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ABSTRACT:

Mucous glands is an important diagnostic element in digestive pathology. The first step of differential diagnosis of colon polyps in
order to assess their malignant potential is gland segmentation. The process of mucous glands segmentation is challenging as the
glands not only needed to be separated from a background but also individually identified to obtain reliable morphometric criteria
for quantitative diagnostic methods. We propose a new convolutional neural network for mucous gland segmentation that takes into
account glands’ contours and can be used for gland instance segmentation. Training and evaluation of the network was performed on
a standard Warwick-QU dataset as well as on the collected PATH-DT-MSU dataset of histological images obtained from hematoxylin
and eosin staining of paraffin sections of colon biopsy material collected by our Pathology department. The collected PATH-DT-MSU
dataset will be available at http://imaging.cs.msu.ru/en/research/histology.

1. INTRODUCTION

A differential diagnosis criteria of colon polyps are not accurate,
there is no quantitative criteria of basal dilation of the crypts and
spread of the serration as well as no principles for determining the
malignant potential of various benign colon epithelial neoplasms.
The same task in vivo, directly during the endoscopic examina-
tion is no less difficult. Therefore, the development of auxiliary
mathematical models for image recognition that can be used for
online detection, endoscopic and morphological characterization
of colon epithelial neoplasms is required.

Although a lot of classical semiautomatic (Fernandez-Gonzalez
et al., 2004) and fully automatic (WU et al., 2005), (Gunduz-
Demir et al., 2010), (Sirinukunwattana et al., 2015) methods were
proposed to solve the problem of glands segmentation in histo-
logical images, all of them do not provide the required level of
segmentation accuracy and tend to give unstable results in some
medical cases.

Therefore, applying convolutional neural networks (CNNs) with
their good generalization capacity for the problem of histological
images segmentation looks more promising.

Almost all CNN-based segmentation methods (Long et al., 2015),
(Badrinarayanan et al., 2017), (Ronneberger et al., 2015) use
the same idea of convolutional autoencoder (CAE) (Masci et
al., 2011). With minor changes these CNN-based segmentation
methods can be also applied to histological images. The main
problem of the mentioned above approaches of segmentation is
the impossibility of the algorithms to separate close or contigu-
ous objects. Various ideas were proposed to solve this problem.
In (Chen et al., 2017) a DCAN architecture is proposed using
the idea of object detection and separation, but unlike (Kainz et
al., 2017) these two steps are performed simultaneously with one
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FCN-based network that has two outputs. First output predicts
probabilities of gland object, while the second predicts the prob-
ability map of contours separating glands. The final segmentation
masks are calculated using the threshold rule. To strengthen the
training process DCAN uses 3 weighted auxiliary classifiers in
the 3 deepest layers of the network. The idea of splitting seg-
mented glands got a further development in (Xu and et al., 2017).
The authors introduce a CNN with 3 pipelines: a FCN for the
foreground segmentation, Faster R-CNN (Ren et al., 2015) for
the object detection and HED (Xie and Tu, 2015) for edge detec-
tion. All three pipelines a fused into one, and are followed with
several convolution layers to predict the final instance segmen-
tation map. This approach leads to the state-of-the-art level of
segmentation accuracy.

In this work we propose a CNN-based algorithm for histological
images segmentation, that uses multiscale architecture, non-local
block and contour-aware loss function. This work is the further
improvements of our previous research (Khvostikov et al., 2018).

2. PROPOSED METHOD

We propose a new architecture of a convolutional neural network
(CNN) for mucous glands segmentation (Fig. 1) based on U-
Net model (Ronneberger et al., 2015) which has proven its good
efficiency for segmentation of biomedical images.

The proposed architecture is designed with an attempt to separate
glands that stuck together thus performing an instance segmen-
tation. To do it we consider the information about the contours
of the glands, but unlike the contour-aware network (Chen et al.,
2016), the proposed network uses a combined loss function in-
stead of using 2 outputs to predict glands and their contours. A
contour probability map is calculated by applying Sobel filter to
the output of the network and the loss function is calculated as the
weighted sum of Dice losses of predicted gland map and obtained
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Figure 1. A histological image of colon mucous glands and
glands annotation

Figure 2. Proposed architecture for mucous glands segmentation

contour map.
L = αLc + (1− α)Lg,

where Lc is a Dice loss function applied to the contour map and
Lg is a Dice loss function applied to the gland map. Herewith
to obtain a more robust training process the weight α changes
during training starting from 0 at the first epoch and smoothly
increasing up to 0.5 during several epochs.

