Полная исследовательская публикация

Регистрационный код публикации: 11-24-2-88 Подраздел: Термодинамика. Публикация доступна для обсуждения в интернет как материал "Всероссийской рабочей химической конференции "Бутлеровское наследие-2011". http://butlerov.com/bh-2011/ УДК 541.1:620.193.01:669.14. Поступила в редакцию 13 января 2011 г.

Термодинамика химической и электрохимической устойчивости сплавов системы Cu-Si

© Николайчук Павел Анатольевич⁺ и Тюрин Александр Георгиевич*

Кафедра аналитической и физической химии. Челябинский государственный университет. Ул. Братьев Кашириных, 129. г. Челябинск, 454026. Россия. *Тел.: (351) 799-70-69. Е-таіl: пра@сsu.ru, tag@csu.ru.*

*Ведущий направление; ⁺Поддерживающий переписку

Ключевые слова: силициды меди, низкотемпературное окисление, химическая устойчивость, диаграмма электрохимического равновесия, электрохимическая устойчивость.

Аннотация

В работе рассчитаны и построены диаграмма состояния системы Cu-Si-O и диаграмма потенциал – pH системы Cu–Si–H₂O при 25 °C, давлении 1 бар и активностях ионов в растворе, равных 1 и 10⁻⁶ моль/л. С точки зрения термодинамики рассматривается коррозионно-электрохимическое поведение сплавов системы Cu-Si в водных средах.

Введение

Легирование медных сплавов кремнием позволяет повысить их прочность, пластичность, улучшить механические, литейные и противокоррозионные свойства. Кремнистые бронзы и латуни являются весьма дешёвыми заменителями оловянных бронз. Кроме того, кремний может входить и в другие сплавы на основе меди – с алюминием, никелем, маарганцем [1]. Поэтому система "медь – кремний" – очень важная двойная система для металлургии и химической технологии.

В литературе отсутствуют прямые экспериментальные данные о коррозионно-электрохимическом поведении сплавов двойной системы Cu-Si. Поэтому теоретическое описание поведения этой системы в газовых кислородсодержащих, а также в водных средах - это важная научная задача. Кроме того, термодинамический анализ данной двойной системы позволит в дальнейшем использовать его результаты при описании таких технологически важных тройных систем, как Cu-Zn-Si, Cu-Al-Si, Cu-Ni-Si и Cu-Mn-Si. Pahee [2] уже была сделана попытка термодинамического описания химической и электрохимической устойчивости системы Cu-Si, однако эта работа основывается не на последнем варианте диаграммы состояния Cu-Si, а также не учитывает всех возможных равновесий в системе Cu-H₂O. Цель настоящей работы – уточнить и дополнить диаграмму состояния системы Cu-Si-O, а также диаграмму электрохимического равновесия системы Cu-Si-H₂O.

Экспериментальная часть

Первым шагом на пути решения проблемы термодинамического описания системы Cu-Si-O является рассмотрение двойных подсистем данной системы.

Диаграмма состояния системы Cu-Si исследовалась и дополнялась неоднократно. Её последний вариант приведён в справочнике [3] и работе [4], авторы которой обобщили и систематизировали все имеющиеся литературные данные. В системе медь – кремний при 25 °С существуют следующие фазы: α-фаза (твёрдый раствор Si в (Cu) с решёткой г.ц.к.), γ-, ε- и η''-фазы, которые являются промежуточными соединениями. Несмотря на то, что все силициды меди обладают, в той или иной степени, областью гомогенности, при стандартной температуре она ничтожно мала, и их можно считать дальтонидами. По данным работы [4], при низких температурах они имеют состав $Cu_{56}Si_{11}(\gamma)$, $Cu_{15}Si_4(\varepsilon)$ и Cu₁₉Si₆ (η'').

