TRISECANT LEMMA FOR NONEQUIDIMENSIONAL VARIETIES

J. Y. Kaminski, A. Kanel-Belov, and M. Teicher

UDC 512.7

Abstract

Let X be an irreducible projective variety over an algebraically closed field of characteristic zero. For $r \geq 3$, if every ($r-2$)-plane $\overline{x_{1}, \ldots, x_{r-1}}$, where the x_{i} are generic points, also meets X in a point x_{r} different from x_{1}, \ldots, x_{r-1}, then X is contained in a linear subspace L such that $\operatorname{codim}_{L} X \leq r-2$. In this paper, our purpose is to present another derivation of this result for $r=3$ and then to introduce a generalization to nonequidimensional varieties. For the sake of clarity, we shall reformulate our problem as follows. Let Z be an equidimensional variety (maybe singular and/or reducible) of dimension n, other than a linear space, embedded into \mathbb{P}^{r}, where $r \geq n+1$. The variety of trisecant lines of Z, say $V_{1,3}(Z)$, has dimension strictly less than $2 n$, unless Z is included in an $(n+1)$-dimensional linear space and has degree at least 3 , in which case $\operatorname{dim} V_{1,3}(Z)=2 n$. This also implies that if $\operatorname{dim} V_{1,3}(Z)=2 n$, then Z can be embedded in \mathbb{P}^{n+1}. Then we inquire the more general case, where Z is not required to be equidimensional. In that case, let Z be a possibly singular variety of dimension n, which may be neither irreducible nor equidimensional, embedded into \mathbb{P}^{r}, where $r \geq n+1$, and let Y be a proper subvariety of dimension $k \geq 1$. Consider now S being a component of maximal dimension of the closure of $\left\{l \in \mathbb{G}(1, r) \mid \exists p \in Y, q_{1}, q_{2} \in Z \backslash Y, q_{1}, q_{2}, p \in l\right\}$. We show that S has dimension strictly less than $n+k$, unless the union of lines in S has dimension $n+1$, in which case $\operatorname{dim} S=n+k$. In the latter case, if the dimension of the space is strictly greater than $n+1$, then the union of lines in S cannot cover the whole space. This is the main result of our paper. We also introduce some examples showing that our bound is strict.

1. Introduction

The classic trisecant lemma states that if X is an integral curve in \mathbb{P}^{3}, then the variety of trisecants has dimension 1 , unless the curve is planar and has degree at least 3 , in which case the variety of trisecants has dimension 2. Several generalizations of this lemma have been considered $[1,2,4,7,9]$. In [7], the case of an integral curve embedded in \mathbb{P}^{3} is further investigated, leading to a result on the planar sections of such a curve. On the other hand, in [9], the case of higher dimensional varieties, possibly reducible, is inquired. For our concern, the main result of [9] is that if m is the dimension of the variety, then the union of a family of $(m+2)$-secant lines has dimension at most $m+1$. A further generalization of this result is given in $[1,2,4]$. In this latter case, the setting is the following. Let X be an irreducible projective variety over an algebraically closed field of characteristic zero. For $r \geq 3$, if every $(r-2)$-plane $\overline{x_{1}, \ldots, x_{r-1}}$, where the x_{i} are generic points, also meets X in a point x_{r} different from x_{1}, \ldots, x_{r-1}, then X is contained in a linear subspace L, with $\operatorname{codim}_{L} X \leq r-2$.

In this paper, our purpose is first to present another derivation of this result for $r=3$ and then to introduce a generalization to nonequidimensional varieties. For the sake of clarity, we shall reformulate our first problem as follows. Let Z be an equidimensional variety (maybe singular and/or reducible) of dimension n, other than a linear space, embedded into \mathbb{P}^{r}, where $r \geq n+1$. The variety of trisecant lines of Z, say $V_{1,3}(Z)$, has dimension strictly less than $2 n$, unless Z is included in an $(n+1)$-dimensional linear space and has degree at least 3 , in which case $\operatorname{dim} V_{1,3}(Z)=2 n$. This also implies that if $\operatorname{dim} V_{1,3}(Z)=2 n$, then Z can be embedded in \mathbb{P}^{n+1}.

Then we inquire the more general case, where Z is not required to be equidimensional. In that case, let Z be a possibly singular variety of dimension n, which may be neither irreducible nor equidimensional, embedded into \mathbb{P}^{r}, where $r \geq n+1$, and let Y be a proper subvariety of dimension $k \geq 1$. Consider now S being a component of maximal dimension of the closure of $\left\{l \in \mathbb{G}(1, r) \mid \exists p \in Y, q_{1}, q_{2} \in Z \backslash Y, q_{1}, q_{2}, p \in l\right\}$.

[^0]We show that S has dimension strictly less than $n+k$, unless the union of lines in S has dimension $n+1$, in which case $\operatorname{dim} S=n+k$. In the latter case, if the dimension of the space is strictly greater than $n+1$, then the union of lines in S cannot cover the whole space. This is the main result of our work. We also introduce some examples showing that our bound is strict.

The methods we use to prove these results are purely algebraic and are valid over any algebraically closed field of characteristic zero. Our reasoning consists basically in inquiring first the local restrictions on the tangent spaces for the trisecant lines variety being of full dimension. Then the global result is deduced using the so-called Terracini's lemma [11].

The paper is organized as follows. First we recall some standard material in order to fix terminology and notations in Sec. 2. Then we come to our results in Sec. 3. More precisely, in Sec. 3.2, the case of equidimensional varieties is investigated, while in Sec. 3.3 we deal with the more general case.

2. Notations and Background

In this section, we recall some standard material on incident varieties, which will be used in the sequel. The ground field is always assumed to be of characteristic zero.
2.1. Variety of Incident Lines. Let $\mathbb{G}(1, n)=G(2, n+1)$ be the Grassmannian of lines included in \mathbb{P}^{n}. Recall that $\mathbb{G}(1, n)$ can be canonically embedded in $\mathbb{P}^{N_{1}}$, where $N_{1}=\binom{2}{n+1}-1$, by the Plücker embedding and that $\operatorname{dim} \mathbb{G}(1, n)=2 n-2$. Hence a line in \mathbb{P}^{n} can be regarded as a point in $\mathbb{P}^{N_{1}}$ satisfying the so-called Plücker relations. These relations are quadratic equations that generate a homogeneous ideal, say $I_{\mathbb{G}(1, n)}$, defining $\mathbb{G}(1, n)$ as a closed subvariety of $\mathbb{P}^{N_{1}}$. Similarly, the Grassmannian $\mathbb{G}(k, n)$ gives a parametrization of the k-dimensional linear subspaces of \mathbb{P}^{n}. As for $\mathbb{G}(1, n)$, the Grassmannian $\mathbb{G}(k, n)$ can be embedded into the projective space $\mathbb{P}^{N_{k}}$, where $N_{k}=\binom{k+1}{n+1}-1$. Therefore, for a k-dimensional linear subspace K of \mathbb{P}^{n}, we shall write $[K]$ for the corresponding projective point in $\mathbb{P}^{N_{k}}$. The line passing through some points x and y will be denoted $\overline{x y}$.
Definition. Let $X \subset \mathbb{P}^{n}$ be an irreducible variety. We define the following variety of incident lines:

