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A b s t r a c t .  The main result is that is no effective algorithmic answer to the question: 

how to recognize whether arbitrary modal formula has a first-order equivalent on the class 

offinite frames. Besides, two known problems are solved: it is proved algorithmic undecid- 

ability of finite frame consequence between modal formulas; the difference between global 

and local variants of first-order definability of modal formulas on the class of transitive 

frames is shown. 

I n t r o d u c t i o n  

The problem of describing the "behaviour" of modal, or other propositional 
intensional formulas on the class of finite frames seems rather naturM. Al- 
most all modal  logics resulting from formalization of substantial ideas have 
turned out to have the finite model property. Moreover, different semantic 
constructions in the finite case are effectively intertranslatable (there is no 
incompleteness effect). In this paper we consider the question, for any modal  
formula, how to recognize whether it has a first-order equivalent on the class 
of finite frames. Our main result is that  no effective algorithmic answer to 
this question is possible. 

Earlier, in [6], algorithmic undecidability was proved for first-order de- 
finability without restrictions on frame cadrinality. The proof there uses 
essentially undecidable calculi and, so, it cannot be transferred directly to 
finite frames. But another construction, used in [4] to show the undecidabil- 
ity of finite frame consequence between modal formulas (a research problem 
first s tated in [2]) turned out to be a suitable replacement. Thereby the 
proof increases considerably in size, since we have to manipulate first-order 
definability of rather large formulas (cf. the forthcoming paper [7] concern- 
ing superintuitionistic logics). One indirect purpose of the present work is 
to give ~ simplest possible variant for modal formulas. For this purpose 
it turned out convenient to use finite GL-frames, having a transitive and 
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irreflexive alternative relation. Note that ,  in the infinite case, it is Mmost 
pointless to use this frame class, as it is not first-order definable. 

This paper is organized as follows. In Section 1, the revelant result 
from [4] about the undecidability of semantic consequence for finite GL- 
frames is proved, as welll as some generalizations thereof. The main technical 
l emma of this Section, which shows how to reduce the HMting Probtem 
for Minsky Machines to the finite frame consequence problem, will be used 
in Section 4 to obtain the main results of the present paper.  In Section 
2, some technicM facts are proved about first-order definability of modal  
formulas. This contains the messy complications we mentioned.  Readers 
interested only in the general idea of our main results may  omit the details 
of constructing the relevant first-order equivalents. In Section 3, formulas 
closely connected with the constructions of Section 1 and 2 are presented, 
which have no first-order equivalents on the class of finite frames. The 
results of Sections 1-3 are combined in Section 4 to obtain short proofs of 
the undecidability of various problems connected with first-order definability 
on the class of finite frames. In the course of this exposition, two notions of 
first-order definability will be considered, a "locM" one and a "global" one. 
In particular, in Section 3 the problem raised in [1] concerning the difference 
between globM and local definability on the class of all transitive frames is 
decided. 

S o m e  d e f i n i t i o n s  

The usual definitions and results from Modal Logic are employed, including 
its connections with standard logic. In particular, any Kripke frame can 
be considered both as a semantic structure for modal formulas and as a 
model for the first-order language with equality and a single binary predicate. 
We say that  a modal formula ~ and a first-order sequence ¢ are globally 
equivalent on a frame class K if, for any frame F in K,  F [=- ~ if[ F ~ ~b. A 
modal  formula ~ is globally first-order definable on the class K if the ie  exists 
a first-order sentence globally equivalent to it on K. A modal  formula ~ and 
a first-order formula ¢ with one free variable are locally equivalenton K if, for 
any frame F in K and any world d, (/7, d) ~ ~ iff F l= ¢[d]. A modal  formula 
~p is locally first-order definable on the frame class K iff there is a first-order 
formula with one free variable which is locally equivalent to it on K.  It is 
clear tha t  local first-order definability implies global first-order definability 
on any frame class. In this paper, we are mainly interested in the class K 
of finite frames (but our results remain true for finite transitive irreflexive 
ones). Henceforth, all frames considered will be finite. If we want to allow 
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tha t  a class contains infinite frames, then we will mention this specifically. 
Here is some useful notation: 

I=/i~ ¢ : for any frame ~-, 9 v ~- 9~ implies 5 c ~ ~ ,  and 
~o --/in ~b : for arty .Y and world d, {~', d} ]= ~ implies (~-, d} l= ¢ .  

The relations [= /~  and -~°~ - / i n  are different. An example is provided by: 

LF A (>T ]=/in 2 but LF A OT ,z__toc g'-fin ±, 

where L F  = []([]p -+ p) -~ U]p is the formula that  axiomatizes LSb's 
Logic GL. This pr indple  is nomfirst-order in general, but "Transitivity and 
Irreflexivity" is a first-order equivalent (both global and local) for it over the 
finite frames. We will often "translate" first-order formulas into English: e.g., 
the preceding te rm "Irreflexivity" is our translation of the formula Vx-~xRx. 
Finally, we will freely use various modal  and first-order abbreviation: such 
as [] c 2 for [] cp&=c2, x = y = z for x = y A y = z, x R y R z  for xRy  A yRz,  xR3y 
for 3u3v(xRuRvRy) .  Other useful notations will be explained in due course. 

1. R e d u c t i o n  o f  M i n s k y  M a c h i n e  C o m p u t a b i l i t y  t o  M o d a l  
C o n s e q u e n c e  o n  F i n i t e  F r a m e s  

A 'Minsky Machine'  is a two-tape effective machine operating on two integers 
Sl and s2. A Minsky Machine Program is a finite set of instructions I of the 
form s: 

(1) qzTiTo 
(2) qzToT  
(3) qzT- To(q 1; ;) 

(4) qzToT_l(q ToTo) 

: in state q~, add 1 to sl ,  and go to qz; 
: in state q~, add 1 to s2, and go to qz; 
: in state qa, subtract  1 from sl,  if sl 7 ~ 0; 
and go to qz, otherwise go to q,y; 

: in state q~, subtract  1 from s2, if s2 ~ 0; 
and go to q~, otherwise go to q,; 

A Minsky Machine Configuration is an ordered triple ( i , j , k )  of natural  
numbers ,  where i is a state number,  j = sl,  and k = s2. We write 
P : (c~, m, n) --~ (/~, k , l )  to express that  the program P starting at con- 
figuration ((~, m, n) can reach configuration (/~, k, 1). Henceforth, we fix the 
symbols q~ and q~ for the initial and final states of the machine. Finally, 
we introduce two conventions which do not influence standard facts about  
Minsky machines,  but are useful for our constructions: (i) all machines con- 
sidered are deterministic, i.e., they do not contain different instructions with 
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f 0  

the same left parts, (ii) "blocking" states do not occur in our machines, i.e., 
if some nonfinat state is in the right part of some machine instruction then 
there is an instruction with that state in the left part. 

In this section we use two variants of undecidable halting problems of 
Minsky machines: 

* There is a Minsky Machine P such that no algorithm recognizes for 
any configuration whether P eventually hMts (in a final state),  starting 
from that configuration. 