Достоверная информация о стандартных энергиях Гиббса образования силицидов меди в литературе отсутствует. Авторы работы [4] попытались оценить эти величины, однако результат их оценки

ТЕРМОДИНАМИКА ХИМИЧЕСКОЙ И ЭЛЕКТРОХИМИЧЕСКОЙ УСТОЙЧИВОСТИ СПЛАВОВ... 88-94

неудовлетворителен, поскольку, согласно их данным, устойчивость силицидов с повышением температуры возрастает, что противоречит физическому смыслу. Имеющиеся же справочные данные [5] соответствуют устаревшему варианту диаграммы состояния, в котором силициды имеют другой состав.

Поэтому было принято решение, взяв за основу эти данные [5], оценить энергии Гиббса образования силицидов меди по методу Горичева [6], пользуясь модифицированным вариантом формулы для вычислений [7]. Исходные данные для расчётов, а также их результаты представлены в табл. 1.

Исходные данные [5]		Результаты расчётов	
Соединение	$-\Delta_{f}G_{298}^{o},$ Дж/моль)	Соединение	$(-\Delta_{f}G^{o}_{298},$ Дж/моль)
Cu ₃₃ Si ₇	2711960	$Cu_{56}Si_{11}(\gamma)$	4266560
Cu15Si4	1513610	$Cu_{15}Si_4(\epsilon)$	1513610
Cu ₃ Si	351640	$Cu_{19}Si_{6}(\eta'')$	2162250

Табл. 1. Расчёт стандартных энергий Гиббса образования силицидов меди из элементов

Избыточная энергия Гиббса а-фазы (твёрдого раствора кремния в меди) описывается авторами [4] с использованием двухпараметрической варианта ряда Редлиха-Кислера:

$$G^{E} = x_{Cu} \cdot x_{Si} \cdot \sum_{i=0}^{1} (L_{Cu,Si}^{(i)} \cdot (x_{Cu} - x_{Si})^{i})$$
(1),

где параметры модели имеют следующую температурную зависимость:

$$L_{Cu,Si}^{(0)} = -42203.5 + 13.89137 \cdot T$$
(2),

$$L_{Cu\,Si}^{(1)} = -1102.2 - 18.177912 \cdot T \tag{3}.$$

В системе Si–O [3] при 25 °C существует один оксид – SiO₂. Величина – $\Delta_f G_{298}^o(\text{SiO}_2) = -805067$ Дж/моль взята из справочника [8], поскольку именно это значение согласовано с экспериментально измеренным стандартным потенциалом кремниевого электрода $(SiO_2 + 4H^+ + 4e^- = Si(aлмa3) + 2H_2O;$ $\varphi_{298}^{o} = -0.857 \,\mathrm{B}$).

В системе Cu–O [3] широко известны два оксида – Cu₂O и CuO. Их термодинамические характеристики, взятые из [9-11], обобщены в табл. 2. Однако, в настоящее время известно, что при окислении меди также может образовываться и оксид меди(III). Авторы [12] провели термодинамическую оценку его характеристик: $\Delta_{f} H_{298}^{o} = -355 \, {}^{\kappa \mbox{\tiny K}}_{\mbox{\tiny MOЛЬ}}$; $S_{298}^{o} = 100 \, {}^{\mbox{\tiny M}}_{\mbox{\tiny MOЛЬ}\cdot K}$.

Кроме того, между оксидами CuO и SiO₂ возможно образование промежуточного соединения CuSiO₃ [13]. Значение его энергии Гиббса образования также приведено в табл. 2.

Табл. 2. Значения стандартных энергий Гиббса образования соединений из элементов $-\Delta_f G^o_{298}$, Дж/моль

Источник			
Соединение	[9]	[10]	[11]
Cu ₂ O	147848	150548	147886
CuO	127890	129365	128292
CuSiO ₃	949240	_	_

В водных средах оксид кремния может окисляться до SiO_3^{2-} , а медь может формировать ионы CuO_2^{2-} и $HCuO_2^-$. Информация о химических и электрохимических равновесиях с участием меди обобщена в работе [14], там же построена уточнённая диаграмма потенциал – pH для чистой меди.

Методика расчёта и построения диаграммы состояния Cu-Si-O и диаграммы потенциал – pH системы Си-Si-H₂O описана в работе [15].