$$
\Delta(X)=\{l \in \mathbb{G}(1, n) \mid l \cap X \neq \varnothing\} .
$$

The codimension c of X and the dimension of $\Delta(X)$ are related by the following lemma.
Lemma 1. Let $X \subset \mathbb{P}^{n}$ be an irreducible closed variety of codimension $c \geq 2$. Then $\Delta(X)$ is an irreducible subvariety of $\mathbb{G}(1, n)$ of dimension $2 n-1-c$.
Proof. Consider the incidence variety

$$
\Sigma=\{(l, p) \in \mathbb{G}(1, n) \times X \mid p \in l\} \subset \Delta(X) \times X
$$

endowed with the canonical projections $\pi_{1}: \Sigma \rightarrow \Delta(X)$ and $\pi_{2}: \Sigma \rightarrow X$. The generic fiber of π_{1} is finite (otherwise it is clear that $X=\mathbb{P}^{n}$). Thus, $\operatorname{dim} \Sigma=\operatorname{dim} \Delta(X)$. For all $p \in X$, the fiber $\pi_{2}^{-1}(p)$ is isomorphic to \mathbb{P}^{n-1} and has dimension $n-1$. Therefore, Σ is irreducible and has dimension $n-c+n-1=2 n-c-1$, as shown in $[5,10]$. Since π_{1} is surjective and continuous (in Zariski topology), then $\Delta(X)$ is also irreducible and has dimension $2 n-c-1$.

The following simple result will be useful in the sequel.
Lemma 2. Let X_{1} and X_{2} be two irreducible closed varieties in \mathbb{P}^{n} of codimension greater than or equal to 2. Then $\Delta\left(X_{1}\right) \not \subset \Delta\left(X_{2}\right)$ unless $X_{1} \subset X_{2}$.

Proof. Assume that $\Delta\left(X_{1}\right) \subset \Delta\left(X_{2}\right)$ and $X_{1} \not \subset X_{2}$. Consider a point $p \in X_{1} \backslash X_{2}$ and a hyperplane H not passing through p. Consider the projection $\pi: \mathbb{P}^{n} \backslash\{p\} \rightarrow H, q \mapsto \overline{q p} \cap H$ that maps a point $q \in \mathbb{P}^{n} \backslash\{p\}$ to the point of intersection of the line $\overline{q p}$ with the hyperplane H. The projection is surjective, and so is $\left.\pi\right|_{X_{2}}$, because $\Delta\left(X_{1}\right) \subset \Delta\left(X_{2}\right)$. Thus, $\operatorname{dim} X_{2} \geq n-1$, which is impossible, because codim $X_{i} \geq 2$ for each i.
2.2. Join Varieties. Consider $m<n$ closed irreducible varieties $\left\{Y_{i}\right\}_{i=1, \ldots, m}$ embedded in \mathbb{P}^{n} with codimensions $c_{i} \geq 2$. Consider the join variety

$$
J=J\left(Y_{1}, \ldots, Y_{m}\right)=\Delta\left(Y_{1}\right) \cap \cdots \cap \Delta\left(Y_{m}\right)
$$

included in $\mathbb{G}(1, n)$. We assume that $\sum_{i=1, \ldots, m} c_{i} \leq 2 n-2+m$, so that J is not empty. We shall first determine the irreducible components of J.

Let U be the open subset of $Y_{1} \times \cdots \times Y_{m}$ defined by

$$
\left\{\left(p_{1}, \ldots, p_{m}\right) \in Y_{1} \times \cdots \times Y_{m} \mid \exists i \neq j: p_{i} \neq p_{j}\right\}
$$

Let V be the locally closed set made of the m-tuples in U whose points are collinear. Let $s: V \rightarrow \mathbb{G}(1, n)$ be the morphism that maps an m-tuple of aligned points to the line they generate. Let $S \subset \mathbb{G}(1, n)$ be the closure of the image of s.

First, let us look at the irreducible components of S. These components could be classified in several classes according to the number of distinct points in the m-tuples that generate them. For example, consider the case where $m=3$. The locally closed subset of $Y_{1} \times Y_{2} \times Y_{3}$, made of triplets of three distinct and collinear points, generates one component of S. Now if Y_{12} is an irreducible component of $Y_{1} \cap Y_{2}$ not contained in Y_{3}, then the lines generated by a point of $Y_{12} \backslash Y_{3}$ and another point in Y_{3} form also an irreducible component of S. Also let Z be an irreducible component of $Y_{1} \cap Y_{2} \cap Y_{3}$; then the lines generated by a point of Z and another point in Y_{1} are the intersection of the secant variety of Y_{1} with $\Delta(Z)$, and form an irreducible component of S too. In the general case, the following lemma will suffice for our purpose.

Lemma 3. The irreducible components of J are:
(1) $\Delta(Z)$, where Z runs over all irreducible components of $Y_{1} \cap \cdots \cap Y_{m}$;
(2) the irreducible components of S that are not included in any component of the form $\Delta(Z)$.

Proof. These sets are all irreducible closed subsets of J. There is a finite number of such sets, and their union covers J. Thus, the irreducible components of J are certainly some of these sets.

Suppose that for some irreducible component Z of $Y_{1} \cap \cdots \cap Y_{m}$ we have $\Delta(Z) \subset S$. Let us proceed similarly to Lemma 2. Consider a point $p \in Z$ and a hyperplane H not passing through p. Consider the projection $\pi: \mathbb{P}^{n} \backslash\{p\} \rightarrow H, q \mapsto \overline{q p} \cap H$ that maps a point $q \in \mathbb{P}^{n} \backslash\{p\}$ to the point of intersection of the line $\overline{q p}$ with the hyperplane H. The projection is obviously surjective. Since $\Delta(Z) \subset S$, each line l meeting p is the limit of lines of the form $\overline{p^{\prime} q}$, where $p^{\prime} \in Z$ and q is some other point of $\left(Y_{1} \cup \cdots \cup Y_{m}\right)$. Choosing the points p^{\prime} tending to p, we see that l is the limit of lines $\overline{p q}$. It follows that the projection of $\left(Y_{1} \cup \cdots \cup Y_{m}\right)$ is dense in H. But this is impossible since codim $Y_{i} \geq 2$ for each i. Thus, $\Delta(Z) \not \subset S$.

Now by Lemma $2, \Delta\left(Z_{1}\right) \not \subset \Delta\left(Z_{2}\right)$ for any two irreducible components Z_{1} and Z_{2} of $Y_{1} \cap \cdots \cap Y_{m}$. Since the set of lines meeting an irreducible variety is irreducible, $\Delta(Z)$ is a maximal irreducible closed subset of J for every irreducible component Z of $Y_{1} \cap \cdots \cap Y_{m}$.