1 1 

• • - - •  
I~ I '  i~ 16 ,, . .  

/°2 f0 ~ / I '  = 
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B 
4 
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f Figure 1 
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• There  is a configuration (a,  m, n) such tha t  no algori thm recognizes 
for any Minsky machine program whether  it eventually halts,  s tar t ing 
f rom (a ,  m,  n). 

Simulat ion of Minsky machine work by modal  formulas was apphed in 
some precending papers of different authors,  originally Isard [12], see also 
[3], [5], where the similar technique is applied. 
Next,  we in t roduce  an impor tan t  set of formulas. Al though we do not need 
their  semant ic  "sense" :right now, it is useful to have a picture in mind,  in 
accordance with which they are defined. The irreflexive transit ive frame 
of Figure 1 is such a picture; where the par t  of the frame surrounded by 
the  do t t ed  line is not needed in this Section. Here is some explanat ion of 
its key features.  The  frame is constructed from a machine program P and 
an initial configuration (a ,  m,  n). The  presence of the worlds h(si) ,  where 
si = (ai, rai, ni), expresses the fact tha t  si is the configuration after the first 
i - t steps of a computa t ion  s tar t ing from (a,  m,  n). Now set: 

F1= [:]2± --* [3pVV3-~p, F =[3Fq 

These  formulas are falsifiable in this frame by the same valuation, F at world 
f ,  and F ~ at f f  (and only there). For as soon as F is falsifiable, say by a 
valuat ion V, then  

vO, f~)= 1, v 0 , f ~ )  = 0, or V 0 ,  f ] ) =  0, "O,f:)= 1. 

W'e cont inue to in t roduce  modal  formulas, emphasizing their connection with 
the  worlds in which they are true: 

z0~ = D ±  A; ,  r~ = D ± A ~ ; ,  

]2/ = [-]J_L A ~J - I  i~iI A o J - ' F ~ _  1 ( i e  {0,1},2 ~< j < 7), 

x~, = o r~  +~ A <>s~ +~ A n~+~l  (i ~< a), 

As . . A a k  (0 ~< i 4 3 , j  > 0), A i = OJAio A -,OJ+lAio A/\i#k=o v ~ o  

S(7 ,AI ,  A~) = AT=0 ©A° A OA~+ 1A A 
( where 7, k, 1/> 0). 

The  formula  1 2 S(7,  A k, A l ) corresponds to the configuration (7, k, l). But  for 
describing instruct ions we need formulas speaking about  arbi trary configu- 
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rations. Therefore, 

Q1 = 

Q2 = 
R1 = 
R2 = 
T1 = 
T~ = 

S ( 7 , Q ~ ,  n~)  = 

S(7,Q1, A~) = 
S('~, A1, R1) : 

we set: 

(OA 1 v Ao 1 ) A -~OAo ° h - ~ A o  2 A -~OAo 3 A Pl A ~ P l ,  

~A~ A -~OAo ° A -~OAo 2 A -~(>A~ A Opl A ~O(~Pl, 
(GAo 2 V A2o) A - ~ A  ° A -~OA~ A -~©Ao 3 A P2 A - ~ p ~ ,  

OAo ~ A --OAo ° A -~OA~o A -~(~Ao 3 A OP2 A --~OOp2, 
<>Ao ~ A -<>A ° A _<>~1 A -~(>Ao ~ A ;~ A -<>~>p~, 

OAo 3 A - ~ A  ° A -,OA~ A -~OAo ~ A OP3 A -~OP3, 
_. 0 A~=o ~A~ A OA.~+~ A (~Qi A ' ( ) ~ Q i  A ~ R j  A ~OSRj ,  

A~=o ~ A ~  A - ~ A ° + l  A ~ Q 1  A ~ ' Q 1  A (~n  2 A - ~ A  2, 

ALo <>A~ A -<>A°+I A <>A~ A ~O<>A1 A <>R~ A ~V<>R~, 
(where 7 ) O,i,j ~ {1,2}). 

We shall write ~ - ¢ if ~ ~ ¢ is true in all finite transitive and irreflexive 
frames, i.e. GL t- ~ ~ ¢.  ~ _~ ¢ implies that  ~ and ¢ are always semanti- 
cally interchangeable in models of GL. 

LEMMA 1.1. Let~* be the result of the substitution in ~ of ~kA~ for pl, ~tA~ 
for P2 and C)A 3 for P3. Then 

i) Q T - A ~ ,  Q~_=A 1 • k+l~ 

2 • ii) R~ =- A~, R~ ~- A~+I, 

• 3 . iii) T~ =- d3m, T~ =_ A~+I, 

iv) (S(7,Qi, Rj))* =- S(7, A~+(i_I),A2 /+(j--l) ( i , j  E {1,2}); 

v) (S(7,Q1, A~))* = S(7,  A~,A02); 

vi) (S(7,A1, R1)) * =_ S(7,A~,A~); 

PROOF. Immediate  []  

The formulas that  simulate instructions use subformulas of the form Ti 
for the "cMculation of some number of steps". For instruction I set: 

if I is of the form q~ -~ q6T~To, then 
AxI  = --~FA ~ ( S ( 7 ,  Q1, R1) AOT1A-~ '~T1)  A~T2 --+ '~(S((~, Q2, R1)A 

if I is of the form q~ -~ qsT07~, then 
AxI = -~FA(>(S(7, Q1, R1)A~T1A-,~T1)AC~T2 ~ ~(S(5, Q1, R2)A 
~T2 A - - ~ T 2 ) ;  
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if I is of the form q~ --+ qaT-1To(qe ToTo), then 
(AxI  = (~FA<>(S(% Q2, RI)A<>T~A-<><>T~)A<>T2 -~ <>(S(e, Q1, R1)A 
<>T= A -<><>T2)) ̂  (~F A <>(S(% A0L R~) A <>T1 A ~<><>T,) A <>T: --, 
O(S(~,A~,R1) A OT2 A -~©OT2)); 

if I is of the form q'r --+ qaToT-l(q~ ToTo), then 
(AxI  = (--,FAO(S(7, Q1, R2)AOTIA-~OOT1)A©T2 -+ 0(S(5, Q1, R1)A 
OT2 A -~OOT2)) A (--F A O(S(7,Q1, A~) A OT1 A -~OOT1) A OT2 -+ 
©(S(e,  Q1, Ao 2) A OT2 A -,OOT2)); 

Next, for a Minsky program P set 

AxP = A AxI  
IEP 

and. then define the formula A(P) as follows: 

A(P) = LF A AxP A LinT A UT, 

where 

LinT 

UT 

= ~ ( ~ F  A O(OA 3 h -~OA ° A -~OA~ A -~OA 2 A E]r A ~q) 
AO(OA 3 A ~©A ° A -~©A~ A -~OA0 2 A [3q A ~r)); 

= ~ ( ~ F  A O(q h OT1 A - © © T I  A OA~ h OA 1A Od2o) 
AO(q A OT1 A -~OOT, A OA ° A ©Ao 1 A OAo2)). 