Полная исследовательская публикация

Результаты и их обсуждение

При рассмотрении равновесия α-фазы с γ-фазой вычислена предельная растворимость кремния в меди с решёткой г.ц.к. при 25 °C. Она составляет чуть более 4 ат. %. При этом твёрдый раствор Si в (Cu) характеризуется значительными отрицательными отклонениями от идеальности.

Диаграмма состояния системы Cu-Si-O при 25 °C приведена на рис. 1. Характеристики равновесных состояний системы представлены в табл. 3. В тех случаях, когда в равновесиях участвуют не чистые вещества, приведены их мольные доли и вычисленные активности.

Рис. 1. Диаграмма состояния системы Cu–Si–O при 25 °C

дартных условиях приведены в табл. 4.

Как видно из диаграммы, химическое сродство кремния к кислороду намного выше, нежели у меди. Кремний, содержащийся в медь-кремниевых сплавах, будет единственным продуктом окисления, если его содержание в сплавах превышает 10⁻⁷⁸ ат. %. Однако, если содержание кремния в сплаве недостаточное для того, чтобы образовать на поверхности сплошную плёнку SiO₂, то медь не останется запассивированной, и в состав оксидной плёнки также могут входить и различные её оксиды, а также силикат CuSiO₃.

Основные химические и электрохимические равновесия в системе Cu-Si-H2O при стан-

№ области	Состояние системы Уравнение реакции		<i>Р</i> _{<i>O</i>₂} ,бар
Ι	Cu ₁₉ Si ₆ -Si-SiO ₂	$Si + O_2 = SiO_2$	$7.7 \cdot 10^{-142}$
II	$Cu_{15}Si_4$ - $Cu_{19}Si_6$ - SiO_2	$15Cu_{19}Si_6 + 4O_2 = 19Cu_{15}Si_4 + 14SiO_2$	$8.3 \cdot 10^{-96}$
III	Cu ₅₆ Si ₁₁ -Cu ₁₅ Si ₄ -SiO ₂	$56Cu_{15}Si_4 + 59O_2 = 15Cu_{56}Si_{11} + 59SiO_2$	$3.6 \cdot 10^{-80}$
IV	$Cu(\alpha)$ – $Cu_{56}Si_{11}$ – SiO_2	$Cu_{56}Si_{11} + 11O_2 = 56Cu(\alpha) + 11SiO_2$ $x_{Si(\alpha)} = 0.042; a_{Cu(\alpha)} = 0.92$	$7.0 \cdot 10^{-76}$
V	$Cu(\alpha)$ -SiO ₂	$Si(\alpha) + O_2 = SiO_2$	
VI	Cu(a)–Cu ₂ O–SiO ₂	$4Cu(\alpha) + O_2 = 2Cu_2O;$ Si(\alpha) + O_2 = SiO_2 $x_{Si(\alpha)} = 1.5 \cdot 10^{-80}; \ a_{Si(\alpha)} = 2.3 \cdot 10^{-88}; a_{Cu(\alpha)} \approx 1$	$3.4 \cdot 10^{-54}$
VII	$Cu(\alpha)$ – Cu_2O	$4\mathrm{Cu}(\alpha) + \mathrm{O}_2 = 2\mathrm{Cu}_2\mathrm{O}$	
VIII	Cu ₂ O-CuSiO ₃ -SiO ₂	$2Cu_2O + 4SiO_2 + O_2 = 4CuSiO_3$	$2.4 \cdot 10^{-48}$
IX	Cu ₂ O–CuO–CuSiO ₃	$2Cu_2O + O_2 = 4CuO$	$2.2 \cdot 10^{-39}$
Х	CuO-Cu ₂ O ₃ -CuSiO ₃	$4CuO + O_2 = 2Cu_2O_3$	$1.4 \cdot 10^{-6}$
XI	Cu ₂ O ₃ -CuSiO ₃ -SiO ₂	$4\mathrm{CuSiO}_3 + \mathrm{O}_2 = 2\mathrm{Cu}_2\mathrm{O}_3 + 4\mathrm{SiO}_2$	1282.62
XII	C_{11} , O_{1} , S_{1} , O_{1} , O_{1} , O_{2} ,		

Табл. 3. Характеристики равновесных состояний системы Cu–Si–O при температуре 25 °C

Диаграмма потенциал – pH системы при активностях ионов в растворе, равных 1 моль/л, представлена на рис. 2, а при 10^{-6} моль/л – на рис. 3.