Every irreducible component S_{1} of S that is not included in any component of the form $\Delta(Z)$ is also a maximal irreducible closed subset of J.

For simplicity, we shall call the irreducible components of S joining components of J and components of the form $\Delta(Z)$ for some irreducible component Z of $Y_{1} \cap \cdots \cap Y_{m}$ intersection components.

We conclude this section by quoting Terracini's lemma, in the form we shall use later. For this purpose and throughout the paper, we use the following notations. If X is a projective subvariety of \mathbb{P}^{n}, then we shall write $T_{p}(X)$ for the projectively embedded tangent space of X at p. The Zariski tangent space is denoted $\Theta_{p}(X)$. Let $C X$ be the affine cone over X; then $T_{p}(X)$ is the projective space of one-dimensional subspaces of $\Theta_{q}(C X)$, where $q \in \mathbb{A}^{n+1}$ is any point lying over p. Hence for a morphism f between two projective varieties X and Y, which can also be viewed as a morphism between $C X$ and $C Y$, the differential $d f_{p}: T_{p}(X) \backslash \mathbb{P}(\operatorname{ker}(\phi)) \rightarrow T_{f(p)}(Y)$ is induced by the differential ϕ between the Zariski
tangent spaces $\Theta_{q}(C X)$ and $\Theta_{f(q)}(C Y)$. For simplicity, we shall write $d f_{p}: T_{p}(X) \rightarrow T_{f(p)}(Y)$, while it is understood that $d f_{p}$ might be defined on a proper subset of $T_{p}(X)$.

Lemma 4 (Terracini's lemma). Let X and Y be two irreducible projective varieties embedded in \mathbb{P}^{n} over an algebraically closed field of characteristic zero. Let $W(X, Y)$ be the union of the lines in $J(X, Y)$. Let z be a point in $W(X, Y)$ lying neither on X nor on Y. Then the tangent space of $W(X, Y)$ at z is given by the following equality:

$$
T_{z}(W(X, Y))=\left\langle T_{x}(X), T_{y}(Y)\right\rangle,
$$

where $(x, y) \in X \times Y$, such that $z \in\langle x, y\rangle=\overline{x y}$ and \rangle denotes the linear span.
A slightly more general statement and its proof can be found in [11].

3. Generalizations of the Trisecant Lemma

In this section, we shall introduce two generalizations of the trisecant lemma. The first one is about equidimensional varieties, while the second one deals with a more general situation.

In terms of join varieties, the classical trisecant lemma and the generalizations we introduce are related to join components. A similar treatment of intersection components is easy to give and is summarized in the following lemma, immediately deduced from Lemma 2.

Lemma 5. Let Y_{1} and Y_{2} be two distinct irreducible varieties embedded in some projective space. Let Y be a third irreducible variety. $\Delta(Y)$ cannot contain any intersection component $\Delta(Z)$ of $J\left(Y_{1}, Y_{2}\right)=$ $\Delta\left(Y_{1}\right) \cap \Delta\left(Y_{2}\right)$, unless $Z \subset Y$.

Before we proceed, we shall prove some results, useful in the sequel.
3.1. Preliminary Properties. The technique of the following proposition is typical for this paper. The proposition can be viewed as a generalization of a well-known result of Samuel [6, p. 312], which deals with smooth curves.

Proposition 1. Let X be an irreducible closed subvariety of \mathbb{P}^{n} of dimension k. If there exists $L \in$ $\mathbb{G}(k-1, n)$ such that for all points $p \in U_{0}$, where U_{0} is a dense open set of X and $L \subset T_{p}(X)$, then X is a k-dimensional linear space containing L.

Proof. Let $\mathcal{T} X$ be the closure of

$$
\left\{\left[T_{p}(X)\right] \mid p \in X, p \text { regular }\right\}
$$

in $\mathbb{G}(k, n) . \mathcal{T} X$ is the closure of the image of a dense open set of X by the Gauss map. Therefore, $\mathcal{T} X$ is irreducible. Consider the rational map $X \rightarrow \mathbb{G}(k, n), p \mapsto p \vee L$, where \vee is the join operator [3] equivalent to the classical exterior product (as in [3], the departure from the classical notation is amply justified by the geometric meaning of the operator). Let σ_{L} be the subvariety of $\mathbb{G}(k, n)$ made of the linear spaces that contain L. Then $\operatorname{dim} \sigma_{L}=n-k$.

Let U be the open set of X made of the regular points of U_{0} that do not lie on L. Consider the morphism $f: U \rightarrow \sigma_{L}, p \mapsto p \vee L$. For each $p \in U, f(p)$ is simply the tangent space of X at p. Therefore, the image of f is dense in $\mathcal{T} X$.

Since the ground field is assumed in this article to have characteristic zero, there exists a dense open set V of X such that for any point p in V, the differential $d f_{p}$ is surjective [6, p. 271].

This differential is simply $d f_{p}: T_{p}(X) \rightarrow T_{f(p)}(\mathcal{T} X), a \mapsto a \vee L$. Therefore, $d f_{p}$ is constant over $T_{p}(X) \backslash L$ and takes the value $\left[T_{p}(X)\right]=d f_{p}(p)$. Thus, $\operatorname{dim}(\mathcal{T} X)=0$. Since $\mathcal{T} X$ is irreducible, it is a single point corresponding to a k-dimensional linear space, say T, containing L. Finally, $X \subset T$, $\operatorname{dim} X=k$, and X is closed. Therefore, we have $X=T$.

Note that this fact does not hold in positive characteristic, as the following example shows. Consider the curve in \mathbb{P}^{3} over a field K of characteristic p, defined by the ideal

$$
\left\langle y^{p}-z t^{p-1}, x^{p}-y t^{p-1}\right\rangle \subset K[x, y, z, t]
$$

with $t=0$ being the plane at infinity. The tangent space at $\left(x_{0}, y_{0}, z_{0}, t_{0}\right)$ is given by the following system of linear equations:

$$
\left\{t_{0}^{p-1} z+(p-1) z_{0} t_{0}^{p-2} t=0, t_{0}^{p-1} y+(p-1) y_{0} t_{0}^{p-2} t=0\right\}
$$

Any two tangent spaces are parallel, and therefore all of them contain the same point at infinity. However, the curve is not a line. Note that the point $(0,0,1,0)$ is a singular point of the curve.

The next proposition is used throughout the paper several times. The underlying idea is as follows. Let L be a k-dimensional linear space. If the tangent space to an irreducible variety at a generic point always spans together with L a $(k+1)$-dimensional linear space, then the variety itself can be included into a $(k+1)$-dimensional linear space containing L.
Proposition 2. Let X be an irreducible closed subset of \mathbb{P}^{n} with $\operatorname{dim} X=r$. If there exists $L \in \mathbb{G}(k, n)$ such that for all points $p \in U_{0}$, where U_{0} is a dense open subset of $X, \operatorname{dim}\left(L \cap T_{p}(X)\right) \geq r-1$, then X is included in a $(k+1)$-dimensional linear space containing L.