Finally, define the formula B(a, m, n) as follows: 

B ( a , m , n )  = --,F A O(S(a,  Alm, A~) A OA 3 A-~©OA31) 
mO(S(/~, Ol, R1) A OT1 A --OOT1). 

Now, the main technical result of this Section is the following: 

LEMMA 1.2. A(P) I=fin B(a, m, n) iff the program P, starting at configura- 
tion (a,  m, n) cannot reach a final state (with number t5). 

PROOF. "If". This is the direction for which our specific finite frames 
were developed. Let the Minsky program P continue indefinitely, starting 
from the configuration ( a , m ,  n). We show that then, A(P) I=]i~ B(a ,m,n) ,  
by a reductio ad absurdum. Suppose that ,  for some finite frame 9 r 

(1) 9 c [= A(P) ,  

(2) f ~ B(~,,~, n). 
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Condit ion (2) means that ,  for some valuation V, in some world a f rom •, 
we have V(B(c~ ,m,n) ,a )=  0 (we abbreviate this as: a ~ B ( a , m , n ) ) .  I.e., 

(3) a ~ F ,  

(4) a I= (>(s(~, A.~,I A~)2 A (>A~ A ~(><>A~), 

(5) a I= <>(S(Z, 01, R1) A <>T1 A ~<><>T1). 

Condit ion (4) implies, tha t  there is a world b in F such tha t  aRb and 

(6) b ~ S(~,A~,A~), 

(7) b ]= ~A~, 

(8) b ¢= OOA~. 

Condit ion (5) implies, tha t  there is a world c in Y such tha t  are  and 

(9) c l= ©S(fl, Q1, R1), 

(10) c ]= OT1, 

(11) c ~: O(>T1. 

Condi t ion (7) implies, tha t  there is a world (denote it by a 3) such tha t  bRa~ 
and a 3 [= A 3, i.e., 

(12) a 3 l= ©A 3 A - ~ A  ° A ~©Ao 1A - ~ A ~ ,  

(13) a~ ~ ~ A o  ~. 

Condit ion (10) implies tha t  there must  be a world x such tha t  cRx and 
x [= T1, i.e., 

(14) x [= ~A3 A - ~ A °  A , ~ A l o A  ~ A ~ ,  

(15) x l= p3 A ~<>P3. 

Now we need a further  auxihary result. 

LEMMA 1.3. For any frame 5 r, if .~ 1= L F  A LinT and the formula F is 
falsifiable at one of its worlds h by some valuation, then the set of worlds of 
this frame which are accessible from h, in which the formula OA 3 A -~<~A ° A 
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-~OA~ A -~A2o is true, is strictly linearly ordered by the relation of accessi- 
bility. 

PROOF. This  is a s t andard  exercise. II 

We cont inue the proof  of Lemma  1.2. By Lemma 1.3, conditions (1), (3) 
above imply tha t  the set of worlds in 9 c that  are accessible from a at which 
the  condit ions (12), (14) hold, form a chain strictly linearly ordered by the 
a l ternat ive relation in which a 3 is the R-greatest element,  because of (13). 
Denote  this chain by 

a3 Ra3_l Ra3_2R. . . Ra32Ra 3. 

3 We can characterize its elements as follows by the formulas A 3 : a i ~- A 3 iff 
i = j .  Now, (14) implies, t ha t  x = a 3 for some s, 1 <~ s ~< k, so tha t  we have 

(16) a 3 I= T1 (from (14), (15)), 

(17') c I= OA 3, 

(18;) c ~= <>~d 3 (from (11)). 

Now tha t  we have succeeded in identyfying x with some a 3, and with the 
help of the  conjunctive members  of A(P) ,  which are t rue in 5 c by (1), we 
shed] get "step by step" f rom a 3 to x. This turns out possible exactly thanks  
to the finiteness of F .  

Let P ,  s tar t ing  from (a,  m,  n), one application of some instruct ion at a 
t ime,  give the  successive configurations (a2, m2, n2), (a3, m3, n3), . . . ;  where 
we identify (a ,  m,  n) with ( a l ,  m l ,  n l ) .  Note, tha t  by the given conditions, 
ai  :fi fl for any i E w. In this sequence of configurations, we shall only be 
in teres ted in finite initial segment of length s: 

( g t l ,  m l ,  n l ) ,  (OL2,'P2, n2) , . . . , (O~s ,  ms ,  ns).  

Note tha t  for each i, 1 ~< i ~< k -  1, 

h i =  <~(S(ai, A 1 A 2 ~ A ~ A  3A-,~<>A 3) mi, nil  
£2( s(ai+l 'Ak,+l  'A2n,+l ) A O A ~ I  A ~O~A3+l) .  

Indeed,  f rom (1), we have by subst i tut ion in a suitable conjunct  of AxP: 

a ]= --~F A ©(S(a~, Am, , 1  An ) A OA 3 A - 'OOA 3) A Ai3+l --~ 
~ ( S ( a i + I , A  1 A 2 ) h  <>A3+1A ~<5<5A3+t), ~,-rt i+ 1 , ni.I. 1 



430 A. V. Chagrov, L. A. Chagrova 

and (3) and aR@+ 1 together with 3 3 ai+ 1 l= Ai+ I yield that  a I= -~F A ~A3+1, 
which gives the desired result. Applying (4) and "Modus Ponens" succes- 
sively one obtains then, for any i, 1 4 i ~< k - 1, that  

3 ~<>OA~+I) a ]=  ~ ( S ( a i + l , A  1 A 2 )AC'Ai+ 1A 
mi. t .  t , hi-l- 1 

and hence in particular, 

a l= O(S(as, A % , A L )  A 0 £  A -<>OA~). 

The last condition implies that there is a world d such that  aRd and 

(19) d ]= S(a~, Alm~, A2n~), 

(20) ~ ~= Od~, 

(21) d V= OOA~. 

From (20), (21), using Lemma 1.3 and the fact that  a 3 l= d3, dRa3 s while 
3 not dRab+l, because there is a unique world among a 3 , . . . ,  a~ in which the 

formula T1 holds, it follows with the help of (14), (15) and x = a 3 that  

(22) d I= ~T1 A --,<5C, I~. 

Now, we conect all neccessary conditions. From (9), (10), (11) we obtain 

(23) c 1= ©T1 A -~©OT, A OAo ° A OA~ A OAg, 

and from (19), (22), 

(24) d I = OT~ A -,<><>T~ A OAg A OA~ A OAo ~. 

The worlds c and d are different, because (9)implies that  c I= A~=o ~ A °  A 
-,(>Ag+l , and from (19) we get d l= A~£0 ~A°/x -~OA° +1, by the condition 
that  a~ ¢ /3 .  This difference allows us to define the valuation V for a new 
variable q in such a way that c I= q, d ~ q. Together with (23), (24), and 
also (3), this gives a [/:: UT which contradicts (1). 

