Φ(ki) =



CB 0 . . . 0

CA(ki)B CB . . . 0

CA(ki)
2B CA(ki)B . . . 0

. . . . . . . . . . . .

CA(ki)
Np−1B CA(ki)

Np−2B . . . CA(ki)
Np−NcB

 .

The expressions above show that the matrix F (ki) is determined by the matrices of the plant
model A, C and also by the output horizon value Np, and the matrix Φ(ki) is determined by three
plant matrices A, B, C and the lengths of input and output horizons Np, Nc. The optimal set of
increments for the inputs is

∆U =
(
Φ(ki)

ᵀΦ(ki) + R̄
)−1

Φ(ki)
ᵀ (Rs − F (ki)x (ki)) ,

AUTOMATION AND REMOTE CONTROL Vol. 79 No. 11 2018
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Fig. 2. Structural flowchart of the hybrid control system with non-stationary plant model in continuous time
and MPC with variable parameters: bold arrows indicate parametric influence on the MPC.

where
(
Φ(ki)

ᵀΦ(ki) + R̄
)−1

is the Hessian of the extended system, which can be found from the
necessary condition for the existence of an extremum of the functional (5): ∂J/∂∆U = 0. In the
control law, only the first increment of the input is applied at time ki:

∆u (ki) =

Nc︷ ︸︸ ︷
[1 0 . . . 0]

(
Φ(ki)

ᵀΦ(ki) + R̄
)−1

(Φ(ki)
ᵀRs − Φ(ki)

ᵀF (ki)x (ki))

= Ky(ki)r (ki)−Kmpc(ki)x (ki) ,

where the number

Ky(ki) =
[
1 0 . . . 0

]
︸ ︷︷ ︸

Nc

(
Φ(ki)

ᵀΦ(ki) + R̄
)−1

Φ(ki)
ᵀRs (6)

is the first element of the vector
(
Φ(ki)

ᵀΦ(ki) + R̄
)−1

Φ(ki)
ᵀRs, and the row vector

Kmpc =
[
1 0 . . . 0

]
︸ ︷︷ ︸

Nc

(
Φ(ki)

ᵀΦ(ki) + R̄
)−1

Φ(ki)
ᵀF (ki) (7)

is the first row of the matrix
(
Φ(ki)

ᵀΦ(ki) + R̄
)−1

Φ(ki)
ᵀF (ki) (the receding horizon principle). The

discrete equation in the state space of the closed system with prediction becomes

x (k + 1) = (A(k)−BKmpc)x (k) +BKyr (k) . (8)

AUTOMATION AND REMOTE CONTROL Vol. 79 No. 11 2018
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Fig. 3. Operation of the quasi-stationary control system: (a) changes of the coefficients a(t) and b(t) in time,
(b) transient processes in the control system with non-stationary MPC.

Since the vector x consists of two components x (k) = [ ∆xᵀm (k) y (k) ]ᵀ, the row vector Kmpc(ki)
can also be represented as two components Kmpc(ki) = [ Kx(ki) Ky(ki) ], where the row vec-
tor Kx(ki) is multiplied by the vector ∆xm(k), and the number Ky(ki) is multiplied by the scalar
output of the plant y(k). If we set the durations of the horizons Nc and Np, then if we know
the matrices of the extended plant model (A,B,C), we can calculate feedback coefficients Kx(Ki)
and Ky(Ki) in (8), which in turn can be used to construct a discrete MPC. In this system, the
control horizon is assumed to be 20 cycles, and the observation horizon is 40 cycles with a sampling
time of 1 ms. Below on the structural diagrams of Figs. 2 and 4 the symbol q−1 denotes the shift
operator by one clock cycle back. We can see that the output of the MPC includes a discrete
integrating unit with operator 1/(1− q−1), which is a consequence of the principle of constructing
an extended model of the controlled plant.

The resulting variable values are included in the MPC algorithm for a non-stationary plant
(Fig. 2). The MPC has a feedback loop with coordinate influences on the controlled plant [22], and
also includes parametric program actions from the direct circuit with an algorithm for computing
feedback coefficients. In this case, the system has a hierarchical structure [23]. The lower level of
control consists of the main loop, and the upper level influences the lower level by computing the
optimal prediction and the optimal influence at every clock cycle.

Transient processes under the influence of the Heaviside function on the input of the closed
system (8) with nonstationary MPC under variable parameters of the plant model (Fig. 3a) are
shown in Fig. 3b.