Proof. If $X \subset L$, then there is nothing to prove. Therefore, let us assume that $X \not \subset L$. Let $\sigma_{L} \subset \mathbb{G}(k+1, n)$ be the set of $(k+1)$-dimensional linear spaces that contain L. Consider the rational map $f: X \rightarrow \sigma_{L}$, $p \mapsto p \vee L$. This map is defined over the open set U of regular points in $(X \backslash L) \cap U_{0}$. Each such point is mapped to the $(k+1)$-dimensional space generated by p and L. Since $\operatorname{dim}\left(T_{p}(X) \cap L\right)=r-1$, we have the inclusion $T_{p}(X) \subset p \vee L=f(p)$ for $p \in U$. Let Y be the closure of $f(U)$ in σ_{L}. Thus, Y is irreducible.

Since the ground field is assumed to have characteristic zero, there exists a dense open set V of X such that for any point p in V, the differential $d f_{p}$ is surjective [6, p. 271].

This differential is simply $d f_{p}: T_{p}(X) \rightarrow T_{f(p)}(Y), a \mapsto a \vee L$. Since $T_{p}(X) \subset p \vee L$, $d f_{p}$ is constant over $T_{p}(X) \backslash L$ and takes the value $p \vee L=d f_{p}(p)$. Thus, $\operatorname{dim} Y=0$. Since Y is irreducible, Y is a single point corresponding to a $(k+1)$-dimensional linear space, say K, containing L. Therefore, $X \subset K$.

This proposition does not hold in positive characteristic. Indeed, over a field of characteristic p, for the curve in \mathbb{P}^{3} defined by the ideal $\left\langle y t^{p-1}-x^{p}, z t^{p^{2}-1}-x^{p^{2}}\right\rangle$, all the tangent lines are parallel and, therefore, intersect in some point at infinity. But the curve is not a line.

Before we come to investigate our initial question, let us first show, in the case of two varieties embedded in \mathbb{P}^{n} with $n \geq 3$, that the join has necessarily a unique joining component, which has the required dimension, namely $2 n-\left(c_{1}+c_{2}\right)$.
Lemma 6. Let Y_{1} and Y_{2} be two distinct irreducible varieties embedded in \mathbb{P}^{n}. Let $c_{i} \geq 2$ be the codimension of Y_{i}. Then the join $J=J\left(Y_{1}, Y_{2}\right)$ has a unique joining component S, whose dimension is $2 n-\left(c_{1}+c_{2}\right)$.
Proof. Let $\Delta=\left\{\left(y_{1}, y_{2}\right) \in Y_{1} \times Y_{2} \mid y_{1}=y_{2}\right\}$. Let U be the open subset of $Y_{1} \times Y_{2}$ defined as $U=$ $\left(Y_{1} \times Y_{2}\right) \backslash \Delta$. Let $s: U \rightarrow \mathbb{G}(1, n),(p, q) \mapsto \overline{p q}$ be the morphism that maps an element of U to the line it generates. Let S be the closure of $s(U)$ in $\mathbb{G}(1, n)$. Since U is irreducible, so is S. It is, therefore, the unique joining component of J. The general fiber is finite. Thus, $\operatorname{dim} S=\operatorname{dim} U=\operatorname{dim}\left(Y_{1} \times Y_{2}\right)=$ $2 n-\left(c_{1}+c_{2}\right)$.

Eventually, we also have the following lemma, which will be useful in the sequel.
Lemma 7. Let Y_{1} and Y_{2} be two irreducible varieties embedded in \mathbb{P}^{n}, with dimensions d_{1} and d_{2} both smaller than or equal to $n-2$. Let S be the unique joining component of $J=J\left(Y_{1}, Y_{2}\right)$. Then $\operatorname{dim}(S)=$ $s=d_{1}+d_{2}$.

The union of the lines in S is an irreducible variety of dimension strictly greater than $\max \left(d_{1}, d_{2}\right)$. For a generic point p in Y_{i}, the dimension of the variety of lines in S passing through p is d_{3-i}.

Moreover, if there exists an irreducible variety Y of dimension $d \leq \max \left(d_{1}, d_{2}\right)$ such that $S \subset \Delta(Y)$, then $d=\max \left(d_{1}, d_{2}\right)$ and for a generic point p in Y the dimension of the variety of lines in S passing through p is $\min \left(d_{1}, d_{2}\right)$.

Proof. We shall assume, without loss of generality, that $d_{1} \geq d_{2}$.
Step 1. Consider first the incidence variety $\Sigma=\left\{(l, p) \in S \times \mathbb{P}^{n} \mid p \in l\right\}$ endowed with the canonical projections $\pi_{1}: \Sigma \rightarrow S$ and $\pi_{2}: \Sigma \rightarrow \mathbb{P}^{n}$. For all $l \in S$, the fiber $\pi_{1}^{-1}(l)$ is irreducible and has dimension 1 and S is irreducible. Thus, Σ is irreducible and $\operatorname{dim} \Sigma=\operatorname{dim} S+1=s+1$. Let

$$
W=\pi_{2}\left(\pi_{1}^{-1}(S)\right)=\bigcup_{l \in S} l
$$

Then W is irreducible, since Σ is irreducible. Since $Y_{i} \subset W$ for each i, we see that $\operatorname{dim} W \geq \max \left(d_{1}, d_{2}\right)$. Furthermore, the generic fiber of π_{2} has dimension less than or equal to d_{2}. Indeed, the fiber at a generic point p is included in $\left\{(\overline{q p}, p) \mid q \in Y_{2}\right\}$. Thus, $\operatorname{dim} W>\max \left(d_{1}, d_{2}\right)$.

Step 2. For $p \in Y_{1}$, consider the open set $U=Y_{2} \backslash\{p\}$ and the morphism $f: U \rightarrow S, q \mapsto \overline{p q}$. Since U is irreducible, so is $f(U)$. For a generic line l in $f(U)$, the fiber $f^{-1}(l)$ is finite (otherwise Y_{2} is a cone with vertex p, which is impossible for a generic $\left.p \in Y_{1}\right)$. Therefore, $\operatorname{dim} f(U)=\operatorname{dim} Y_{2}$. A similar conclusion is valid for a generic point of Y_{2}. Therefore, the dimension of the variety of lines in S passing through a general point in Y_{i} is d_{3-i}.

Step 3. For a point $p \in Y$, let X_{p} be the variety of lines in S passing through p. Let Z be the subvariety of Y defined as the set of points for which X_{p} is not empty. Then $S \subset \Delta(Z)$.