На диаграмме (см. рис. 2 и 3) можно выделить 21 область термодинамической устойчивости различных фаз: I – α -фаза (Cu) + γ -фаза (Cu₅₆Si₁₁) + ϵ -фаза (Cu₁₅Si₄) + η ''-фаза $(Cu_{19}Si_6) + Si; II - \alpha - \phi a_{3a} (Cu) + \gamma - \phi a_{3a} (Cu_{51}Si_{14}) + \epsilon - \phi a_{3a} (Cu_{15}Si_4) + \eta'' - \phi a_{3a} (Cu_{19}Si_6) + SiO_2;$

№ пинии	Электролная реакция	Равновесный потенциал, В (н. в. э.) или рН раствора
a	$2H^+ + 2e^- = H_2; P_{H_2} \approx 5 \cdot 10^{-7} \text{ Gap}$	0.186 – 0.0591 · pH
b	$O_2 + 4H^+ + 4e^- = 2H_2O; P_{O_2} \approx 0.21$ for	1.219 – 0.0591 · pH
1	$SiO_2 + 4H^+ + 4e^- = Si + 2H_2O$	-0.857-0.0591·pH
2	$SiO_3^{2-} + 6H^+ + 4e^- = Si + 3H_2O$	$-0.444 - 0.0887 \cdot pH + 0.0148 \cdot lg a_{si0_{1}^{2-}}$
3	$14\text{SiO}_2 + 19\text{Cu}_{15}\text{Si}_4 + 56\text{H}^+ + 56\text{e}^- =$ = 15Cu.,Si_4 + 28H ₂ O	- 0.176 - 0.0591 · pH
4	$14SiO_{3}^{2^{-}} + 19Cu_{15}Si_{4} + 84H^{+} + 56e^{-} =$ = 15Cu_{19}Si_{6} + 42H_{2}O	$0.236 - 0.0887 \cdot \text{pH} + 0.0148 \cdot \log a_{\text{SiO}_{3}^{2-}}$
5	$59SiO_2 + 15Cu_{56}Si_{11} + 236H^+ + 236e^- =$ = $56Cu_{15}Si_4 + 118H_2O$	$0.055 - 0.0591 \cdot pH$
6	$598iO_{3}^{2-} + 15Cu_{56}Si_{11} + 354H^{+} + 236e^{-} =$ = 56Cu ₁₅ Si ₄ + 177H ₂ O	$0.467 - 0.0887 \cdot \text{pH} + 0.0148 \cdot \log a_{\text{SiO}_3^{2-}}$
7	$11\text{SiO}_{2} + 56\text{Cu}(\alpha) + 44\text{H}^{+} + 44\text{e}^{-} =$ $= \text{Cu}_{56}\text{Si}_{11} + 22\text{H}_{2}\text{O}; \ a_{\text{Cu}(\alpha)} = 0,92$	0.151-0.0591·pH
8	$11\text{SiO}_{3}^{2-} + 56\text{Cu}(\alpha) + 66\text{H}^{+} + 44\text{e}^{-} =$ = Cu ₅₆ Si ₁₁ + 33H ₂ O; a _{Cu(\alpha)} = 0.92	$0.563 - 0.0887 \cdot \text{pH} + 0.0148 \cdot \log a_{\text{SiO}_{3}^{2-}}$
9	$SiO_3^{2-} + 2H^+ = SiO_2 + 2H_2O$	$pH = 13.94 + 0.5 \cdot lg a_{SiO_3^{2-}}$
10	$\operatorname{Cu}^{2+} + 2e^{-} = \operatorname{Cu}(\alpha); a_{\operatorname{Cu}(\alpha)} \approx 1$	$0.337 + 0.0295 \cdot \lg a_{Cu^{2+}}$
