= CHEMISTRY ====

Methods of Creating *closo*-Decaborate Anion Derivatives with Bridging and Terminal Exopolyhedral Cyclic Substituents of Sulfonium Type

A. S. Kubasov^{*a*,*}, E. Yu. Matveev^{*b*}, E. S. Turyshev^{*c*},

I. N. Polyakova^{a†}, A. Yu. Bykov^a, A. V. Kopytin^a, Corresponding Member of the RAS K. Yu. Zhizhin^{a,b}, and Academician N. T. Kuznetsov^a

Received May 7, 2018

Abstract—New methods of creation of cyclic bridging and terminal exopolyhedral sulfur-containing substituents in the *closo*-decaborate anion have been suggested. It has been shown that the reaction of $[B_{10}H_9SH]^{2-}$ with 1,2-dibromoethane leads to crosslinking of two cluster anions to give the $[B_{10}H_9S(CH_2)_4SB_{10}H_9]^{2-}$ dimer. An analogous reaction with 1,4-dibromobutane yields a derivative with the cyclic tetrahydrothiophene substituent $[B_{10}H_9S(CH_2)_4]^{-}$. Its interaction with tetrahydrothiophene in the presence of a small excess of trifluoroacetic acid leads to the formation of the neutral disubstituted derivative $[B_{10}H_8(S(CH_2)_4)_2]$.

DOI: 10.1134/S001250081811006X

Previously [1-3], we have shown that the interaction of the $[B_{10}H_9SH]^{2-}$ -anion with monohaloalkanes Hal–R (Hal = Cl, Br, R = $n-C_4H_9$, $n-C_8H_{17}$, $n-C_{12}H_{25}$, $n-C_{18}H_{37}$, -CH₂CHCH₂, -CH₂CCH, -CH₂Ph, -CH₂(4-PhNO₂), -CH₂CH₂OH, -CH₂CN, -CH₂CH₂CN, -CH₂COOEt) gives sulfonium di-S,S-substituted derivatives $[B_{10}H_9SR_2]^-$.

In the present study, we found that the reaction of the sulfonyl-*closo*-decaborate anion with 1,2-dibromoethane leads to crosslinking of two cluster anions to form a dithioxanium derivative (Fig. 1).

The ¹¹B NMR spectrum of the $[B_{10}H_9S(CH_2CH_2)_2SB_{10}H_9]^{2-}$ anion shows five signals with integrated intensity ratio 1 : 1 : 1 : 4 : 3: two signals of apical boron atoms at 4.6 and -2.8 ppm, the signal of the ipso-boron atom at -15.2 ppm, and two signals

of the unsubstituted boron atoms in the equatorial belt -24.8 and -28.4 ppm.

 ^{1}H The NMR spectrum of (n- $Bu_4N_2[B_{10}H_9S(CH_2CH_2)_2SB_{10}H_9]$ shows two types of signals of the anionic part: two doublets at 3.53 and 2.91 ppm (J = 12.15 Hz) corresponding to two chemically nonequivalent apical and equatorial hydrogen atoms of the chair conformation of the cyclic substituent and a multiplet at 3.26 ppm corresponding to analogous signals of the boat conformation (Fig. 2). The ¹³C NMR spectrum shows two closely spaced signals (34.2 and 34.1 ppm), which presumably reflects the presence of different conformers in solution (Fig. 2).

The reaction of the $[B_{10}H_9SH]^{2-}$ -anion with 1,4dibromobutane leads to the formation of a cyclic tetrahydrothiophene derivative (Fig. 3), which can also be obtained by the reaction of the $[B_{10}H_{11}]^{-}$ or $[B_{10}H_{10}]^{2-}$ anion with tetrahydrothiophene in the presence of a Lewis acid [4, 5].

The ¹¹B NMR spectrum of the $[B_{10}H_9S(CH_2)_4]^$ anion is similar to the spectrum of the $[B_{10}H_9S(CH_2CH_2)_2SB_{10}H_9]^{2-}$ anion since a sulfonium substituent is formed in both cases. There is only a slight difference in chemical shifts between analogous signals.

Like in the case of synthesis of disubstituted oxonium derivatives [5], the tetrahydrothiophene deriva-

[†] Deceased.

^aKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia ^bMoscow Technological University, Moscow, 119571 Russia ^cMendeleev University of Chemical Technology of Russia,

Moscow, 125047 Russia

^{*}e-mail: fobosax@mail.ru

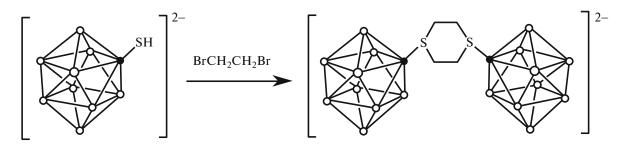


Fig. 1. Scheme of interaction of the $[B_{10}H_9SH]^{2-}$ anion with 1,2-dibromoethane.

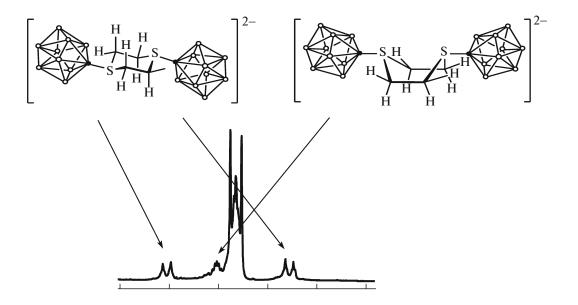


Fig. 2. Fragment of the ¹H NMR spectrum of $(n-Bu_4N)_2[B_{10}H_9S(CH_2CH_2)_2SB_{10}H_9]$.

tive $[B_{10}H_9S(CH_2)_4]^-$ can further react with tetrahydrothiophene in the presence of trifluoroacetic acid or dry hydrogen chloride on heating (Fig. 3).