This contradiction shows that A(P) l=fi~ B(c~, m, n): and thus, we have 
proved the "If" direction of Lemma 1.2. 
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"Only if". Let us now assume that  the program P can reach a final state 
starting from the configuration (a, rn, n). We will show that A(P) ~/in 
B(a ,  m, n), by constructing a suitable finite frame. Let 

S 1 = ( a , m , n ) =  ( a l , m l , n l ) ,  s 2 = (c~2, m 2 , n 2 )  , . . . , S k  -=- ( a k ,  m k ,  n k )  

be the list of all configurations, successively obtained by program P, starting 
at (a, m, n). Set 

U = m a x ( c ~ l , . . . , a k ) ,  v = m a x ( m l , . . . , m k ) ,  w = m a x ( n 1 , . . . , n k ) .  

Consider the frame .T sketched in Figure 1. We remind the reader that  the 
part  of f which is "enclosed by the dotted line" remains disregarded for the 
present. 

L E M M A  1.4. f l= A(P). 

PROOF. This is a routine verification. For analogous scrupulous verifi- 
ca~ions see [6], [3]. 

Now introduce a valuation on f" such that 

x l = p C : ~  x = f l ;  x l = p l  C~ x = a  1 mk;  

x I= P2 ~:~ x = a 2 " 3 nk '  x I= p3 ¢~ x = a k. 

LEMMA 1.5. This valuation has the effect that f ~: B(a, m, n). 

PROOF. This is again a routine verification. []  

From Lemmas 1.4 and 1.5 we obtain the desired result, and Lemma 1.2 is 
proved. [] 

Because A(P) and the formula B(a ,  m, n) are in fact constructed effectively 
from the program P and the configuration (a, m, n), the undecidability of 
the earlier two hMting problems gives the following two results. 

THEOREM 1.6. There is a formula 99 such that the problem of recognizing, 
given any formula ¢, whether 9~ I=/in ¢, is algorithmically undecidable. 

TtIEOREM 1.7. There is a formula ¢ such that the problem of recognizing, 
given any formula ~p, whether qp I=/i~ ~, is algorithmically undecidable. 
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From these theorems we obtain 

COROLLARY 1.8. There is no algorithm which recognizes, given any two 
modal formulas ~ and 4, whether ~ t=fin ¢. 

Taking into account the simple fact that {(~, ~b}l ~ ~:fin ¢} is recursively 
enumerable, we obtain from 1.6 - 1.8 this further 

COROLLARY 1.9. 

a) The set t=s, n ¢) is not recursively enumerable. 

b) There is a formula ~ such that {¢1~ ]=fin ~b} is not recursively "enu- 
merabIe. 

c) There is a formula ~ such that {~1~2 l=fi~ ~) is not recursively enu- 
merable. 

From the proofs of statements 1.6 - 1.9 we obtain the following analogues 
for _loc 

--fin" 

THEOREM 1.10. There is a formula ¢2 such that the problem of recognizing, 
--IOC given any modal formula ~b, wheter ~ - f in  ~, is algorithmically undecidable 

THEOREM 1.11. There is a formula ¢ such that the problem of recognizing, 
--{OC given any modal formula ~, wheter ~ -f~n ¢, is algorithmically undecidable 

COROLLARY 1.12. There is no algorithm which recognizes, given any two 
--lOC modal formulas ~ and ~, whether ~ - f in  ~" 

COROLLARY 1.13. 

a) The set {(~2, ¢)1~ _loc ¢} is not recursively enumerable. - - f in  

b) There is a formula ~2 such that {¢1~ _lo¢ ¢)  is not recursively enu- - - f in  
merable. 

c) There is a formula ¢ such that {~l~ _lo~ ¢} is not recursively enu- - - f in  
merable. 

Now change the definition of A(P) by adding a conjunct ~-V. In this case 
the above proofs will work for ~_loc but no longer for I=S~n, because after I--fin, 
such a change, we will have A(P)A ~ T  I=fin B(a,  m, n), indepedently of the 
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choice of P, (a ,  m, n). Thus,  one obtains 

THEOREM 1.14. 

IZ-loc ~b } is not recursive. 

I~1o~ 4} is not recur- b) There is a formula ~ such that {41¢P I=]~ 4 ,  ~a r-]in 
sive. 

~loc 4} is not recur- c) There is a formula 4 such that {~J~ t=]i~ 4 ,  ~ v-]i~ 
sire. 

We do not know if it is possible to replace "recursive" in the above s ta tements  
by "recursively enumerable".  

2. A First-Order Definable Variant On Finite Frames For 
Formulas Describing Minsky Machines 

To obtain the main result of this paper we need an additional property  
for the formulas A ( P )  from the previous section - namely their first-order 
definability on finite frames. Although the above construction may have 
produced formulas of this kind, we shall complicate the organization of A ( P )  
to simplify the proof of its first-order definability. It will have to be checked, 
of course, that  the new version will still do the job of the originM formula 
A(P) .  Now we shall merely add conjuncts that  are true in the frame of 
Figure 1, as may  be verified immediately, and this is harmless. The new 
A ( P )  is defined as follows: 

A ( P )  = L F  A U F  A Last2 A UF2o A . . .  A gFo 6 A UA ° A UA~ A UA~ 

A UA 3 A n i n O A  ° A Lin(>A 1 A LinOA20 A L i n O A  3 A UT  A AxP .  

where 

Last2 
U F  

= [](q A r ---* OT) Y D(q A -~r ~ OT) V [:3 (-~q A r --* + T ) ,  
= [](q ---* F)  Y [](--q ~ F) ,  

and for X ¢ {F, S}, 

U X  = ([3 (X -~ [3 (Yl V . . .  V Ym)) A (• (q - .  X)  V [] (~q --, X)) )  V F, 

where X,  Y I , - . . ,  Ym are formulas corresponding to different worlds x, Yl,- --, 
9m in Figure 1, such tha t  x R y l , . . . , X R y m  and whenever x R z ,  then 
z E {Yl, . - . ,Ym}, and finally 

3 Liu©A~o = [3 (OAio A A~cj=o -~OAJo A [] r ~ q) 
3 -~OgJo [] r) V F. 
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Now we use the new variant of A(P) .  For this formula, the old Lemma 1.2 
still holds. Moreover, we have: 

LEMMA 2.1. The new formula A (P)  is first-order definable on finite frames 
(both globally and locally). 

P R o o f .  We shall prove the first-order definability step by step, for which 
we introduce the following notation. For a formula of the form A1 A . . .  A 
Ai-1 A . . .  A A m , A  T will denote A1 A . . .  A Ai. For example, (UF2)  * = 
L F  A U F  A Last2 A UF~ A U F  2 and (AxP)*  = A ( P )  for the new formula 
A(P) .  We  shall construct a first-order local equivalent for the conjunction 
of the first i conjuncts of A(P) ,  increasing i till we get to the full A(P) .  The 
first-order equivalent on finite frames ("first-order equivalent", for short) for 
formulas (A)* will be denoted by foe(A)*.  For instance, we have 

foe ( (LF)*)  = f o e ( L F )  = "transivity and irreflexivity ' .  

