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TRISECANT LEMMA FOR NONEQUIDIMENSIONAL VARIETIES

J. Y. Kaminski, A. Kanel-Belov, and M. Teicher UDC 512.7

Abstract. Let X be an irreducible projective variety over an algebraically closed field of characteristic
zero. For r ≥ 3, if every (r−2)-plane x1, . . . , xr−1, where the xi are generic points, also meets X in a point xr

different from x1, . . . , xr−1, then X is contained in a linear subspace L such that codimL X ≤ r − 2. In
this paper, our purpose is to present another derivation of this result for r = 3 and then to introduce
a generalization to nonequidimensional varieties. For the sake of clarity, we shall reformulate our problem
as follows. Let Z be an equidimensional variety (maybe singular and/or reducible) of dimension n, other
than a linear space, embedded into P

r, where r ≥ n+1. The variety of trisecant lines of Z, say V1,3(Z), has
dimension strictly less than 2n, unless Z is included in an (n+1)-dimensional linear space and has degree at
least 3, in which case dim V1,3(Z) = 2n. This also implies that if dim V1,3(Z) = 2n, then Z can be embedded
in P

n+1. Then we inquire the more general case, where Z is not required to be equidimensional. In that case,
let Z be a possibly singular variety of dimension n, which may be neither irreducible nor equidimensional,
embedded into P

r, where r ≥ n + 1, and let Y be a proper subvariety of dimension k ≥ 1. Consider now S
being a component of maximal dimension of the closure of {l ∈ G(1, r) | ∃p ∈ Y, q1, q2 ∈ Z\Y, q1, q2, p ∈ l}.
We show that S has dimension strictly less than n + k, unless the union of lines in S has dimension n + 1,
in which case dim S = n + k. In the latter case, if the dimension of the space is strictly greater than n + 1,
then the union of lines in S cannot cover the whole space. This is the main result of our paper. We also
introduce some examples showing that our bound is strict.

1. Introduction

The classic trisecant lemma states that if X is an integral curve in P
3, then the variety of trisecants

has dimension 1, unless the curve is planar and has degree at least 3, in which case the variety of trisecants
has dimension 2. Several generalizations of this lemma have been considered [1, 2, 4, 7, 9]. In [7], the case
of an integral curve embedded in P

3 is further investigated, leading to a result on the planar sections of
such a curve. On the other hand, in [9], the case of higher dimensional varieties, possibly reducible, is
inquired. For our concern, the main result of [9] is that if m is the dimension of the variety, then the union
of a family of (m + 2)-secant lines has dimension at most m + 1. A further generalization of this result is
given in [1,2,4]. In this latter case, the setting is the following. Let X be an irreducible projective variety
over an algebraically closed field of characteristic zero. For r ≥ 3, if every (r−2)-plane x1, . . . , xr−1, where
the xi are generic points, also meets X in a point xr different from x1, . . . , xr−1, then X is contained in
a linear subspace L, with codimL X ≤ r − 2.

In this paper, our purpose is first to present another derivation of this result for r = 3 and then to
introduce a generalization to nonequidimensional varieties. For the sake of clarity, we shall reformulate
our first problem as follows. Let Z be an equidimensional variety (maybe singular and/or reducible) of
dimension n, other than a linear space, embedded into P

r, where r ≥ n + 1. The variety of trisecant lines
of Z, say V1,3(Z), has dimension strictly less than 2n, unless Z is included in an (n+1)-dimensional linear
space and has degree at least 3, in which case dim V1,3(Z) = 2n. This also implies that if dimV1,3(Z) = 2n,
then Z can be embedded in P

n+1.
Then we inquire the more general case, where Z is not required to be equidimensional. In that case,

let Z be a possibly singular variety of dimension n, which may be neither irreducible nor equidimensional,
embedded into P

r, where r ≥ n+1, and let Y be a proper subvariety of dimension k ≥ 1. Consider now S
being a component of maximal dimension of the closure of {l ∈ G(1, r) | ∃p ∈ Y, q1, q2 ∈ Z\Y, q1, q2, p ∈ l}.
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We show that S has dimension strictly less than n+k, unless the union of lines in S has dimension n+1,
in which case dim S = n+k. In the latter case, if the dimension of the space is strictly greater than n+1,
then the union of lines in S cannot cover the whole space. This is the main result of our work. We also
introduce some examples showing that our bound is strict.