Although the original U-Net (Ronneberger et al., 2015) as like
most CNN architectures used for semantic segmentation do not

Figure 3. Multiscale input block of the proposed CNN

Figure 4. Conv and Upconv blocks of the proposed CNN

depend on the input size of the image and can work with image
of arbitrary size, we use a fixed-size 256×2556 patch input. It is
more convenient in terms of resources allocated for CNN (as full-
size histological images can contain more than 4 millions pixels
each) and also allows to use batch size values common to the deep
learning architectures.

The other distinctive feature of the proposed CNN is the usage of
multiscale architecture. Patches of scale 0.5x and 2x (128× 128
and 512 × 512 respectively) are passed to the network’s input
alongside with the source patch (Fig.3). It allows to better seg-
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ment tissue structures at different scales.

The last improvement is the use of a non-local block (Wang et al.,
2018) at the deepest layer of the network. Its working principle
is similar to classical non-local methods and allows it to capture
long-range dependencies in the image structures inside the patch.
It also has a positive effect on the time needed for model conver-
gence. The only one non-local block is used due to the limited
memory resources of the GPU.

The architecture of the proposed CNN is demonstrated on Fig. 2,
3, 4.

The proposed CNN for segmentation is patch-oriented, which
means that in order to get the output segmentation for a test image
it is split into patches, every patch is passed through the network
and then the segmented patches are merged together to get the
final result. During the merging we take into account that only
the central parts of the segmented patches contain relevant infor-
mation due to the convolutional padding at multiple input scales.
We also perform splitting of patches with the 1/4 of the patch
size overlay and merging with averaging of the output segmenta-
tion correspondingly. It makes the predictions more smooth and
accurate.

3. EXPERIMENTS AND RESULTS

In this section we describe the data used for training and evalu-
ation of the proposed segmentation algorithm, describe the per-
formed experiments and give the evaluation results along with
description of the used evaluation metrics.

3.1 Data selection and preprocessing

In this work we use two different datasets of histological images.

The first one is Warwick-QU dataset (Warwick-QU image dataset
description, 2015), which was used for Gland Segmentation
Challenge Contest in MICCAI 2015 (Sirinukunwattana and et al.,
2017). It contains images acquired by a Zeiss MIRAX MIDI
slide scanner from colorectal cancer tissues with a resolution of
0.62µm/pixel. It’s worth noting that Warwick-QU contains im-
ages of a wide range of histologic grades from benign to ma-
lignant subjects, but in this current work we use only a benign
subset of Warwick-QU dataset that contains 37 train images and
37 images used for evaluation.

The second dataset is PATH-DT-MSU dataset that was collected
and annotated by our Department of Pathology and consists of 20
histological images obtained from hematoxylin and eosin stain-
ing of paraffin sections of colon biopsy material. 13 images are
hyperplastic polyps (HP); 6 images are sessile serrated adenomas
(SSA/P) and one image is normal colon mucous glands. This
sample structure is necessary for the further search for quantita-
tive criteria for differential diagnosis between HP and SSA/P. It
should also be noticed that the PATH-DT-MSU dataset contains
full-size images in contrast to Warwick-QU that contains only
central parts of the full-size histological images. It makes the pro-
cess of automatic segmentation more difficult but also provides us
a field for more complicated analysis of histological structures.

3.2 Data augmentation

In order to enlarge the amount of data used for training we aug-
ment the obtained histological images. The augmentation is per-
formed on the fly. During training process every patch is ran-
domly cropped from the randomly chosen training image. Then

random shift, rotation, scale, flip and non-linear operations as
well as random change of brightness are applied to the patch. The
initial size of the patch is chosen corresponding to all described
transformations so that after applying all of them it can be cen-
trally cropped to the size of the proposed network’s input. As the
input is multiscale the augmentation of each patch is performed at
three scales simultaneously. The described augmentation process
is controlled by parameter τ describing the number of times the
obtained training data is enlarged. In this work we use τ = 10
for both Warwick-QU and PATH-DT-MSU datasets.