In all conjuncts of A(P) ,  exept the first, the formula F occurs. We describe 
the conditions of its refutation. The following auxiliary predicate will be 
useful: 

l(x) = n ¢=~ % chain of worlds of length n is accessible from x 
and chains of length n + 1 are not accessible". 

LEMMA 2.2. The formula F is refuted at world x of frame ~ iff  there are 
worlds y, zl ,  z2 in F such that y is accessible f rom x and l(y) = 1, l(Zl) = 
l(z2) = O, while y R z l , y R z 2 ,  zl ~ z2. This assertion presupposes that the 
refuting valuation has zl I = p, z2 ~= p. 

PROOF. This may be verified immediately. 

For convenience, we denote the right-hand condition in Lemma 2.2 by 

C R ( x ,  y, Zl, z2). 

REMARK. Lemma 2.2 implies that  the formulas F and VyVzlVz2 
- ,CR(x ,  y, Zl, z2) are locally equivalent. 

Now we set 

f oe (UF)*  = f o e ( L F )  A VXlVX2((xRxl  V x = Xl) A (xRx2 V x = x~)A 
3y3z13z2CR(x2,  y, z~, z2) --+ x = xl  A x = x2). 

This formula expresses the uniqueness of the world in which F is refuted° 
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LEMMA 2.3. (UF)* and foe(UF)* are locally equivalent. 

PROOF. Let (F)* be refuted at world a of frame )c. We show that  
. f  ~ foe(UF)*(a/x). (~-,a} ~: (UF)* means that  there is a valuation V 
such that  a ~v  (UF)* (later on, we shall omit V as usually). Then a ~ LF 
or a ]= LF, but  a ~ UF. We may suppose that  (T ,x}  l= foe(LF), because 
otherwise, the desired result is obtained at once. Then we have a ~: UF ,  
i.e., 

(1) a ~ IS](p --~ F) ,  

(2) a V: D (-,:o ~ r ) .  

From (1) we obtain that  in .~ there is a world al such that  aRal or a = al 
and 

( 3 )  a l  I = p ,  

(4) al ~: F .  

Prom (2) we obtain that  in ~ there is also a world a2 such that  aRa2 or 
a = a2 with 

(5) a2 ~: p, 

(6) a2 V= F. 

From (4) and (6), using Lemma 2.2 we obtain that  in ~ there are worlds 
b',cl,c~,b",e~,e~ such that  the formulas CR(al,b',c~,c~) and CR(a2, b",dl' , 
c'~2j, and hence the formulas 3y3z13z2CR(al, y, zl, z2), 3y3z13z2CR(a2, y, 
zl ,z2)  are true. Besides, by (3) and ( 5 ) i t  follows, that  a ¢ al or a ¢ a2. 
Collecting all facts obtained so far, one obtains that  

F~ (aRal V a = a l )  A (aRa2 V a = a2)  A 3y3z13z2CR(al,y, z1,z2) 
A3y3zl3z2CR(a2, y, zl, z2) ---* (a = al A a = a2), 

which refutes the second conjunct of foe(UF)*(a/x), i.e. 

f V= foe(UF)*(a/x). 

Next,  let, for some world a of some frame ~', U ~= foe(UF)*(a/x). We 
show that  (UF)* is refuted at a by some valuation on ~'. First, we may  
suppose that  5 c 1= foe(LF)(a/x), because otherwise, we can refute LF at 
the world a. Now the cone of U generated by the world a is transitive and 
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irreflexive, and there are a l ,  a2 in 5 ~ such tha t  aRal or a = al  and  aRa2 or 
a = a2, and a ~ az or a ~ a2, and moreover,  there are b ~, Cll, C21, btl, c1-11, c2~tl such 
t ha t  in f the formulas  CR(al b', c~, c~), CR(a2, b", -" ~"~ , cl ,  c2) hold. Because of 
l(b') = l(b") = 1, we have 

(7) b' ~ D 2 ± ,  

(S) b" ~ [ ]2± .  

T w o  cases arise here: {c~,c~} A {c~',cg} = 0 and {c~,d2} N {c~',cg} # O. 
In the  former  case, we can choose a valuat ion such tha t :  

C'll-'-p, c ~ p ,  c~'l=p, c g ~ p .  

In the  la t te r  case, say c~ = cg, we can choose a valuat ion such tha t :  

! It 

Thus ,  in bo th  cases we have 

(9) b' ~= []p V []-~p, 

(10) b"~=[]pV[]~p,  

From (7), (9) and (8), (10) we obta in  b' ~= F',b" ~= F', and hence a 
F, a2 ~= F. RecM1 tha t  at  least two worlds from a, al,a2 are different,  say 

a ~Z a2. Then  we can suppose tha t  

al=q, a2 ~q,  

whence a ~ [] (q ~ F) V [] (~q ~ F), and so a ~ (UF)* .  Thus ,  L e m m a  2.3 

is proved.  • 

Now, we define foe(Lasts): 

foe(Last2) = VyVzYu(xRy A xRz  A xRu A y ~Z u A y ~Z z A u ~ z --+ 
l(y) # 0 V I(z) # 0 V l(u) # 0). 

LEMMA 2.4. The formulas Last2 and foe(Last2) are locally equivalent. 

PROOF. This is a s t anda rd  exercise. • 

This  s t a t e m e n t  allows us to define foe(Last2)* as follows: 

foe(Last2)* = foe(gF)* A foe(Last2). 
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Thus, as a consequence of Lemmas 2.3 and 2.4 we have the following state- 
meat :  

LEMMA 2.5. The formulas (Last2)* and foe(Last2)* are locally equivalent. 

Now we define foe(UF2)*: 

foe(UF~)* = foe(Last2)* A VyVzlVz2VUlVu2(CR(x,y, zl,z2) A XRU 1 
AxRu2 A --~ulRz2 A -,u2Rz2) V (ulRz2 A u2Rz2 A - ,ulRzl  
A-nu 2/~Z 1)) A l (u  1) ---- l (u  2) ---- 1 --+ u I ~- u 2). 

Applied to the frame of Figure 1 the conjunct added to foe(Last2)* means 
that  the world from which the world fo 1 (or f l )  is accessible exactly by one 
step, but  f l  1 (respectively, fo 1) is not accessible, is unique. The conjuncts to 
be added later to UF30,..., UF 6 have an analogous sense. 

LEMMA 2.6. The formulas (UF2) * and foe(UF2o) * are locally equivalent. 

Our next step is the following definition, for all i, 3 ~< i ~< 6: 

foe(UFio) * = foe(UFg-1) * A VyVziVz2Vu,Vu2(CR(x , y, Zl, z2) 
A((u lRi - l z l  A u2Ri-lzl  A -~UlRZ2 A -nu2Rz2) 
V(ulRi- lz2  A u2Ri-lz2 A -nUlRZl A -~u2Rzl)) 
A z ( u l )  = t ( u 2 )  = 1 Ul = u2) .  