The hybrid control system with MPC was simulated in the Simulink graphical simulation en-
vironment. To model a system with variable parameters and compute the feedback coefficients at
control rate, we developed a Simulink unit that takes variable parameters of the plant model as
input signals and outputs the feedback coefficients Kx and Ky as output signals. This approach
made it possible to provide a simulation of the quasi-stationary system and its controller with
acceptable accuracy and clarity.

AUTOMATION AND REMOTE CONTROL Vol. 79 No. 11 2018
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4. ESTIMATING THE VARIABLE PARAMETER

When controlling a real plant, the value of one of the parameters of the plasma model may
be unknown. In order to build the MPC, we have to estimate the model coefficient, which varies
in time. Then we can substitute the resulting value of the coefficient into the predictive model
and obtain the control of the plant model with a variable parameter. Suppose that the law of
how a(t) changes is unknown. Let us construct an algorithm for estimating the parameter a(t)
using the gradient descent method for the state observer [25] with known variable parameter b(t).
The observer equation for the plasma model (1) is

˙̂
Z (t) = â (t) Ẑ (t) + b(t)I (t) + γ

[
Z (t)− Ẑ (t)

]
, (9)

where Ẑ is the state estimate, â is the estimate of the unknown parameter a, γ is a constant positive
coefficient. From the Eq. (9) we can find an estimate of the output state Ẑ, which corresponds
to (1) for Ẑ → Z. This makes it possible to write down the algorithm of automatic estimation for
the parameter â in the form

˙̂a (t) = −λ∂Q (t)

∂â
,

where we have introduced a quadratic quality criterion for the observer’s approximation of the

plant model Q (t) =
[
Z (t)− Ẑ (t)

]2
, λ is a constant positive parameter. After taking the partial

derivative, we obtain

˙̂a (t) = 2λ
[
Z (t)− Ẑ (t)

]
β (t) , (10)

where β = ∂Ẑ/∂â is the sensitivity function of the observer output Ẑ to the estimate of parameter â.
Differentiating the observer’s Eq. (9) with respect to the parameter estimate â and swapping the
derivatives, we arrive at the differential equation for the sensitivity function

β̇ (t) = Ẑ (t) + [â (t)− γ]β (t) . (11)

Solution of the system of three differential Eqs. (9)–(11) yields an estimate of the parameter â.

Passing from Z and a to deviations δZ = Z − Ẑ and δa = a− â, we obtain a system of gradient
descent equations in deviations to investigate the convergence of the method:

δ̇Z = Zδa − δaδZ + (a− γ)δZ ,

δ̇a = −2λδZβ,

β̇ = Z − δZ + (a− γ)β − βδa.

(12)

In this case, for Z = 0.05 m and a = 48 s−1, γ = 500 s−1 the equilibrium point for the sensitivity
function β will be equal to β∗ = z/(γ − a) = 1.1× 10−4 m× s. The resulting nonlinear system of
equations with respect to deviations in Z, a and β was investigated for convergence by mathematical
modeling near equilibrium points. As a result of point-by-point scanning of the trajectories of the
solution of the equation in the three-dimensional domain

S =
{
(δZ , δa, β) | 0.1 m 6 δZ 6 0.1 m, 0.01 s−1 6 δa 6 0.01 s−1, 0.1 m× s 6 β 6 0.1 m× s

}
obtained with the ode45 algorithm in MATLAB, we have found that initial conditions lying on a
certain surface (Fig. 4) whose shape can be specified with variable parameters λ and γ, always come

AUTOMATION AND REMOTE CONTROL Vol. 79 No. 11 2018
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Fig. 4. The surface of the initial conditions from which trajectories converge to the equilibrium point corre-
sponding to the exact identification of the parameter.
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Fig. 5. A straight line to which the trajectories converge starting from initial conditions that do not lie on the
surface of convergence of the trajectories to zero.

to the equilibrium point corresponding to the exact identification of the desired plant parameter.
Thus, with properly chosen initial conditions and parameters λ and γ the identification error a tends
to zero. The end points of trajectories originating outside a given surface converge to a straight
line parallel to the axis δa and correspond to the error for an incorrect selection of parameters
(Fig. 5). Thus, in order to obtain a trajectory going to the origin from an arbitrary point of the
initial conditions, we have to choose the coefficients in such a way that the surface passes through
this point. Also, analysis of the derivative of the Lyapunov function

V = δ2Z + δ2a + (β − β∗)2 (13)
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Fig. 6. The result of modeling the system in deviations with respect to three variables and the derivative of
the Lyapunov function.

with respect to the system

V̇ = 2δZ δ̇Z + 2δaδ̇a + 2ββ̇

= 2δZ (Zδa − δaδZ + (a− γ)δZ) + 2δa(−2λδZβ) + 2β(Z − δZ + (a− γ)β − βδa)

has showed that its sign is negative throughout the identification time interval (Fig. 6).