3.3 First phase of training

At first we train the proposed network on the train subset of
Warwick-QU. Herewith the batch size is chosen as 8, the training
is performed using RMSProp optimizer (Tieleman and Hinton,
2012) with initial learning rate 2e−3 with automatic 10 times de-
crease when validation loss falls on the plateau and stops decreas-
ing. When the target metric does not change within 1e−4 range
for 10 epochs, the training process is stopped automatically.

3.4 Second phase of training

After the network is trained on Warwick-QU dataset we do a fine-
tuning on PATH-DT-MSU dataset to fit the segmentation algo-
rithm to this type of images.

As PATH-DT-MSU dataset contains full-size histological images
a problem of processing ”open” glands appears. They represent
typical mucous glands built from goblet cells and enterocytes
with open contour on histological images which are essentially
the upper portions of the crypts. Visualized on a histological im-
ages they look like glands with the internal lumen merged with
the background (Fig. 5). These ”open” glands were also anno-
tated in PATH-DT-MSU dataset. The difference in evaluation of
the proposed segmentation algorithm trained with and without
consideration of the ”open” glands is shown in Fig. 7 and Fig.
8. In the future work we plan to treat normal glands and ”open”
glands as a separate classes.

PATH-DT-MSU dataset differs from Warwick-QU dataset not
only by the tissue capture (Warwick-QU contains only central
parts of tissue slides, while PATH-DT-MSU consists of full-size
images) but also by the image resolution. In order to use the ob-
tained PATH-DT-MSU dataset for transfer learning purposes, we
downscaled the images from PATH-DT-MSU dataset by 30% so
that the size of histological structures in both datasets are of the
same size.

For this fine-tuning we choose the same optimizer as for the first
phase but with smaller initial learning rate value of 2e−4. The
rules for automatic learning rate decrease and training termina-
tion remain the same.

3.5 Obtained results

The common way of segmentation algorithm evaluation is calcu-
lating of Dice score. Given a set of pixelsG annotated as a ground
truth gland and a set of pixels S predicted as a gland, Dice score
can be calculated as

D(G,S) = 2
|G ∩G|
|G|+ |S| .

However, this is not suitable for segmentation evaluation on in-
dividual objects (instance segmentation). For these reason an
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(a) Source image (b) Glands annotations (c) Glands annotations with ”open” glands

Figure 5. Sample image from PATH-DT-MSU dataset.

Figure 6. Results of the first phase of training on Warwick-QU dataset. Left to right: source image, ground truth glands, predicted
glands.

(a) (b)

Figure 7. Results of the proposed CNN for PATH-DT-MSU dataset if trained with normal gland annotations only; (a) is ground truth
segmentation, (b) is the predicted result.

object-level Dice score (or object Dice) is utilized (Sirinukun- wattana and et al., 2017) and defined as

Dobject(G,S) =
1

2
[

nS∑
i=1

ωiD(Gi, Si) +

nG∑
j=1

ω̃jD(G̃j , S̃j)],
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(a) (b)

Figure 8. Results of the proposed CNN for PATH-DT-MSU dataset if trained with both normal and ”open” gland annotations; (a) is
ground truth segmentation, (b) is the predicted result.

(a)

(b)

Figure 9. Dice and object Dice scores while training the
proposed CNN on PATH-DT-MSU dataset (a) with normal gland
annotations only and (b) with both normal and ”open” glands.

where where Si denotes the ith segmented object, Gi denotes
a ground truth object that maximally overlaps Si, G̃j denotes
the jth ground truth object, S̃j denotes a segmented object
that maximally overlaps G̃j , ωi = |Si|/

∑nS

m=1
|Sm|, ω̃j =

|G̃j |/
∑nG

n=1
|G̃n|, nS and nG are the total number of segmented

objects and ground truth objects, respectively.

For convenience in the current work we give the evaluation results
both in Dice score and object Dice score.