The methods we use to prove these results are purely algebraic and are valid over any algebraically
closed field of characteristic zero. Our reasoning consists basically in inquiring first the local restrictions
on the tangent spaces for the trisecant lines variety being of full dimension. Then the global result is
deduced using the so-called Terracini’s lemma [11].

The paper is organized as follows. First we recall some standard material in order to fix terminology
and notations in Sec. 2. Then we come to our results in Sec. 3. More precisely, in Sec. 3.2, the case of
equidimensional varieties is investigated, while in Sec. 3.3 we deal with the more general case.

2. Notations and Background

In this section, we recall some standard material on incident varieties, which will be used in the sequel.
The ground field is always assumed to be of characteristic zero.

2.1. Variety of Incident Lines. Let G(1, n) = G(2, n+1) be the Grassmannian of lines included in P
n.

Recall that G(1, n) can be canonically embedded in P
N1 , where N1 =

(
2

n+1

)
−1, by the Plücker embedding

and that dim G(1, n) = 2n−2. Hence a line in P
n can be regarded as a point in P

N1 satisfying the so-called
Plücker relations. These relations are quadratic equations that generate a homogeneous ideal, say IG(1,n),
defining G(1, n) as a closed subvariety of P

N1 . Similarly, the Grassmannian G(k, n) gives a parametrization
of the k-dimensional linear subspaces of P

n. As for G(1, n), the Grassmannian G(k, n) can be embedded
into the projective space P

Nk , where Nk =
(
k+1
n+1

)
− 1. Therefore, for a k-dimensional linear subspace K

of P
n, we shall write [K] for the corresponding projective point in P

Nk . The line passing through some
points x and y will be denoted xy.

Definition. Let X ⊂ P
n be an irreducible variety. We define the following variety of incident lines:

∆(X) = {l ∈ G(1, n) | l ∩ X �= ∅}.
The codimension c of X and the dimension of ∆(X) are related by the following lemma.

Lemma 1. Let X ⊂ P
n be an irreducible closed variety of codimension c ≥ 2. Then ∆(X) is an irreducible

subvariety of G(1, n) of dimension 2n − 1 − c.

Proof. Consider the incidence variety

Σ = {(l, p) ∈ G(1, n) × X | p ∈ l} ⊂ ∆(X) × X

endowed with the canonical projections π1 : Σ → ∆(X) and π2 : Σ → X. The generic fiber of π1 is finite
(otherwise it is clear that X = P

n). Thus, dim Σ = dim ∆(X). For all p ∈ X, the fiber π−1
2 (p) is isomorphic

to P
n−1 and has dimension n−1. Therefore, Σ is irreducible and has dimension n−c+n−1 = 2n−c−1, as

shown in [5,10]. Since π1 is surjective and continuous (in Zariski topology), then ∆(X) is also irreducible
and has dimension 2n − c − 1.

The following simple result will be useful in the sequel.

Lemma 2. Let X1 and X2 be two irreducible closed varieties in P
n of codimension greater than or equal

to 2. Then ∆(X1) �⊂ ∆(X2) unless X1 ⊂ X2.

Proof. Assume that ∆(X1) ⊂ ∆(X2) and X1 �⊂ X2. Consider a point p ∈ X1 \X2 and a hyperplane H not
passing through p. Consider the projection π : P

n \ {p} → H, q 
→ qp∩H that maps a point q ∈ P
n \ {p}

to the point of intersection of the line qp with the hyperplane H. The projection is surjective, and so is
π|X2 , because ∆(X1) ⊂ ∆(X2). Thus, dimX2 ≥ n − 1, which is impossible, because codimXi ≥ 2 for
each i.
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2.2. Join Varieties. Consider m < n closed irreducible varieties {Yi}i=1,...,m embedded in P
n with

codimensions ci ≥ 2. Consider the join variety

J = J(Y1, . . . , Ym) = ∆(Y1) ∩ · · · ∩ ∆(Ym)

included in G(1, n). We assume that
∑

i=1,...,m
ci ≤ 2n − 2 + m, so that J is not empty. We shall first

determine the irreducible components of J .
Let U be the open subset of Y1 × · · · × Ym defined by

{(p1, . . . , pm) ∈ Y1 × · · · × Ym | ∃i �= j : pi �= pj}.