5. CONTROL SYSTEM WITH ADAPTIVE MPC

Let us construct an adaptive MPC for the control of a non-stationary plant with an unknown
parameter. Estimate of the plant matrix Âc(t) in continuous time takes the form

Âc(t) =


â(t) b(t) 0

0 − 1

Tc

Kc

Tc

0 0 − 1

Ta

 .

Let us pass to an estimate of the discrete system matrix Âm(t), again by transitioning to the
expanded quasi-stationary model of the plant:

x(k+1)︷ ︸︸ ︷[
∆xm (k + 1)

y (k + 1)

]
=

Â(k)︷ ︸︸ ︷[
Âm(k) oᵀm

CmÂm(k) 1

] x(k)︷ ︸︸ ︷[
∆xm (k)

y (k)

]
+

B︷ ︸︸ ︷[
Bm

Cm

]
∆u (k) ,

y (k) =

C︷ ︸︸ ︷
[om 1]

[
∆xm (k)

y (k)

]
.
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Fig. 7. Flowchart of a hybrid control system with adaptive MPC and non-stationary plant model with unknown
variable parameter.

Fig. 8. Transient processes in the adaptive system with estimate of the parameter a(t) for the plant model
with a variable unknown parameter.
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The optimal set of increments on every time step now takes the form

∆U =
(
Φ̂(ki)

ᵀΦ̂(ki) + R̄
)−1

Φ̂(ki)
ᵀ
(
Rs − F̂ (ki)x (ki)

)
,

Kmpc (k)=

Nc︷ ︸︸ ︷
[1 0 . . . 0]

(
Φ̂(ki)

ᵀΦ̂ (ki) + R̄
)−1

Φ̂(ki)
ᵀF̂ (ki) .

In the adaptive case, the known matrices B and C are used in the construction of Φ̂(ki) and F̂ (ki),
and instead of the unknown matrix variable A(ki) we use its estimate Â(ki). The choice of feedback
coefficients for the first element ∆U is similar to the quasistationary case with known parameters
of the plant model.

In the simulation of the adaptive control system in Simulink (Fig. 7), the unit shown in Fig. 2
received as input not the variable parameter a(t) but its estimate â(t) obtained with an adaptive
observer with the system of differential Eqs. (9)–(11).

A non-stationary model of the plant (1)–(3) was applied to the resulting control system with
adaptive MPC. Figure 8 shows the process of estimating parameter a and transient processes in
the adaptive system with a stepwise input influence.

6. CONTROLLING THE MODEL OF A PLANT WITH VARIABLE STRUCTURE

If the law according to which parameter a(t) changes has alternating signs, then the plant model
(1)–(3) is unstable during time intervals when parameter a(t) is positive and stable when a(t) is
negative, i.e., the structure of the plant model changes.

When modeling the control system, the parameter a(t) changed according to the sine law to
test the sensitivity of the system with adaptive MPC to the sign of a(t). Estimation results for the
variable parameter and the simulation of the control system with adaptive MPC with a step-like
input influence are shown in Fig. 9. In this case, the system with adaptive MPC remains stable
when the structure of the plant model changes and tracks the reference influence with acceptable
accuracy.

Fig. 9. Transient processes in the adaptive system with estimation of the parameter a(t) with the plant model
of variable structure.
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7. CONCLUSION

In this work, we have developed the control method with predictive model [1–7] and applied it
to the model of an unstable nonstationary plant of the third order, which represents a model of
vertical plasma motion in modern tokamaks with a cross-section elongated in the vertical direction.
As a specific example of the plant model, we have chosen the plasma dynamics model in the
T-15 tokamak [16, 20]. Modeling in the Simulink graphical simulation environment has shown the
efficiency of the proposed hybrid control system with a predictive adaptive discrete model.

We see further development of the adaptive control method with the predictive model in its
applications to other problems of plasma control in tokamaks, in particular, for solving the prob-
lem of controlling the plasma current in the Globus-M tokamak (Ioffe Physicotechnical Institute,
St. Petersburg) [25] while taking into account constraints on the current and voltage of the coil of
the central solenoid.
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