11	$\operatorname{Cu}_2\operatorname{O} + 2\operatorname{H}^+ + 2\operatorname{e}^- = 2\operatorname{Cu}(\alpha) + \operatorname{H}_2\operatorname{O}; a_{\operatorname{Cu}(\alpha)} \approx 1$	$0.439 - 0.0591 \cdot pH$
12	$CuO_2^{2-} + 4H^+ + 2e^- = Cu(\alpha) + 2H_2O; a_{Cu(\alpha)} \approx 1$	$1.494 - 0.1182 \cdot pH + 0.0295 \cdot lg a_{CuO_2^{-1}}$
13	$CuSiO_3 + 2H^+ = Cu^{2+} + SiO_2 + H_2O$	$pH = 2.46 - 0.5 \cdot lg a_{Cu^{2+}}$
14	$2CuSiO_3 + 2H^+ + 2e^- = Cu_2O + 2SiO_2 + H_2O$	$0.526 - 0.0591 \cdot pH$
15	$2CuSiO_3 + H_2O + 2e^- = Cu_2O + 2SiO_3^{2-} + 2H^+$	$-1.123 + 0.0591 \cdot pH - 0.0591 \cdot lg a_{SiO_3^{2-}}$
16	$CuO + SiO_3^{2-} + 2H^+ = CuSiO_3 + 2H_2O$	$pH = 15.06 + 0.5 \cdot lg a_{SiO_3^{2-}}$
17	$2Cu^{2+} + H_2O + 2e^- = Cu_2O + 2H^+$	$0.235 + 0.0591 \cdot \text{pH} + 0.0591 \cdot \text{lg} a_{Cu^{2+}}$
18	$2CuO + 2H^+ + 2e^- = Cu_2O + H_2O$	0.658-0.0591·pH
19	$2HCuO_{2}^{-} + 4H^{+} + 2e^{-} = Cu_{2}O + 3H_{2}O$	$1.771 - 0.1182 \cdot pH + 0.0591 \cdot lg a_{HCuO_{7}}$
20	$2CuO_2^{2-} + 6H^+ + 2e^- = Cu_2O + 3H_2O$	$2.549 - 0.1773 \cdot \text{pH} + 0.0591 \cdot \log a_{\text{CuO}^{2-}}$
21	$CuO + 2H^+ = Cu^{2+} + H_2O$	$pH = 3.58 - 0.5 \cdot lg a_{Cu^{2+}}$
22	$HCuO_{2}^{-} + H^{+} = CuO + H_{2}O$	$pH = 18.83 + lg a_{HCuO_{7}}$
23	$\mathrm{CuO}_2^{2-} + \mathrm{H}^+ = \mathrm{HCuO}_2^-$	$pH = 13.16 + lg \frac{a_{CuO_2^{-}}}{a_{HCuO_2^{-}}}$
24	$CuO_2^{2-} + 2H^+ = CuO + H_2O$	$pH = 15.99 + 0.5 \cdot lg a_{CuO_2^{2-}}$
25	$Cu_2O_3 + 6H^+ + 2e^- = 2Cu^{2+} + 3H_2O$	$1.566 - 0.1773 \cdot \text{pH} - 0.0591 \cdot \log a_{\text{Cu}^{2+}}$
26	$Cu_2O_3 + 2H^+ + 2e^- = 2CuO + H_2O$	1.143 – 0.0591 · pH
27	$\mathrm{Cu}_{2}\mathrm{O}_{3} + \mathrm{H}_{2}\mathrm{O} + 2\mathrm{e}^{-} = 2\mathrm{H}\mathrm{Cu}\mathrm{O}_{2}^{-}$	$0.030 - 0.0591 \cdot \lg a_{\mathrm{HCuO}_{2}^{-}}$
28	$Cu_2O_3 + H_2O + 2e^- = 2CuO_2^{2-} + 2H^+$	$-0.748 + 0.0591 \cdot \text{pH} - 0.0591 \cdot \log a_{CuO_2^{2-}}$
29	$Cu_2O_3 + 2SiO_2 + 2H^+ + 2e^- = 2CuSiO_3 + H_2O$	$1.275-0.0591 \cdot pH$
30	$Cu_2O_3 + 2SiO_3^{2-} + 6H^+ + 2e^- = 2CuSiO_3 + 3H_2O$	$2.924 - 0.1773 \cdot \text{pH} + 0.0591 \cdot \log a_{\text{SiO}_3^{2-}}$