Let us show that Z is irreducible. Let $Z=E \cup F$, where E and F are closed subsets of Z. Denote by S_{1} and S_{2} the unique joining components of $J\left(E, Y_{2}\right)$ and $J\left(F, Y_{2}\right)$, respectively. Then $\operatorname{dim} S_{1}=\operatorname{dim} E+d_{2}$ and $\operatorname{dim} S_{2}=\operatorname{dim} F+d_{2}$. Moreover, $S \subset S_{1} \cup S_{2}$. Therefore, $\left.\max \left(\operatorname{dim} E+d_{2}, \operatorname{dim} F+d_{2}\right)\right) \geq d_{1}+d_{2}$, so that $\max (\operatorname{dim} E, \operatorname{dim} F) \geq d_{1}$. However, $\operatorname{dim} Z \leq \operatorname{dim} Y \leq d_{1}$. We conclude that either $E=Z$ or $F=Z$, and $\operatorname{dim} Z=d_{1}$. Thus, $Z=Y_{1}$ and $\operatorname{dim} Y=d_{1}$.

Let S^{\prime} be the unique joining component of $J\left(Z, Y_{2}\right)$. Then we have $S \subset S^{\prime}$. But $\operatorname{dim} S=\operatorname{dim} S^{\prime}$ and both varieties are irreducible closed varieties. Thus, $S=S^{\prime}$. By a similar argument as in step 2 , we get that for a generic point p in Y, the dimension of X_{p} is $d_{2}=\min \left(d_{1}, d_{2}\right)$.
3.2. Equidimensional Varieties. We are in a position to present our derivation of the general trisecant lemma valid for equidimensional varieties. We shall first consider the following situation. Let Y_{1} and Y_{2} be two irreducible varieties embedded in \mathbb{P}^{n}, for some $n \in 2 \mathbb{N}+1$. Assume that $\operatorname{dim} Y_{1}=\operatorname{dim} Y_{2}=k=\frac{n-1}{2}$. The join $J\left(Y_{1}, Y_{2}\right)$ has necessarily a joining component S of dimension $n-1$, as shown in Lemma 6 . We will show that if a third irreducible variety Y of the same dimension is such that $S \subset \Delta(Y)$, then the three varieties lie in the same $(k+1)$-dimensional linear subspace. Then we generalize to equidimensional varieties.

3.2.1. Two Varieties of Equal Dimension in a Space Whose Dimension Is Odd.

Theorem 1. Let n be an odd number. Consider two distinct irreducible closed varieties Y_{1} and Y_{2} in \mathbb{P}^{3}, each of dimension $k=\frac{n-1}{2}$. By Lemma 6 , consider the joining component S of $J\left(Y_{1}, Y_{2}\right)$, having dimension $n-1$. If there exists a third irreducible variety Y of dimension k, distinct from Y_{1} and Y_{2}, such that $S \subset \Delta(Y)$, then the three varieties lie in the same $(k+1)$-dimensional linear space, equal to the union of the lines in S.

Proof. Step 1. Let

$$
W=\bigcup_{l \in S} l
$$

By Lemma 7, W has dimension strictly greater than k. Moreover, the same lemma shows that the dimension of the variety of lines in S passing through a generic point p in Y has dimension k.

Step 2. Let l_{0} be a generic line in S. Let $q_{i}=l_{0} \cap Y_{i}$ and $p_{0}=l_{0} \cap Y$. Since l_{0} is generic, these points can be assumed to be regular and $p_{0} \notin Y_{1} \cup Y_{2}$.

Let $\sigma_{p_{0}} \subset \mathbb{G}(1, n)$ be the set of lines passing through p_{0}. In general, $X_{p_{0}}=\sigma_{p_{0}} \cap S$ has dimension equal to k.

Consider now the morphism $f: Y_{1} \rightarrow \sigma_{p_{0}}, a \mapsto a \vee p_{0}$. It is clear that $X_{p_{0}} \subset f\left(Y_{1}\right)$. Since the general fiber of f is finite, $\operatorname{dim} X_{p_{0}}=\operatorname{dim} Y_{1}$, and $f\left(Y_{1}\right)$ is irreducible, we have even the following equality: $X_{p_{0}}=f\left(Y_{1}\right)$. Therefore, f can be regarded as a morphism from Y_{1} to $X_{p_{0}}: f: Y_{1} \rightarrow X_{p_{0}}, a \mapsto a \vee p$. Here again the expression of the differential of f at q_{1} is simply given by $d f_{p_{1}}: T_{q_{1}}\left(Y_{1}\right) \rightarrow T_{l_{0}}\left(X_{p_{0}}\right), a \mapsto a \vee p_{0}$. The line l_{0} being generic, we shall assume that $\operatorname{dim} T_{l_{0}}\left(X_{p_{0}}\right)=\operatorname{dim} X_{p_{0}}=k$.

Consider now

$$
H_{0}=\bigcup_{l \in T_{l_{0}}\left(X_{p_{0}}\right)} l .
$$

This linear space has dimension $k+1$. The expression for $d f_{p_{1}}$ shows that $T_{q_{1}}\left(Y_{1}\right) \subset H_{0}$. Similarly we can deduce that $T_{q_{2}}\left(Y_{2}\right) \subset H_{0}$. Therefore, the following inequality holds: $\operatorname{dim}\left(T_{q_{1}}\left(Y_{1}\right) \cap T_{q_{2}}\left(Y_{2}\right)\right) \geq k-1$.

By the same reasoning, there exists a dense open subset U of Y_{1} such that for each $q \in U$, we have $\operatorname{dim}\left(T_{q}\left(Y_{1}\right) \cap T_{q_{2}}\left(Y_{2}\right)\right) \geq k-1$.

Step 3. If Y_{2} is a linear space of dimension k, then by Proposition 2, Y_{1} is contained in a $(k+1)$-dimensional linear space containing Y_{2}. A similar conclusion can be done if Y_{1} is a linear space.

Step 4. Assume now that neither Y_{1} nor Y_{2} is a linear space. Applying the reasoning as in step 2 to $X_{q_{1}}$ and $X_{q_{2}}$, which are, respectively, the sets of lines in S passing through q_{1} and q_{2}, we get the following facts:
(1) there exists an open subset U_{1} of Y_{1} such that for all $q \in U_{1}$, we have $\operatorname{dim}\left(T_{q}\left(Y_{1}\right) \cap T_{p_{0}}(Y)\right) \geq k-1$;
(2) there exists an open subset U_{2} of Y_{2} such that for all $q \in Y_{2}$, we have $\operatorname{dim}\left(T_{q}\left(Y_{2}\right) \cap T_{p_{0}}(Y)\right) \geq k-1$.

When $k=1$ (this is the case for curves in \mathbb{P}^{3}), these inequalities just mean that the intersections are not empty. Then by Proposition 2, each Y_{i} lies in a $(k+1)$-dimensional linear space Q_{i} containing $T_{p_{0}}(Y)$. These two linear spaces Q_{1} and Q_{2} are identical, since they are both generated by a line of S, namely l_{0}, and $T_{p_{0}}(Y)$. Let Q denote this linear space.

