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The following examples of semigroups, groups and rings with a kit of character-
istics which used to be considered exotic are well known. Namely, semigroups
with noninteger Gelfand–Kirillov dimension, nonnilpotent nilsemigroups and nil-
rings, finitely generated infinite periodic groups, and others. However, all these
properties were originally reached by means of infinite numbers of identities, so
the topics, refering to constructing finitelypresented objects, begin to play a greater
role. It’s necessary to mention an example of finitely presented associative algebra
of intermediate growth by V. A. Ufnarovsky, as well as the results of Higman,
G. P. Kukin, V. Ya. Belyaev which dealt with the embedding of recursive presented
objects (groups, associative algebras, Lie algebras) into finitely presented groups.
The following theorem becomes an object of interest.

THEOREM. There exists a finitely presented semigroup with noninteger Gelfand–
Kirillov dimension.

We construct our semigroup by means of entering the identities. All the vari-
ables except a and b may be included in any nontrivial word not more than once,
and the number of elements in any nontrivial word is about n1/2, where n is the
length of the word. All the other variables (except a and b) represent a mechanism
for word analysis. Let H(x) be the number of entrances of x variable in the word.
If H(a) > H(b)2, then our mechanism confirms it and takes that word as zero.
For any word the H function is equal to one or zero for every variable, except
a or b. (We will reach this by means of some special relations.) The number of
nontrivial words will be P(n)∗n1/2, where P(n) is some polynomial function. Let
us discuss the mechanism in more detail. C, D and W variables are the edges of
any nontrivial word (let us have two right edges: D and W ). This means that in
any nontrivial word, no variables, except b and W , can be to the right of D, no
variables, except b, can be to the right of W , and no variables, except a, can be the
left of C. R is the separator in the words that contain both a and b variables. If a
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and b exist in the word, R variable divides it into the “a” part and “b” part. P and
Q variables are the main heads. These heads exist in the “a” and “b” parts of the
word accordingly. Besides, these heads can interact by means of signals (variables
f and k). We can construct special relations for main heads and these signals, so
that the P head could move inside the “a” part of the word from R to C, while
Q moves inside the “b” part of the word from R to D. By means of identities we
can obtain that the “speed” of Q would be an approximately squared “speed” of P .
Now if Q reaches D earlier than P reaches C, then we take the word as zero. Now
we begin to define relations. Let us have variables a, b, C, D, W , R, P , Q, k1, k2,
t1 − t9, f1, f2. First of all, we will define relations of order, so that any nontrivial
word will have the following form:

a . . . aCa . . . aPa . . . af a . . . aRb . . . bkb . . . bQb . . . bDb . . . bWb . . . b,

where f = f1 or f2 and k = k1 or k2. Or any of its subwords ab = ba = 0, i.e.
a � b are divided

P = t1P,

Q = Qt2,

D = Dt3,

W = Wt9,

t1∗ = ∗t1

(∗ – any, except P and C)

t2∗ = ∗t2

(∗ – any, except Q and D)

t3∗ = ∗t3

(∗ – any, except D and W )

t9∗ = ∗t9

(∗ – any, except W )

∗t1 = 0

(∗ – any, except a, C, t1)

t2∗ = 0

(∗ – any, except b, t2, D and W )

t3∗ = 0
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(∗ – any, except b, t3 and W );

t9∗ = 0

(∗ – any, except b and t9)

C = t4C,

t4∗ = ∗t4

(∗ – any, except C)

∗t4 = 0

(∗ – any, except a), i.e. to the left of P there may be only a . . . aCa . . . a, and to
the right of Q only b . . . bDb . . . bWb . . . b. (C, D and W are included to the word
only once each.)

aQ = Qa = 0,

P b = bP = 0,

f1a = af1.

k1, k2 commute with a, b and R

RR = 0,

aD = aW = 0,

PQ = QP = 0.

Squares of f1, f2, k1, k2 are also zeros: f 2
1 = f 2

2 = k2
1 = k2

2 = 0. By means of all
these relations we can obtain that in any nontrivial word a . . . a and b . . . b may be
separated by R only. There can be f1, f2, k1, k2, C, P inside a . . . a and Q, D, k1,
k2 inside b . . . b. By the following relations:

R = Rt5

t5 commutes with k1, k2 and b

t5∗ = 0

(if ∗ is not k1, k2 or b)

t5Q = Q

we force the existence of Q in the presence of D, and the fact that between R and
Q there can be only k1, k2 or b. By means of relations

R = t6R
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t6 commutes with k1, k2, f1, f2 and b

∗t6 = 0

(if ∗ is not k1 k2 f1 f2 or a)

P t6 = P

we force the existence of P in the presence of C, and the fact that between R and
P there can be only k1 k2 f1 f2 or a.

f2f1 = f1f2 = 0,

k1k2 = k2k1 = 0,

kf = 0

(k is k1 or k2 and f is f1 or f2). Since, in any nontrivial word we can find f1 or f2

and k1 or k2 (f1 commutes with a, k1 k2 commute with a � b).