LEMMA 2.7. The formulas (UFio) * and foe(UFio) * are locally equivalent for 
3 4 i ~ < 6 .  

PROOF. By a stepwise argument  for each successive i (3 ~< i ~< 6). • 

y ul  y ul  

Figure 2. Figure 3. 

Let now foe (UA °) be the negation of a formula expressing the following sit- 
uation: worlds are accessible from world x which form a subframe generated 
by worlds y, Ul, u2. This is sketched in Figure 2. Set 

foe(UA°) * = foe(UF6) * A foe(UA°). 
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2 2 

y Ul y ul 

Figure 4. Figure 5. 

The formulas foe(VA~),  foe(UA2), f o e ( V A  3) are defined analogously, using 
the frumes in Figures 3, 4, 5, respectively, instead of Figure 2. Now define 

foe(VA~o) * = foe(UAio-1) * A foe(UAio), 1 <~ i <<. 3. 

LEMMA 2.8. The formulas (UA~o) * and foe(UAio) * are locally equivalent, for 
1 ~ i ~ < 3 .  

PROOF. Again, this is constructed successively for each i, 0 <~ i ~ 3o 

Now, if f oe (UA 3) is true in some world x of some frame, then the generated 
subframes sketched in Figures 2-5 cannot be accessible from this world, 
whereas the generated subframes sketched in figures 6-9 can be. We shall 
say that ,  if one of these generated subframes is accessible from world x in a 
frame, then world vl (see Figures 6-9) is the ' i- th marked world' .  Note that  
the formulas (UAio) * and foe(VAio) * state, in particular, that  in a frame 
at most  one i-th marked world is accessible from some world. For later 
convenience, we introduce the following predicates chi(u): 

ch (u) : 

c h 3 ( u )  : 

the i-th marked world is accessible from u or is equal to u 
and the other marked worlds are not accessible from u,0 ~ i ~< 2; 
the third marked world is accessible from u, 
while other marked worlds are not accessible. 

VO Vl 

Figure 6. Figure 7. 
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V2 V3 

Figure 8. Figure 9. 

Let foeLin~Aio  express the following: a set of worlds accessible from x and 
having the property ehi is linearly ordered. Set 

foe(Lin<~A°) * = foe(UA3o) * A foeLinOA°o, 
foe(Lin~A~o) * = foe(Lin~Aio-x)  * A foeLin©A~o, 1 <~ i < 3. 

LEMMA 2.9. The formulas (LinOA~o) * and foe(Lin~Aio)  * are locally equiv- 
alent for each i, 0 <~ i <. 3. 

PROOF. The proof is again by successive construction for each i, 0 ~< 
i~<3. • 

Next, for (UT)* we define the following first-order equivalent: 

foe (UT)*  (foeLin<>A~)* A VyVz, Vz2VuVv(CR(x,y ,  zl, z2) A x R u  

A z R v  A 3wo(uRwo A vRwo A cho(wo)) A 3w l (uRwl  A v R w l  

Achl(Wl)  ) A 3w2('ttR//,, 2 A v R w  2 A ch2(w2) ) A 3w3(u/I~w 3 

A v R w ~  A -~ut~2w3 A ~vR~w3  A ch3(w3))  ~ u = v) .  

LEMMA 2.10. The formulas (UT)* and foe(UT)* are locally equivalent. 

PROOF. Via a calculation using all previous Lemmas of this Section. • 

Next, we get to conjuncts simulating the instructions of our Minsky Machine. 
For future use, we make the following abbreviations (where U, Wl,W2 are 
always free variables): 

f o d S ( 7 ,  Q1, R1) = 
3t13t2 . .. 3 t~+l(URtlRt2.  . . Rt~+l A cho(tl) A eho(t2) A . . . A cho(t~+l)) 
A -~3t13t2.. .  3 t~+2(URtlRt2 . . .  Rt~+2 A cho(tl) A cho(t2) A . . .  A cho(tw+2)) 
A Ulv~Wl A ~UR2Wl A chl(Wl) A URw 2 A -~uR2w2 A ch2(w2) , 
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f odS(7, ~)~, R1) = 
3 t13 t2- ' '  3t~+~(URtlRt2 " .  Rt.~-t- 1 A cho(tl) A cho(t2) A . . .  A cho(t~+l)) 
A ~ t 1 3 t 2 " "  3t#+2(URtlRt2... Rtn+2 A cho(tl) A cho(t2) A . . .  A cho(t~+2)) 
A uR2wl A "nUR3Wl A chl(Wl) A uRw2 A -~uR2"w A ch2(w~), 

f odS(~[ , Q1, R2) = 
~t~3t2 . . .  3t~+~(uRt]Rt:. .  . Rt~+l A cho(tl) A cho(t:) A . . .  A cho(t#+~)) 
A -,3t]3t2.. .  3t#+2(uRhRt~.. .  Rt~+: A cho(h) A cho(t2) A . . .  A cho(t~+2)) 
A URWl A -~uR2wt A cht(Wl) A uR2w2 A -,uR3w2 A eh2(w2), 

f odS(7, A~o, Ri)  = 
3t]3t2 . . . 3t~+~(URtlRt2 . .. Rt~+l A cho(t]) A cho(t:) A . . . A cho(t~+~)) 
A -,3t~3t~... 3t.~+~(uRt]Rt~... Rtz+2 A cho(h) A cho(t:) A . . .  A cho(t.~+e)) 

urn1 ~ ~ h l ( ~ )  A W ' ( ~ R : ~  ' -+ - c h l ( ~ ' ) )  A u R ~  A - u a : ~ :  A ch~(~:), 

fodS(7,Q1,A2o) = 
3t] 3t2. . .  3t~+1 (uRt] R t2""  Rt~+l A cho(h ) A cho(t2) A . . .  A cho(tz+l )) 
A -3 t l  3t2. . .  3t~+2(URtlRt2... Rt~+2 A cho(t~) A cho(t2) A . . .  A cho(t~+2)) 
A URWl A ,uR2w~ A ch](w~) A uRw~ A ch2(w~) A Vw'(uR~w ' ~ -,ch2(w')). 