Then W, being the union of the lines in S, is included in Q. Thus, Y is also included in Q. Then every line in Q intersects the three varieties Y_{1}, Y_{2}, and Y. Therefore, the Fano variety of Q is the unique joining component of $J\left(Y_{1}, Y_{2}\right)$. The union of these lines is exactly Q.
3.2.2. Generalized Trisecant Lemma for Equidimensional Varieties. Since the proof is still valid if some or all of the varieties Y_{1}, Y_{2}, and Y are identical, we get a generalization of the trisecant lemma. We shall use the following notation: for a variety $X, V_{1,3}(X)$ is the closure in $\mathbb{G}(1, n)$ of

$$
\{l \in \mathbb{G}(1, n) \mid \exists p, q, r \in X, p \neq q, p \neq r, q \neq r, p, q, r \in l\} .
$$

Theorem 2 (the first generalization of the trisecant lemma). Let Z be a possibly singular equidimensional variety (maybe reducible or not) of dimension n, other than a linear space, embedded into \mathbb{P}^{r}, where $r \geq n+1$. The variety of trisecant lines of Z, i.e., $V_{1,3}(Z)$, has dimension strictly less than $2 n$, unless Z is included in an $(n+1)$-dimensional linear space and has degree at least 3 , in which case $\operatorname{dim} V_{1,3}(Z)=2 n$.
Proof. Two cases must be considered.
Case 1. If $r<2 n+1$, then we can embed \mathbb{P}^{r} into $\mathbb{P}^{2 n+1}$ by a projective equivalence, so that we are in the setting of Theorem 1 . Then the assertion follows immediately.

Case 2. In the case where $r \geq 2 n+1$, let us define $s=r-2 n-1 \geq 0$. We shall prove the result by induction over s. If $s=0$, it is the content of Theorem 1 .

Now it remains to show that if the result holds for some s, then it also holds for $s+1$. Let p be a generic point in \mathbb{P}^{r}, where $r=2 n+1+s+1$, and let H be any hyperplane in \mathbb{P}^{r}, not passing through p. Let Z^{\prime} be the projection of Z over H through p. We can canonically identify H with $\mathbb{P}^{2 n+1+s}$. Since the projection is generic and $\operatorname{dim} Z<r-1$, the general fiber of the projection $\pi: Z \rightarrow H$ is empty. However, over $\pi(Z)$, the general fiber is finite and nonempty. Therefore, the dimension of $V_{1,3}\left(Z^{\prime}\right)$ is also $2 n$. Then, by the induction assumption, Z^{\prime} is included in a linear space $L^{\prime} \subset H$ of dimension $n+1$.

Let L be the space generated by p and L^{\prime}. Then $\operatorname{dim} L=n+2$ and $Z \subset L$. Since $n+2<2 n+1$, for $n>1$, we can use the first step of the proof to conclude. Note that for $n=1$, the result can be easily deduced from the classical trisecant lemma.

This result can also be expressed in the following terms.
Corollary. Let Z be a variety of dimension n. If the variety of trisecant lines $V_{1,3}(Z)$ has dimension $2 n$, then Z can be embedded into \mathbb{P}^{n+1}.
3.3. Nonequidimensional Case. In this section, we turn to a more general case. Our purpose is to generalize Theorem 2 to the case where the variety Z is not equidimensional. As we proceeded before, we shall first inquire what happens with two irreducible varieties of complementary dimension.
3.3.1. A Two Varieties Statement. Let Y_{1} and Y_{2} be two irreducible closed varieties embedded in \mathbb{P}^{n}. Let us assume that $\operatorname{dim} Y_{1}=k$ and $\operatorname{dim} Y_{2}=n-1-k$, where $\frac{n-1}{2} \leq k \leq n-2$. The varieties Y_{1} and Y_{2} are assumed to be distinct. Let Y be another irreducible variety of dimension at most k, distinct from Y_{1} and Y_{2}. By Lemma 6 , let S be the joining component of $J\left(Y_{1}, Y_{2}\right)$, whose dimension is $n-1$. Let W be the subvariety of \mathbb{P}^{n} being the union of the lines in S. This setting is used throughout Sec. 3.3. Our purpose is to show that W has dimension $k+1$.
The dimension of Y is k.
Lemma 8. Let Y_{1}, Y_{2}, and Y be varieties defined as just above. If $S \subset \Delta(Y)$, then the dimension of Y must be equal to k.
Proof. It is clear by Lemma 7.
We are now in a position to turn to the determination of the dimension of W.
W has dimension $k+1$.
Lemma 9. Let Y_{1}, Y_{2}, and Y be varieties as in Lemma 8. Let q_{1} and q_{2} be generic points on Y_{1} and Y_{2}, respectively. Let $p\left(q_{1}, q_{2}\right)=\overline{q_{1} q_{2}} \cap Y$ be an intersection point of the line $\overline{q_{1} q_{2}}$ and the variety Y. The points q_{1}, q_{2}, and $p\left(q_{1}, q_{2}\right)$ can be assumed to be regular. Then the tangent spaces $T_{q_{1}}\left(Y_{1}\right), T_{q_{2}}\left(Y_{2}\right)$, and $T_{p\left(q_{1}, q_{2}\right)}(Y)$ lie in the same $(k+1)$-dimensional linear space.

Proof. Step 1. The points q_{1}, q_{2}, and $p\left(q_{1}, q_{2}\right)$ can, indeed, be assumed to be regular, since the set of singular points of an algebraic variety is a proper closed subvariety [10].

First, let us prove that the line $\overline{q_{1} q_{2}}$ and the tangent spaces $T_{q_{1}}(Y)$ and $T_{p\left(q_{1}, q_{2}\right)}(Y)$ lie in the same ($k+1$)-dimensional linear space.

Let $\sigma_{q_{2}} \subset \mathbb{G}(1, n)$ be the set of lines passing through q_{2}. In general, $X_{q_{2}}$ has dimension equal to k (by Lemma 7).

Consider now the morphism $f: Y_{1} \rightarrow \sigma_{q_{2}}, a \mapsto a \vee q_{2}$. For each $a \in Y_{1}$, the line $a \vee q_{2}$ lies in S. Therefore, f can be regarded as a morphism from Y_{1} to $X_{q_{2}}: f: Y_{1} \rightarrow X_{q_{2}}, a \mapsto a \vee q_{2}$. Again the differential of f at q_{1} is given as follows: $d f_{q_{1}}: T_{q_{1}}\left(Y_{1}\right) \rightarrow T_{\overline{q_{1} q_{2}}}\left(X_{q_{2}}\right), a \mapsto a \vee q_{2}$.