P = P t7,

t7a = at7,

t7f1 = f1,

t7f2 = f2,

t7∗ = 0

(∗ – any, except f1 and f2). By means of these relations we can obtain the existence
f1 or f2 after several a (to the right of R). Since, any nontrivial word will have the
following form:

a . . . aCa . . . aPa . . . af a . . . aRb . . . bkb . . . bQb . . . bDb . . . bWb . . . b,

where f = f1 or f2 and k = k1 or k2. Or any of its subwords. Below we will
consider, how many words without some heads or separators can exist. Now let us
have the main case. Indeed, there can be only a and C to the left of P , only a to
the left of C. There can be only b and D to the right of Q, only b to the right of D.
Besides, if P exists, then f exists to the right side (f is f1 or f2), if both a and b

exist in one word, then R would be a separator. There are no more separators except
R. The variables of type t will take the word as zero, if it appears in a nonintended
area (e.g., t5 within P and Q). The number of the words where an a or b variable
is absent is about n3. Now we will discuss the general mechanism. Let P and Q

exist in the word (and f is forced). Let us define additional relations.

f2 = f2t8,

t8a = at8,

t8R = Rt8,

t8Q = 0.
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By means of f2 we force k1 or k2 (otherwise t8 will reach Q and make word equal
to zero).

aPf1 = Paf2k1

(f1 moves P in the a . . . a massive, and turns into f2k1).

k1Qb = k2bQ

(k1 commutes with a, b, R and moves to Q, pushing Q to the right in b . . . b

massive and turns into k2).

f2k2a = af2k1

(k1 returns to f2, moves f2 for one point to the left and turns into k2). Then k2

moves again to f2, etc. Since, the k1 −k2 mechanism moves f2 to the right as much
as Q does.

f2Rk2 = f1R.

(When f2 returns to R, it turns into f1 again.) Then f1 returns to P again (f1

commutes with a) and the cycle repeats. Since, the mechanism f1 − f2 − k1 − k2

moves P for one point to the left, and Q to the right for the distance from R to P .
Q is accelerating, P moves with constant speed. If P reaches C, when the process
stops, QD = 0 (i.e. if the distance between C and P is too small (regarding to Q

and D), then we take the word as zero. Let us have an arbitrary word, then P and
Q are situated in a and b parts of the word. Let us consider the reverse work of the
process of P and Q moving. We can move P and Q to R, until P or Q meets R.
By means of these relations:

aaRQ = 0,

PRbb = 0

we obtain that P and Q will be situated at an equal distance from R. Since, any
nontrivial word will be equivalent to the word containing P , R and Q situated
close by. Now let us consider the straight work of the process. There are few words
without C or D. Let C and D be the word. Since, the length of the b part of the
word is an almost squared length of the a part. Now let us consider the situation
when some heads or the separator do not exist. If the word does not include b, there
can be only C, P , f2 or f1, k1 or k2, R in the end of the word and some variables of
t-type. f1, k1, k2 and t-type variables commute with a, so we can count the number
of nontrivial words in this case by considering the location of C, P and f2. So the
number of words of a length less than n is about n4. If the word includes b and
does not include a, we can consider only the locations of Q, D and W . So the
number of words is about n4. Let us have both a and b variables in the word. Than
R is forced. If D, Q and W do not exist, we can consider only the locations of
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R, C, P and f2 variables. So the number of words is about n5. Similarly, if C, P

and f2 do not exist, we can consider the locations of Q, D and W variables. (In
this case, if f2 exists, the mechanism makes “part of the work” and f2 turns into
f1.) If both P and Q head variables exist in the word, our mechanism, considered
above, begins to work. The reverse work of the mechanism moves both P and Q

head variables to R close enough (otherwise the word will be zero). So, if D and
W are not included in the word, we can consider only the locations of R and C. So
the number of words is about n4. In the main case, all edges are in the word. The
distance between R and D is more than the squared distance between C and R. W

can be located everywhere to the right of D. So the number of the nontrivial words
with length n in this case is about

n∑

k=1

min(
√

n−k,k)∑

i=1

(n − i2 − k)(k − i)2,

i.e. about n4 ∗ √
n. So, the number of the words with length less than n is about

n5 ∗ √
n. If some of the edges do not exist, then we have the number of such words

less than n5 ∗ √
n. Since we have about n5 ∗ √

n various words in our semigroup.
The proof is finished. Now let us improve our construction.