Let V be the locally closed set made of the m-tuples in U whose points are collinear. Let s : V → G(1, n)
be the morphism that maps an m-tuple of aligned points to the line they generate. Let S ⊂ G(1, n) be
the closure of the image of s.

First, let us look at the irreducible components of S. These components could be classified in several
classes according to the number of distinct points in the m-tuples that generate them. For example,
consider the case where m = 3. The locally closed subset of Y1×Y2×Y3, made of triplets of three distinct
and collinear points, generates one component of S. Now if Y12 is an irreducible component of Y1 ∩ Y2

not contained in Y3, then the lines generated by a point of Y12 \ Y3 and another point in Y3 form also
an irreducible component of S. Also let Z be an irreducible component of Y1 ∩ Y2 ∩ Y3; then the lines
generated by a point of Z and another point in Y1 are the intersection of the secant variety of Y1 with
∆(Z), and form an irreducible component of S too. In the general case, the following lemma will suffice
for our purpose.

Lemma 3. The irreducible components of J are:
(1) ∆(Z), where Z runs over all irreducible components of Y1 ∩ · · · ∩ Ym;
(2) the irreducible components of S that are not included in any component of the form ∆(Z).

Proof. These sets are all irreducible closed subsets of J . There is a finite number of such sets, and their
union covers J . Thus, the irreducible components of J are certainly some of these sets.

Suppose that for some irreducible component Z of Y1 ∩ · · · ∩ Ym we have ∆(Z) ⊂ S. Let us proceed
similarly to Lemma 2. Consider a point p ∈ Z and a hyperplane H not passing through p. Consider the
projection π : P

n \ {p} → H, q 
→ qp ∩ H that maps a point q ∈ P
n \ {p} to the point of intersection of

the line qp with the hyperplane H. The projection is obviously surjective. Since ∆(Z) ⊂ S, each line l
meeting p is the limit of lines of the form p′q, where p′ ∈ Z and q is some other point of (Y1 ∪ · · · ∪ Ym).
Choosing the points p′ tending to p, we see that l is the limit of lines pq. It follows that the projection of
(Y1 ∪ · · · ∪ Ym) is dense in H. But this is impossible since codim Yi ≥ 2 for each i. Thus, ∆(Z) �⊂ S.

Now by Lemma 2, ∆(Z1) �⊂ ∆(Z2) for any two irreducible components Z1 and Z2 of Y1 ∩ · · · ∩ Ym.
Since the set of lines meeting an irreducible variety is irreducible, ∆(Z) is a maximal irreducible closed
subset of J for every irreducible component Z of Y1 ∩ · · · ∩ Ym.

Every irreducible component S1 of S that is not included in any component of the form ∆(Z) is also
a maximal irreducible closed subset of J .

For simplicity, we shall call the irreducible components of S joining components of J and components
of the form ∆(Z) for some irreducible component Z of Y1 ∩ · · · ∩ Ym intersection components.

We conclude this section by quoting Terracini’s lemma, in the form we shall use later. For this
purpose and throughout the paper, we use the following notations. If X is a projective subvariety of P

n,
then we shall write Tp(X) for the projectively embedded tangent space of X at p. The Zariski tangent
space is denoted Θp(X). Let CX be the affine cone over X; then Tp(X) is the projective space of
one-dimensional subspaces of Θq(CX), where q ∈ A

n+1 is any point lying over p. Hence for a morphism f
between two projective varieties X and Y , which can also be viewed as a morphism between CX and
CY , the differential dfp : Tp(X)\P(ker(φ)) → Tf(p)(Y ) is induced by the differential φ between the Zariski
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tangent spaces Θq(CX) and Θf(q)(CY ). For simplicity, we shall write dfp : Tp(X) → Tf(p)(Y ), while it is
understood that dfp might be defined on a proper subset of Tp(X).

Lemma 4 (Terracini’s lemma). Let X and Y be two irreducible projective varieties embedded in P
n over

an algebraically closed field of characteristic zero. Let W (X, Y ) be the union of the lines in J(X, Y ). Let
z be a point in W (X, Y ) lying neither on X nor on Y . Then the tangent space of W (X, Y ) at z is given
by the following equality :

Tz(W (X, Y )) = 〈Tx(X), Ty(Y )〉,
where (x, y) ∈ X × Y , such that z ∈ 〈x, y〉 = xy and 〈 〉 denotes the linear span.