The ¹¹B NMR spectrum of this derivative shows four signals with the integrated intensity ratio 2 : 2 : 2 : 4: the signal of equivalent apical vertices (B1, B10) at 0.2 ppm, the signal at -12.9 ppm due to the ipsoboron atoms (B2, B7), the signal at -22.2 ppm of the B4 and B9 atoms, and the signal at -26.5 ppm arising from the other four atoms.

The structure of the $(n-Bu_4N)_2[B_{10}H_9S(CH_2CH_2)_2SB_{10}H_9]$ compound was determined by single crystal X-ray diffraction (Fig. 4).¹

The monoclinic unit cell of $(n-Bu_4N)_2[B_{10}H_9S(CH_2CH_2)_2SB_{10}H_9]$ contains two anions and four cations. The asymmetric unit comprises one half of the $[B_{10}H_9S(CH_2CH_2)_2SB_{10}H_9]^{2-1}$ anion and one $n-Bu_4N$ cation. The cyclic dithionium substituent has a chair conformation with the equato-

rial arrangement of the $[B_{10}H_9]$ substituents. The B–S bond lengths are 1.896(2) Å, which corresponds to the bond lengths in other derivatives of the *closo*-decaborate anion with *exo*-polyhedral substituents containing a boron–sulfur bond. The sulfur atoms are located at the vertices of trigonal pyramid at a distance of 0.805 Å from the base plane, which is evidence that the positive charge is localized on sulfur atoms.

¹ Sets of reflection intensities for crystal I were collected on an automated Bruker APEX2 CCD diffractometer (λ Mo K_{α} , ω -scan) [6] of the Shared Facility Center, Institute of General and Inorganic Chemistry, RAS. Reflection arrays were processed with the SAINT software [6]. Absorption corrections were applied with the SADABS program [6]. The structure was solved by direct methods using the SHELXS program package [7]. Non-hydrogen atoms were refined by least-squares calculations in the anisotropic approximation; the H atoms were refined as riding on their bonded atoms, U_{iso} (H) being 1.2 or 1.5 (CH₃ groups) times as large as U_{eq} of the corresponding non-hydrogen atom. One of the terminal methyl groups of the cation is disordered over two positions with equal site occupancy factors [8].

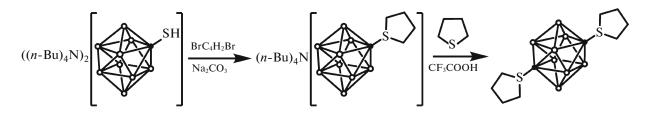


Fig. 3. Scheme of synthesis of mono- and disubstituted tetrahydrothiophene derivative.

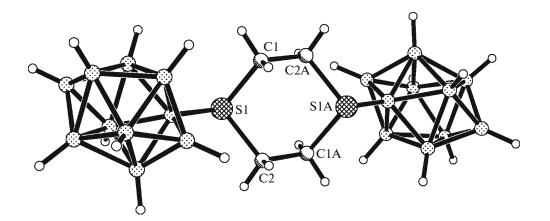


Fig. 4. Structure of the $[B_{10}H_9S(CH_2CH_2)_2SB_{10}H_9]^{2-}$ anion according to single crystal X-ray diffraction data.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 18–33–00158).

REFERENCES

- Kubasov, A.S., Matveev, E.Yu., Polyakova, I.N., Razgonyaeva, G.A., Zhizhin, K.Yu., and Kuznetsov, N.T., *Russ. J. Inorg. Chem.*, 2015, vol. 60, p. 198.
- Kubasov, A.S., Turishev, E.S., Polyakova, I.N., Matveev, E.Yu., Zhizhin, K.Yu., and Kuznetsov, N.T., J. Organomet. Chem., 2017, vol. 828, p. 106.
- Kubasov, A.S., Matveev, E.Yu., Turyshev, E.S., Polyakova, I.N., Nichugovskiy, A.I., Zhizhin, K.Yu., and Kuznetsov, N.T., *Inorg. Chim. Acta*, 2018, vol. 477, pp. 277–283.

- 4. Matveev, E.Yu., Kubasov, A.S., Razgonyaeva, G.A., Polyakova, I.N., Zhizhin, K.Yu., and Kuznetsov, N.T., *Russ. J. Inorg. Chem.*, 2015, vol. 60, p. 776.
- Klyukin, I.N., Zhdanov, A.P., Matveev, E.Yu., Razgonyaeva, G.A., Grigoriev, M.S., Zhizhin, K.Yu., and Kuznetsov, N.T., *J. Inorg. Chem. Commun.*, 2014, vol. 50, p. 28.
- APEX2 (V. 2009, 5-1), SAINT (V7.60A), SADABS (2008/1), Bruker AXS, Inc., Madison (WI), 2008– 2009.
- Sheldrick, G.M., Acta Crystallogr., Sect. A, 2008, vol. 64, no. 1, p. 112.
- 8. Bykov, A.Yu., Selivanov, N.A., Zhdanov, A.P., Zhizhin, K.Yu., and Kuznetsov, N.T., *Fine Chem. Technol.*, 2016, vol. 11, p. 46.

Translated by G. Kirakosyan