THEOREM. For any rational α > 5 there exists a finitely presented semigroup
with Gelfand–Kirillov dimension α.

We now consider the main heads as the main variable (e.g., P ) with the kit
of auxiliary variables (e.g., k1, k2, f1, f2), providing the connection with another
head or heads. Let us have s various main heads such as P or Q instead of two
heads. Every head interacts with the head of the next number and “ignores” any
other head. This means that any part of the first head commutes with any part
of the second head (i.e. heads are simplyds not notice each other). By means of
relations like those considered above, we can obtain that for any k < n the head
with number k + 1 would have an acceleration regarding the head with number k.
Since, if head with number 2 has a speed like t , then the head with number s has a
speed like t s−1. Now we can construct a semigroup with any large enough rational
Gelfand–Kirillov dimension. Let p/q be the fraction part of number α that we want
to construct. Let s be equal to q + 1, then p < s − 1. Let P be the head with speed
tp and Q be the head with speed tq . By means of relations like those considered
above (for a head relationship with the edges of the word) we can obtain that if
the Q head reaches its edge (e.g., D) earlier then P does, then the word would
be zero. Since, the length of the a part of the word would be about np/q . Let us
define relations consecutively. First of all, let us take the relations defined above
for a semigroup with dimension 5.5. Let us mark P and Q head variables along
with operating variables such as f1, f2, and P 1, Q1, etc. Let us call them variables
of the first step. We are deleting the relation Q1D = 0. Now let us define the
variables of the second step. Let us take the variables P 2 and others and define the
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relations as for P 1, but now in these relations we are considering variables of the
first step except Q1 as a or b. So the second step variables will ignore the first step
variables. Let us make the relations between P 2 and Q1 as the relations between
Q1 and P 1 (exactly in this order). These are the relations of the main mechanism
of acceleration. (We are defining f1

2, k1
2, and other variables for it.) So, the speed

of P 2 is about t2. (The speed of P 1 is constant, the speed of Q1 is about t – we
have acceleration.) Now we are defining the relations of the third step. Q3 will
“ignore”everything except P 2. The speed of Q3 will be t3. So we are defining a
new head for step k + 1. That head ignores everything except the last-defined head
of the previous step and interconnecting with this head. For this interconnection we
are defining the relations of step k + 1. So, if the fraction part of α is equal to p/q,
we are defining up to p − 1 steps. Let P p−1 be the last head, operating within its
side of the separator R. (We will place the next step heads at the other side of the
separator R. It will requive small changes in the main mechanism of acceleration.)
After q − 1 steps, we define one of the following relations:

QqD = 0

or

P qC = 0

(this depends on the parity). Since we will have the dimension with the fraction
part as being equal to p/q, the proof is finished. To construct a recursive dimension
we need to improve our conception of heads and transmitting signals. Let us have
two head variables, E1 and E2. We can consider this combination as the complex
head. This complex head can receive the signals like a simple head, but it has
some advantages. The point is in the changing distance between the edges of this
complex head. Let us call the distance between the edges of that head the power of
the head. By means of some relations we can obtain that any complex head with
power more then zero can force the existence of the other complex head to the
left. Besides, we can construct a mechanism for the head relationship that would
control the connection between the powers of that heads. Since we can obtain the
existence of the chain of complex heads, with a zero-powered last head in the chain,
the power of every head in that chain is about a squared power of the next head in
the chain. Let us enable every head to include the buffer zone. That zone is situated
outside the edges of the head and has the same power as that head

E0a . . . aE1a . . . aE2.

So, the E0a . . . aE1 is the buffer zone. By means of the simple mechanism in the
relations, we can obtain that the power of the zone will be the same as the head
power. The buffer zone is not a necessary addition to the head. Besides, let us
enable all to include a manager symbol that shows the existence of the buffer zone.
To define the manager symbols we construct a special mechanism. The law of the
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distribution of manager symbols depends on our recursive number α and on the
algorithm of definition of the digits of the number α. Every head includes a part
of that algorithm. Let the manager symbols be defined. Let us consider the sum of
the powers of the heads. Some of them have buffer zones. By means of manager
symbols we can approximate the number α by the sum of the finite number of
powers of the heads.