Now we can continue our definitions. For any instruction I we write: 

if I = q~ -+ q~T1To, then foe((UT)* A AxI)  = foe(UT)* A 

VyVz]Vz2VwlVw2Vw3(CR(x, y, zl, z2) A 3u(xRu A fodS(% Q1, R~) A uRw3 A 

~ R ~  A ~h~(~)) A 3~'~(xR~'~ A ~R~,~ A ~h~(~)) - +  

3u(xRu A fodS(t~, Q2, R1) A 3w~(uRw~3Rw3 A -,u/3R2w3 A ch3(w~3)))). 

if I = q.y --+ qsToT,, then the definition of foe((UT)*A AxI)  can be obtained 
from the previous one by substituting fodS(~, Q1, R2) for fodS(5, Q2, R1), 

if I = qz -+ q6T-1To(q~ToTo), then foe((UT)* A AxI)  = foe(UT) ~ 
A VyVzlVz2VwlVw2Vw3(CR(x, y, z], z2) A 3u(xRu A fodS(7,  Q~, R1) A uRw3 
A ~ R ~ 3  A ch3(~3)) A ~'3(xR~'~ A ~'~R~ A ch3(~'~)) -+ 3~(xRu 
A fogS(5, Q1, R]) A 3w~(uRw~3Rw3 A -,w~3R2w3 A ch3(w+3)))) 
A VyVzlVz2VwiVw:Vw3(CR(x, y, zl, z2) A 3u(xRu A fodS(7,  A 1, R1) A u.Rw3 
A ~ u R ~  A ~h3(w~)) A 3 ~ ( x R ~  A ~ R ~  A ~h~(~'~)) -+ 3u(~Ru 
A fodS(c,  dlo, R1) A 3w~3(uRw~Rw3 A-,wt3R2w3 A ch3(w~)))). 

if I = q~ --+ qsToT-l(q~ToTo), then the definition of foe((UT)* A AxI )  
can be obtained from the previous one by substituting fodS(g,Q], R2) for 
fodS(7,Q2, R1), and fodS(~, Q1, At) for fodS(~, d 1, R1). 
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LEMMA 2.11. The formulas (UT)* A AxI  and foe((UT)* A AxI)  are locally 
equivalent for any instruction I. 

Finally, we define 

foe(AxP)* = A foe((UT)* A AxI) 
IEP 

Evidently, local equivalence of 9~1 and ¢1, 9~2 and ¢2 implies local equivalence 
Of ~O 1 A ~t:~ 2 and ¢1 A ¢~, and hence Lemma 2.11 implies: 

LEMMA 2.12. The formulas (AxP)* and foe(AxP)* are locally equivalent. 

Because (dxP)* is d(P), Lemma 2.1 is then obtained from Lemma 2.12. 
Now change A(P) by adding the conjunct (>T. From Lemma 2.12 we also 
get 

LEMMA 2.13. The formulas A(P)A~T and foe(AxP)*A3y(xRy) are locally 
equivalent, and so A(P) A (}T is locally first-order definable. 

Note, that a global first-order equivalent of A(P) A ~T  is ± or, for example, 
W(x ¢ 

It only remains to be verified that our new first-order version of A(P) 
works as before. Consider the proof of the main technical Lernma 1.2 from 
Section 1. Its "if" part depended on the conjuncts LF, LinT, UT, AxP, 
but these still occur in the new variant of A(P). For its "only if" part, it 
was important that A(P) should be true in the frame of Figure 1, and that 
A(P) A OT be true in world f of this frame. For the latter purpose, because 
of Lemmas 2.12 and 2.13, it suffices to have the two formulas gxfoe(AxP)* 
and foe(AxP)* A 3y (xRy(x / f ) )  true in this frame. And this is obvious from 
their definitions (which were in fact inspired by Figure 1) plus the proofs of 
Lemmas 2.12 and 2.13. Thus, we obtain a following results: 

PROPOSITION 2.14. For the variant of the formula A(P) defined in this sec- 
tion, Lemma 1.2 holds. 

PROPOSITION 2.15. For the variant of the formula A( P) defined in this sec- 
tion, Lemma 1.2 also holds with _loc instead of I=fi,~. - - f in  
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3. M o d a l  F o r m u l a s  W i t h o u t  F i r s t - O r d e r  E q u i v a l e n t s  o n  F i -  
n i t e  F r a m e s  

In this Section, we consider the part of Figure 1 surrounded by the dotted 
line. Essentiany, the results formulated here are smM] modifications of re- 
sults obtained by K. Doets in [9]. First we formulate some key facts which 
we shall need. 

Recall the definition of n-equivalence of models, notation: A _=,~ B. We 
use game-theoretical terminology as in [10], [9] ([8] has this notion in a 
different but equivMent form). Note that  we have only equMity and one 
binary relation in the signature (or language) of our models. Now the n-game 
on A and B, G(A, B, n), has two players, I and II, which move alternatively. 
I is allowed the first move; each player is allowed n moves altogether. A 
move consist in the selection of an element in either W1 or W2 (where W1 
and W2 are the universes of A and B, respectively). However, if player I 
chooses an element in W1 (W2), then player II has to counter in W2 (W1). 
Therefore, a move of player I and the following counter-move of player II 
form an ordered pair in IV] × W2. When the game is over, the set of ordered 
pairs of moves is at most an n-element relation h C_ W1 × W2. II has won the 
play by definition if h is a partial isomorphism between W] and W2. Now, 
A and B are called 'n-equivalent' if II has a winning strategy for G(A, B, n). 
Here is the basic logicM property of ~ .  If A =n B then, for any first-order 
formula ~ of quantifier depth at most n, 

A I= ~ iff B I= ~. 

Following [9], let PZk be the nontransitive frame of Figure 10. The unpainted 
cicrcles represent reflexive worlds. 

Cl C2 C3 Ck-2 Ck-1 Ck 
° °  • ° ° • " "  

w 

Figure 10. 

LEMMA 3.1. [9]. Ilk,  m>>. 2 n, then PZk =u PZm. 
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K we now take the McKinsey Formula [:]~p --. ~ n p ,  then it is known (cf. 
[11]) that  this formula is true in PZk iff k is odd. If one then supposes that  
this formula has a first-order equivalent (global or local), say ~ of quantifier 
depth n, then we get that  both PZ2,~ 1= ~ and PZ2n+I t=- ~2, although 
PZ2n [,4= []'~p ~ G[:]p, PZ2,~+I ~= O©p -~ ©Qp: which is a contradiction. 
Thus,  the McKinsey Formula is not first-order definable (locally, globMly) 
on finite frames ([9]). We shall modify the formula and frames employed 
in this argument  in a manner suitable for our purporses. Call the frame in 
Figure 11 F E N C E k .  

el  e2 c3 ck-2 Ck-1 Ck 

e 
dl d2 d3 - k 

Figure 11. 

LEMMA 3.2. If  k, m >>. 2 n, then F E N C E k  =-n FENCEm.  

PROOF. Use the winning strategy for player II from the proof of Lemma 
3.1, • 

Cl e2 e3 Ch--2 Ok-1 Ck 

I 

Figure t2. 

If we take the frames from the Figure 12, denoting them by F E N C E ~  
for future references, then Lemma 3.2 implies that,  if k , m  ) 2 n, then 
F E N C E ~  =~ F E N C E  m. Indeed the strategy from the proof of Lemma 
3.2 is still suitable, with the following stipulation added: 

"if player I chooses f in one model, then II chooses f in the other 
model". 
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Next, we use a modified McKinsey Formula of the form 

= OOTAEI(OT -->Op) ---> O(OTAE]p). 