For the first phase of training of the proposed CNN on the benign
test subset of Warwick-QU dataset we obtained the 0.92 Dice
score and 0.88 object Dice score. As it can be seen from Fig.6
although the gland instance segmentation is performed with a rel-
atively good quality it is still not ideal and the main problem of
predicted segmentation is that close lying glands can sometimes
be merged together.

For the second phase of training the proposed CNN we made two
experiments by fine-tuning the CNN on PATH-DT-MSU dataset
annotated with and without ”open” glands. We achieved the val-
ues of 0.78 Dice and 0.77 object Dice scores for configuration
without ”open” glands and 0.77 Dice and 0.7 object Dice scores
for the configuration with ”open” glands (Fig. 9). From Figs. 7,
8 it can be seen that the main deviations of the ground truth and
predicted annotations are located at near-boundary glands. As it
was previously discussed, the standard Warwick-QU dataset rep-
resents only the central parts of the histological tissue slides but in
case of PATH-DT-MSU dataset it contains full-size images which
makes the problem of segmentation of the glands that are adja-
cent to lumen of the colon much more challenging. In particular,
the network trained on the annotations excluding ”open” glands
seeks to segment these kind of glands which leads to overseg-
mentation if compared to the ground truth annotation (Fig.8). At
the other side the network trained on the annotations with ”open”
glands seeks to segment not only the ”open” glands themselves
but also some extra space outside them which leads to merging
several ”open” glands into one. Both these cases demonstrate
worse results compared to Warwick-QU dataset, but from the
medical point of view the segmentation results of second con-
figuration are more preferable. The most obvious way to improve
the segmentation of ”open” glands is to perform an analysis of
the image at global scale with detection of lumen of colon and
muscularis mucosae. So, this is one of the tasks planned for us
for the continuation of current research.
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4. IMPLEMENTATION DETAILS

The proposed segmentation CNN was implemented using open
source neural network library Keras (Chollet et al., 2015) with
TensorFlow (Abadi et al., 2016) backend. The experiments were
performed on two configurations: a personal computer with In-
tel(R) Core(R) i7-6700HQ CPU and Nvidia GeForce GTX 960M
GPU and a FloydHub cloud server with Nvidia Tesla K80 GPU
(Soundararaj et al., 2016).

5. CONCLUSIONS

In this work we propose a new convolutional neural network for
mucous glands segmentation in histological images. The pro-
posed model is trained and evaluated using Warwick-QU dataset
and PATH-DT-MSU dataset obtained by our Pathology depart-
ment. The multiscale architecture of the proposed CNN makes it
less sensitive to the scale of the input image. Due to the specific
loss function it is able to detect and separate stuck glands. The
used non-linear block enhances the segmentation and has a posi-
tive effect on the time needed for model to converge. Altogether
this leads to the accurate segmentation of glands on histology
images (0.92 Dice and 0.87 object Dice scores for Warwick-QU
dataset, 0.78 Dice and 0.77 object Dice scores for the PATH-DT-
MSU dataset).

The generalization ability of the proposed algorithm enables it to
effectively segment individual glands in histological images. The
collected PATH-DT-MSU dataset of histological images of colon
biopsy material allows to fine-tune the proposed CNN trained on
Warwick-QU dataset and exposes several directions for further
development of automatic tools for histological image analysis.

There are several objectives we are going to focus on in the future
research. One of them is enlarging the PATH-DT-MSU dataset
with new histological images and developing an algorithm for
large scale image analysis in order to correctly detect lumen of
colon and muscularis mucosae and as a result improve ”open”
glands segmentation. Another objective is to implement more
accurate algorithm to segment individual gland objects, which
can be used as post-process segmentation tool. And finally the
most ambitious objective is to perform a more complex inner-
gland segmentation (detect nuclei, lumen and cytoplasm). The
results of this segmentation can be used for the ensuing analy-
sis. In particular, analyzing the histological images of mucous
glands helps to detect changes in its lumen shape (serration), in
the nuclear-cytoplasmic ratio inside mucus-forming cells, and in
the character of the expression of immunohistochemical markers
(Oleynikova et al., 2017).
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