Рис. 2. Диаграмма потенциал – pH системы Cu–Si–H₂O при 25 °C, давлении 1 бар и $a_i = 1$ моль/л (негидратированная форма оксидов)

 $III - \alpha - \varphi a 3a \ (Cu_{1} + \gamma - \varphi a 3a \ (Cu_{51}Si_{14}) + \epsilon - \varphi a 3a \ (Cu_{15}Si_{4}) + \eta'' - \varphi a 3a \ (Cu_{19}Si_{6}) + SiO_3^{2-}; \ IV - \alpha - \varphi a 3a \ (Cu_{10}Si_{16}) + SiO_3^{2-}; \ IV - \alpha - \varphi a 3a \$ $(Cu) + \gamma - \varphi_{a3a} (Cu_{51}Si_{14}) + \epsilon - \varphi_{a3a} (Cu_{15}Si_4) + SiO_2; V - \alpha - \varphi_{a3a} (Cu) + \gamma - \varphi_{a3a} (Cu_{51}Si_{14}) + \epsilon - \varphi_{a3a}$ $(Cu_{15}Si_4) + SiO_3^{2-}; VI - \alpha - \varphi a_{3a} (Cu) + \gamma - \varphi a_{3a} (Cu_{51}Si_{14}) + SiO_2; VII - \alpha - \varphi a_{3a} (Cu) + \gamma - \varphi$ $(Cu_{51}Si_{1}4) + SiO_{3}^{2-}; VIII - \alpha - \varphi a3a (Cu) + SiO_{2}; IX - \alpha - \varphi a3a (Cu) + SiO_{3}^{2-}; X - Cu^{2+} + SiO_{2}; XI - CU^{2+} + SiO_{2};$ $Cu_2O + SiO_2$; XII - $Cu_2O + SiO_3^{2-}$; XIII - $Cu^{2+} + CuSiO_3$; XIV - $Cu_2O + CuSiO_3$; XV - $CuO + CuSiO_3$; XII - $Cu^2 + SiO_3$; XII - $Cu^2 + SiO_3$; XIV - $CuO + CuSiO_3$; XV - $CuO + CuSiO_3$; XII - $Cu^2 + SiO_3$; XIV - $CuO + CuSiO_3$; XV - CuO $CuSiO_{3}; \ XVI - CuO + \ SiO_{3}^{2-}; \ XVII - \ HCuO_{2}^{-}, \ SiO_{3}^{2-}; \ XVIII - \ CuO_{2}^{2-}, \ SiO_{3}^{2-}; \ XIX - Cu_{2}O_{3} + CuO_{3}^{2-}; \ XIX - CuO_{3$ $CuSiO_3$; XX - Cu_2O_3 + SiO₂; XXI - Cu_2O_3 + SiO₃²⁻.

Область I – это область иммунности (или термодинамической устойчивости) системы, при данных значениях рН среды и равновесного потенциала; все её компоненты не будут подвергаться коррозии. В областях II-IX происходит селективное окисление кремния из сплава. При этом происходит последовательное образование всё более богатых медью фаз,

ТЕРМОДИНАМИКА ХИМИЧЕСКОЙ И ЭЛЕКТРОХИМИЧЕСКОЙ УСТОЙЧИВОСТИ СПЛАВОВ... 88-94 вплоть до практически чистой меди, а избыточный кремний окисляется до кремнезёма (области II, IV, VI, VIII) или, в сильнощелочных средах, до метасиликат-ионов.

Рис. 3. Диаграмма потенциал – pH системы Cu–Si–H₂O при 25 °C, давлении 1 бар и $a_i = 10^{-6}$ моль/л (негидратированная форма оксидов)

Области X и XIII соответствуют селективной коррозии меди, при которой она переходит в раствор в виде ионов Cu^{2+} .