Consider now

$$
H_{q_{1}, q_{2}}=\bigcup_{l \in T_{\overline{q_{1} q_{2}}}\left(X_{q_{2}}\right)} l .
$$

This linear space has dimension $k+1$. The expression of $d f_{q_{1}}$ shows that $T_{q_{1}}\left(Y_{1}\right) \subset H_{q_{1}, q_{2}}$. Thus, $H_{q_{1}, q_{2}}$ is the $(k+1)$-dimensional linear space generated by $T_{q_{1}}\left(Y_{1}\right)$ and the line $\overline{q_{1} q_{2}}$:

$$
H_{q_{1}, q_{2}}=\left\langle T_{q_{1}}\left(Y_{1}\right), \overline{q_{1} q_{2}}\right\rangle,
$$

where $\left\rangle\right.$ denotes the linear span as in Terracini's lemma. Similarly, one can prove that $T_{p\left(q_{1}, q_{2}\right)}(Y) \subset$ $H_{q_{1}, q_{2}}$.

Step 2. Consider now $\sigma_{p\left(q_{1}, q_{2}\right)}$, simply denoted σ_{p} below, the set of lines passing through $p\left(q_{1}, q_{2}\right)$.
Let $X_{p}=\sigma_{p} \cap S$. Lemma 7 shows that $\operatorname{dim} X_{p}=n-k-1$. Let $g: Y_{2} \rightarrow \sigma_{p}$ be the morphism that sends a point $a \in Y_{2}$ to the line $a \vee p$, where $p=p\left(q_{1}, q_{2}\right)$. Since $X_{p} \subset g\left(Y_{2}\right)$, the general fiber of g is finite, $g\left(Y_{2}\right)$ is irreducible, and $\operatorname{dim} Y_{2}=\operatorname{dim} X_{p}$, we see that the image of g is simply X_{p}. Thus, we can consider the morphism $g: Y_{2} \rightarrow X_{p}, a \mapsto a \vee p$. The differential of g at q_{2} gives rise to the morphism $d g_{q_{2}}: T_{q_{2}}\left(Y_{2}\right) \rightarrow T_{\overline{q_{1} q_{2}}}\left(X_{p}\right)$ given by $a \mapsto a \vee p$.

Let

$$
K_{q_{1}, q_{2}}=\bigcup_{l \in T_{\bar{q}_{1 q_{2}}}\left(X_{p}\right)} l
$$

be the union of lines in $T_{\bar{q}_{1} q_{2}}\left(X_{p}\right)$. It has dimension $n-k$. The expression for $d g_{q_{2}}$ shows that $T_{q_{2}}(Y) \subset$ $K_{q_{1}, q_{2}}$.

Now let Z_{1} be the subvariety of Y_{1} defined as follows: $Z_{1}=\left\{q \in Y_{1} \mid \overline{q p} \in S\right\}$. It can be viewed as the trace on Y_{1} of X_{p}. Let h be the morphism $h: Z_{1} \rightarrow X_{p}, a \mapsto a \vee p$. Computing the differential of h at q_{1}, we see that $T_{q_{1}}\left(Z_{1}\right) \subset K_{q_{1}, q_{2}}$.

In view of $\operatorname{dim} T_{q_{1}}\left(Z_{1}\right) \geq n-k-1$, and, in general, $\overline{q_{1} q_{2}} \not \subset T_{q_{1}}\left(Z_{1}\right)$, and $\operatorname{dim} K_{q_{1}, q_{2}}=n-k$, we have $K_{q_{1}, q_{2}}=\left\langle T_{q_{1}}\left(Z_{1}\right), \overline{q_{1} q_{2}}\right\rangle$. Since $T_{q_{1}}\left(Z_{1}\right) \subset T_{q_{1}}\left(Y_{1}\right)$, we have $K_{q_{1}, q_{2}} \subset H_{q_{1}, q_{2}}$, whence $T_{q_{2}}\left(Y_{2}\right) \subset H_{q_{1}, q_{2}}$.

Thus, $T_{q_{1}}\left(Y_{1}\right), T_{q_{2}}\left(Y_{2}\right)$, and $T_{p\left(q_{1}, q_{2}\right)}(Y)$, indeed, linearly span a $(k+1)$-dimensional linear space.
It is now possible to conclude using Terracini's lemma.
Theorem 3. Let Y_{1}, Y_{2}, and Y be varieties as in Lemma 8. Then W must have dimension $k+1$.
Proof. Consider smooth points $q_{1} \in Y_{1}$ and $q_{2} \in Y_{2}$. According to Lemma 9, the tangent spaces $T_{q_{1}}\left(Y_{1}\right)$ and $T_{q_{2}}\left(Y_{2}\right)$ linearly span, together with the line $\overline{q_{1} q_{2}}$, a $(k+1)$-dimensional linear space, which we shall denote $K_{q_{1}, q_{2}}$.

According to Terracini's lemma (Lemma 4), the tangent space of W at $\alpha q_{1}+q_{2}$ for some $\alpha \neq 0$ lies in $K_{q_{1}, q_{2}}$. Thus, $\operatorname{dim} W \leq k+1$. Lemma 7 implies that $\operatorname{dim} W>k$. Therefore, we have $\operatorname{dim} W=k+1$.

In particular, the theorem shows that if W covers all the space, then there is no variety Y distinct from Y_{1} and Y_{2} that intersects every line in S.
Example.
We shall now proceed to show how one can construct varieties as in Sec. 3.3. For any k such that $\frac{n-1}{2}<k \leq n-2$, we can build varieties Y_{1}, Y_{2}, and Y satisfying the following conditions:
(1) $\operatorname{dim} Y_{1}=\operatorname{dim} Y=k$;
(2) $\operatorname{dim} Y_{2}=n-1-k$;
(3) $J\left(Y_{1}, Y_{2}\right)$ has a joining component S of dimension $n-1$;
(4) $S \subset \Delta(Y)$.

For this purpose, let $d=k-(n-1-k)=2 k-n+1>0$. Let $m>d$ be a natural number. Let Z_{1} be a d-dimensional irreducible variety in \mathbb{A}^{m}, not passing through the origin. Let Z_{2} be the single point variety made of the origin of \mathbb{A}^{m}. Let $f: \mathbb{A}^{m} \rightarrow \mathbb{A}^{m},\left(a_{1}, \ldots, a_{m}\right) \mapsto\left(a_{1} / 2, \ldots, a_{m} / 2\right)$. Let $Z=f\left(Z_{1}\right)$. Consider now $\hat{Y}_{1}=Z_{1} \times \mathbb{A}^{s}, \hat{Y}_{2}=Z_{2} \times \mathbb{A}^{s}$, and $\hat{Y}=Z \times \mathbb{A}^{s}$.

If we take $s=k-d=n-k-1$ and $m=n-s=k+1>d$, then we have the following conditions: $\operatorname{dim} \hat{Y}_{1}=\operatorname{dim} \hat{Y}=k, \operatorname{dim} \hat{Y}_{2}=n-k-1$, and $\hat{Y}_{1}, \hat{Y}_{2}, \hat{Y} \subset \mathbb{A}^{n}$.