The underlined parts of a represent changes to the original McKinsey For- 
mula. It is easy to see that  a is refutable in F E N C E ~  iff k is odd, and the 
refutation can occur only in the world f .  Thus a is not first-order definable 
on the class of finite frames, and not even on the class of finite transitive 
irreflexive frames. These observations establish the following 

PROPOSITION 3.3. The formula (O(Op --4 p) --+ E]p) A ~ is not globally first- 
order definable on the class of finite frames. 

PROPOSITION 3.4. The formula ([3([3p ~ p) ~ t3p) A a A OT is not locally 
first-order definable on finite frames, although is globally first-order definable 
on them. 

PROOF. A global first-order equivalent of this formula is, for example, 
Vx x ~ x. The absence of a local equivalent is proved as above, but  now 
using the frames FENCE~,  in which f is the 'actual world'. • 

REMAItK. Consider the modal formula 

It may  be proved analogously that /3  is globally first-order definable on the 
class of all transitive frames, but it is not locally first-order definable on the 
class of all transitive frames. This answers a question by van Benthem ([1], 
p. 129). 

The f lame sketched in Figure 1 is obtained from F E N C E r  by adding some 
subframe. Let us call it ~t(P, a, m, n). 

LEMMA 3.5. I f t] , t2 >1 2 t, then .T t l (P,a ,m,n  ) =t ~ t2 (P ,a ,m,n) .  

PROOF. Player II needs the strategy from the proof of Lemma 3.2 
with one additional rule: "if I chooses some element out of FENCEt~ in 
~-~,(P, a ,  m, n), then II chooses the same element in .~tl-i(P, a, m, n ) ' .  • 

Now we explain the modified McKinsey Formula, i.e., the underlined parts 
of formula a. The part  OOTA has been added to make sure that  a possible 
refutation could occur only at world f in the frame FENCE~.  The parts  
OT  ~ and ©TA were added to give some information just about the worlds 
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dl, . . . ,  dk in F E N C E ~ .  Define the following modification of the McKinsey 
Formula  (changes are again underlined): 

7 = ~FA O ( O O B  --*O(OBAq)) --* O ( O © B A O ( O B  --*q)), 

(here q is used instead of p, because p was already used in F) ,  where 

B = A o d  A 

From Lemmas  1.4, 1.5, we then obtain the following fact: 

LEMMA 3.6. The formula A(P) A (B(a ,  m, n) V ")') is refutable in the frame 
.Tt(P, a, m, n) iff t is odd, and the refutation can take place only in the world 
f 

As a consequence of Lemmas  3.5 and 3.6, we obtain one final 

PIbOPOSITION 3.7. If  a program P, starting at a configuration (a,  m, n) halts 
in a final state with the number 8, then: 

i) the formula A( P) A ( B(a,  m, n) V 7) is not first-order definable on finite 
frames (locally, globally); 

ii) the formula A( P ) A ( B( a, m, n) VT)A © T is globally first-order definable 
on finite frames, but is not locally first-order definable on them. 

4. M a i n  R e s u l t s  

Now we can formulate  the main results of this paper. Here, A(P) is defined 
as in Section 2. 

LEMMA 4.1. The following three conditions are equivalent for any program 
P and configuration (a,  m, n): 

i) program P, starting from configuration (a, m, n), cannot reach a final 
state (with number t3), 

ii) the formula A(P) A (B( . ,  m, n) V ~) is locally first-order definable on 
finite frames, 

iii) the formula A(P) A (B(a ,  m, n) V 7) is globally first-order definable on 
finite frames. 
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PROOF. i) ~ ii). If i) holds, then by Lemma 1.2, Proposition 2.14 
and the Remark preceding Theorem 1.10, in any frame with a designated 
world where A(P) is true, B(a ,  m, n) is true as well. So the formula A(P)  A 
(B(a,  m, n) V 7) is locally equivalent to the formula A(P),  which is locally 
first-order definable by Lemma 2.1. 
ii) =~ iii)o This direction is trivial. 
iii) ~ i). Let i) be false. Then, by Proposition 3.7.i), iii) is not true either. • 

Because the Halting Problem for Minsky Machines is undecidable, and A(P)  
and B(a, m, n) have been constructed effectively from P and (a ,  m,  n),  Lem- 
ma 4.1 now implies two further results: 

THEOREM 4.2. The problem of recognizing, given any modal formula, whe- 
ther it is locally first-order definable on finite frames, is algorithmically un- 
decidable. 

THEOREM 4.3. The problem of recognizing, given any modal formula, whe- 
ther it is globally first-order definable on finite frames, is algorithmicaUy 
undecidabIe. 

Theorems 4.2 and 4.3 are in a sense independent.  Neither follows directly 
from the other, witness the following obserwation: 

LEMMA 4.4. The following conditions are equivalent for any program P and 
Configuration (o~, m, n ) : 

i) program P, starting from configuration (o~, m, n), halts in a final state 
(with number/3), 

ii) the formula A( P)A( B(a,  m, n )VT)A~T is globally first-order definable 
on finite frames, but is not locally first-order definable on finite frames. 

PROOF. i) ~ ii). By Proposition 3.7.ii). ii) =~ i). Analogous to the 
proof of i) ~ ii), but now using Lemma 2.13 instead of Lemma 2.1. • 

From Lemma 4.4, we obtain our next result: 

THEOREM 4.5. The set of modal formulas which are globally, but not locally, 
first-order definable on finite frames, is algorithmically undecidable. 

We conclude with one natura/l question. The formula LF is first-order de- 
finable on finite frames, but is not first-order definable even on all countable 
frames. 
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THEOREM 4.6. 

i) The set of modal formulas which are first-order definable on the class 
of finite frames, but not first-order definable on the class of all frames, 
is algorithmically undecidable. 

ii) The set of modal formulas which are first-order definable on the class of 
finite frames, but not first-order definable on the class of all countable 
frames, is algorithmically undecidable. 

PROOF. An argument  for i) and ii) can be given simultaneously. Return 
to the proof of Lemma 4.1. The proof of the implication iii) ~ i) showed 
in fact tha t ,  if i) is not true, then A(P) A (B(a,  m, n) V 7) is not a formula 
which is first-order definable on finite frames, but not first-order definable 
over all (countable) frames. In the case of the proof i) ~ ii), we observe that  
the formula A(P)  is not first-order definable on the class of all (countable) 
frames. This is proved via the usual counter-example to first-order defin- 
ability for LF,  using linear frames in which all conjuncts of A(P) except L F  
are true. m 

REMARK. The fact that  Theorem 4.6.i) and Theorem 4.6.ii) are independent  
follows from the undecidability (announced in [6]) of a set of formulas which 
are first-order definable on countable frames~ but not first-order definable in 
general. 

QUESTION: Whether any of the sets of formulas mentioned in Theorems 4.2, 
4.3, 4.5, 4.6, or their complements, is recursive enumerable. 
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