Все другие области, кроме областей XVII и XVIII, соответствуют пассивации медно кремниевых сплавов. Здесь термодинамически устойчивой фазой является один из оксидов меди или же соединение CuSiO₃. Однако, в областях XVII и XVIII создаются условия, при которых оба компонента сплава – и медь, и кремний – переходят в раствор в виде ионов, при этом целостность оксидной плёнки нарушается. Это области транспассивного состояния сплава.

Линии а и b на диаграмме соответствуют работе водородного и кислородного электродов, соответственно. Область потенциалов и рН, лежащая между ними, соответствует электрохимической устойчивости воды.

В целом, химическая и электрохимическая устойчивость медно-кремниевых сплавов целиком зависит от содержания в них кремния.

Выводы

- 1. Рассчитаны и построены диаграмма состояния системы Cu-Si-O и диаграмма потенциал рН системы Cu-Si-H₂O при 25 °C, давлении 1 бар и активностях ионов в растворе, равных 1 и 10⁻⁶ моль/л.
- 2. Проведён термодинамический анализ химической и электрохимической устойчивости медь-кремниевых сплавов. Показано, что они определяются содержанием в сплавах кремния.

© Бутлеровские сообщения. 2011. Т.24. №2. *E-mail:* journal.bc@gmail.com

Полная исследовательская публикация Николайчук П.А. и Тюрин А.Г. Литература

- [1] Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение. 1990. 527с.
- [2] Тюрин А.Г. Термодинамика химической и электрохимической устойчивости алюминиевых, кремнистых и оловянных бронз. Защита металлов. 2008. Т.44. №2. С.1-9.
- [3] Лякишев Н.П. Диаграммы состояния двойных металлических систем. М.: Машиностроение. 2000. T.3. №1. C.449-452.
- [4] Xinyan Yan, Y.A. Chang. A thermodynamic analysis of the Cu-Si system. Journal of Alloys and Compounds. 2000. No.308. P.221-229.
- [5] Смитлз К. Дж. Металлы. М.: Металлургия. 1975. 416с.
- [6] Жук Н.П. Курс теории коррозии и защиты металлов: учеб. пособие для вузов: 2-е изд., стереотип. (перепеч. с изд. 1976 г.). *М: ООО ТИД "Альянс"*. **2006**. 472с.
- [7] Николайчук П.А. и др. Термодинамика химической и электрохимической устойчивости сплавов системы Mn – Si. Вестник ЮурГУ. Серия "Химия". 2010. №31 (207). Вып.4. С.72-82.
- [8] Сухотин А.М. Справочник по электрохимии. Л.: Химия. 1981. 488с.
- [9] Рузинов Л.П., Гуляницкий Б.С. Равновесные превращения металлургических реакций. М.: Металлургия. 1975. 416с.
- [10] Термические константы веществ: база данных. URL: <http://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html>
- [11] JANAF Thermochemical Tables. Third Edition. J. Phys. Chem. Ref. Data. 1985. Vol.14. No.1.
- [12] Моисеев Г.К. и др. Температурные зависимости приведённой энергии Гиббса некоторых неорганических веществ: альтернативный банк данных ASTRA. OWN. Екатеринбург: УрОРАН. 1997. 230c.
- [13] Торопов Н.А., Борзаковский В.П., и др. Диаграммы состояния силикатных систем. М.-Л.: Наука. 1965. Вып.2. 372с.
- [14] Николайчук П.А., Тюрин А.Г., Канатьева И.И. Уточнённая диаграмма Пурбе для меди. Современные проблемы теоретической и экспериментальной химии: Межвузовский сборник научных трудов VII Всероссийской конференции молодых учёных с международным участием. Саратов: ООО Издетельство "КУБиК". 2010. С.287-291.
- [15] Тюрин А.Г. Термодинамика химической и электрохимической устойчивости сплавов: учебное пособие. В 2 ч. Ч. 2. Низкотемпературное окисление. Челябинск: Изд-во Челяб. гос. ун-та. 2004. 91c.