Now we define Y_{1}, Y_{2}, and Y to be the projective closures of \hat{Y}_{1}, \hat{Y}_{2}, and \hat{Y}. Then by Lemma 6 , we know that $J\left(Y_{1}, Y_{2}\right)$ has a joining component S of dimension $n-1$. Moreover, by construction we have $S \subset \Delta(Y)$ and $W=\bigcup_{l \in S} l$ has dimension $k+1$.
3.3.2. A General Statement. The proof being true even when $Y_{2} \subset Y_{1}$ and $Y_{1}=Y$, we get the following consequence, which can be regarded as a generalization of the trisecant lemma as well.

Theorem 4 (the second generalization of the trisecant lemma). Let Z be a possibly singular variety of dimension n, that may be neither irreducible nor equidimensional, embedded into \mathbb{P}^{r}, where $r \geq n+1$. Let Y be a proper subvariety of Z of dimension $k \geq 1$. Let S be an irreducible component of maximal dimension of $V_{1,3}(Y, Z)$, where $V_{1,3}(Y, Z)$ is the closure of

$$
\left\{l \in \mathbb{G}(1, r) \mid \exists p \in Y, q_{1}, q_{2} \in Z \backslash Y, q_{1} \neq q_{2}, p, q_{1}, q_{2} \in l\right\}
$$

Then S has dimension strictly less than $n+k$ unless the union of lines in S has dimension $n+1$, in which case S has dimension $n+k$.

Proof. Step 1. The dimension of S is at most $n+k$, since $n+k$ is exactly the dimension of the join $J(Y, Z)$.

Step 2. If $r<n+k+1$, then we can embed \mathbb{P}^{r} into \mathbb{P}^{n+k+1} by a projective equivalence. According to Theorem 3, if $\operatorname{dim} S=n+k$, then the union of lines in S has dimension $n+1$.

Step 3. If $r \geq n+k+1$, then let $s=r-(n+k+1)$. If $s=0$, the result holds by Theorem 3. Assume now that the result is true for some $s \in \mathbb{N}$; let us prove it for $s+1$.

The dimension r of the space can be expressed as $r=s+1+n+k+1$. Let p be a generic point in $\mathbb{P}^{s+1+n+k+1}$ and H be a hyperplane not passing through p. Then let $Z^{\prime}\left(Y^{\prime}\right)$ be the projection of Z (respectively, Y) over H through p. Then Z^{\prime} is embedded into a projective space of dimension $s+n+k+1$. The general fiber of the projection $\pi: Z \rightarrow Z^{\prime}$ is finite.

Each line in S is projected onto a line of the closure $V_{1,3}\left(Y^{\prime}, Z^{\prime}\right)$ of

$$
\left\{l \in \mathbb{G}(1, r-1) \mid \exists p \in Y^{\prime}, q_{1}, q_{2} \in Z^{\prime} \backslash Y^{\prime}, q_{1} \neq q_{2}, p, q_{1}, q_{2} \in l\right\} .
$$

Let $S^{\prime} \subset V_{1,3}\left(Y^{\prime}, Z^{\prime}\right)$ be defined as consisting of those lines that are built by the projection of lines in S. Since the general fiber of π is finite, we see that $\operatorname{dim}\left(S^{\prime}\right)=\operatorname{dim}(S)$.

Therefore, if $\operatorname{dim} S=n+k$, then $\operatorname{dim} S^{\prime}=n+k$. In that case, since $\operatorname{dim} J\left(Y^{\prime}, Z^{\prime}\right)=n+k, S^{\prime}$ must be an irreducible component of maximal dimension of $V_{1,3}\left(Y^{\prime} Z^{\prime}\right) \subset J\left(Y^{\prime}, Z^{\prime}\right)$. Thus, by the induction assumption, $W^{\prime}=\bigcup_{l \in S^{\prime}} l$ has dimension $n+1$ and so $\operatorname{dim} W=n+1$, because the general fiber of $\pi: W \rightarrow W^{\prime}$
is finite.

Note that if $r>n+1$ and $\operatorname{dim}(S)=n+k$, then the theorem implies that the union of lines in S cannot cover the whole space.

Example.

We shall now conclude by giving an example of an n-dimensional variety with k-secant lines variety of dimension $2 n-1$, for $k \geq 3$. This improves the well-known construction, also presented in [9], of n-dimensional varieties admitting an $(n+1)$-dimensional variety of k-secant lines.

Let $p \in \mathbb{A}^{3}$ be the origin and consider an irreducible curve $X_{1} \subset \mathbb{A}^{3}$ not passing through p. For $m \in \mathbb{N}$, where $m \geq 2$, let X_{m} be $f_{m}\left(X_{1}\right)$, where $f_{m}(x, y, z)=(m x, m y, m z)$. For each $m \geq 1$, we denote $Y_{m}=X_{m} \times \mathbb{A}^{n-1}$. For a given $k \geq 3$, we define $Z_{k}=\bigcup_{1 \leq m \leq k} Y_{m}$. Then $\operatorname{dim} Z_{k}=n$ and Z_{k} admits a family of k-secant lines whose dimension is $2 n-1$.

We can also find an irreducible variety Z containing Z_{k} and having dimension $n^{\prime}=n+1$. For this variety, the family of lines has dimension $2 n^{\prime}-3$.

REFERENCES

1. B. Adlandsvik, "Joins and higher secant varieties," Math. Scand., 61, 213-222 (1987).
2. B. Adlandsvik, "Varieties with extremal number of degenerate higher secant varieties," J. Reine Angew. Math., 392, 16-26 (1988).
3. M. Barnabei, A. Brini, and G. C. Rota, "On the exterior calculus of invariant theory," J. Algebra, 96, 120-160 (1985).
4. H. Flenner, L. O'Caroll, and W. Vogel, Joins and Intersections, Springer (1999).
5. J. Harris, Algebraic Geometry, Springer (1992).
6. R. Hartshorne, Algebraic Geometry, Springer (1997).
7. O. A. Laudal, "A generalized trisecant lemma," in: Algebraic Geometry Proc., Lect. Notes Math., Vol. 687, Springer (1977).
8. Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford University Press (2002).
9. Z. Ran, "The (dimension + 2)-secant lemma," Invent. Math., 106, 65-71 (1991).
10. I. R. Shafarevich, Basic Algebraic Geometry, Springer (1977).
11. F. Zak, Tangents and Secants to Algebraic Varieties, Amer. Math. Soc. (1993).

Jeremy Yirmeyahu Kaminski
Holon Academic Institute of Technology, Department of Computer Science, Holon, Israel E-mail: kaminsj@hait.ac.il
Alexei Kanel-Belov
The Hebrew University, Department of Mathematics, Jerusalem, Israel E-mail: kanel@mccme.ru
Mina Teicher
Bar-Ilan University, Department of Mathematics, Ramat-Gan, Israel
E-mail: teicher@macs.biu.ac.il

[^0]: Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 12, No. 2, pp. 71-87, 2006.