A slightly more general statement and its proof can be found in [11].

3. Generalizations of the Trisecant Lemma

In this section, we shall introduce two generalizations of the trisecant lemma. The first one is about
equidimensional varieties, while the second one deals with a more general situation.

In terms of join varieties, the classical trisecant lemma and the generalizations we introduce are related
to join components. A similar treatment of intersection components is easy to give and is summarized in
the following lemma, immediately deduced from Lemma 2.

Lemma 5. Let Y1 and Y2 be two distinct irreducible varieties embedded in some projective space. Let
Y be a third irreducible variety. ∆(Y ) cannot contain any intersection component ∆(Z) of J(Y1, Y2) =
∆(Y1) ∩ ∆(Y2), unless Z ⊂ Y .

Before we proceed, we shall prove some results, useful in the sequel.

3.1. Preliminary Properties. The technique of the following proposition is typical for this paper. The
proposition can be viewed as a generalization of a well-known result of Samuel [6, p. 312], which deals
with smooth curves.

Proposition 1. Let X be an irreducible closed subvariety of P
n of dimension k. If there exists L ∈

G(k − 1, n) such that for all points p ∈ U0, where U0 is a dense open set of X and L ⊂ Tp(X), then X is
a k-dimensional linear space containing L.

Proof. Let T X be the closure of
{[Tp(X)] | p ∈ X, p regular}

in G(k, n). T X is the closure of the image of a dense open set of X by the Gauss map. Therefore, T X
is irreducible. Consider the rational map X ��� G(k, n), p 
→ p ∨ L, where ∨ is the join operator [3]
equivalent to the classical exterior product (as in [3], the departure from the classical notation is amply
justified by the geometric meaning of the operator). Let σL be the subvariety of G(k, n) made of the
linear spaces that contain L. Then dimσL = n − k.

Let U be the open set of X made of the regular points of U0 that do not lie on L. Consider the
morphism f : U → σL, p 
→ p∨L. For each p ∈ U , f(p) is simply the tangent space of X at p. Therefore,
the image of f is dense in T X.

Since the ground field is assumed in this article to have characteristic zero, there exists a dense open
set V of X such that for any point p in V , the differential dfp is surjective [6, p. 271].

This differential is simply dfp : Tp(X) → Tf(p)(T X), a 
→ a ∨ L. Therefore, dfp is constant over
Tp(X) \ L and takes the value [Tp(X)] = dfp(p). Thus, dim(T X) = 0. Since T X is irreducible, it
is a single point corresponding to a k-dimensional linear space, say T , containing L. Finally, X ⊂ T ,
dim X = k, and X is closed. Therefore, we have X = T .

Note that this fact does not hold in positive characteristic, as the following example shows. Consider
the curve in P

3 over a field K of characteristic p, defined by the ideal

〈yp − ztp−1, xp − ytp−1〉 ⊂ K[x, y, z, t]
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with t = 0 being the plane at infinity. The tangent space at (x0, y0, z0, t0) is given by the following system
of linear equations:

{tp−1
0 z + (p − 1)z0t

p−2
0 t = 0, tp−1

0 y + (p − 1)y0t
p−2
0 t = 0}.

Any two tangent spaces are parallel, and therefore all of them contain the same point at infinity. However,
the curve is not a line. Note that the point (0, 0, 1, 0) is a singular point of the curve.

The next proposition is used throughout the paper several times. The underlying idea is as follows.
Let L be a k-dimensional linear space. If the tangent space to an irreducible variety at a generic point
always spans together with L a (k + 1)-dimensional linear space, then the variety itself can be included
into a (k + 1)-dimensional linear space containing L.

Proposition 2. Let X be an irreducible closed subset of P
n with dim X = r. If there exists L ∈ G(k, n)

such that for all points p ∈ U0, where U0 is a dense open subset of X, dim(L ∩ Tp(X)) ≥ r − 1, then X
is included in a (k + 1)-dimensional linear space containing L.

Proof. If X ⊂ L, then there is nothing to prove. Therefore, let us assume that X �⊂ L. Let σL ⊂ G(k+1, n)
be the set of (k + 1)-dimensional linear spaces that contain L. Consider the rational map f : X ��� σL,
p 
→ p ∨L. This map is defined over the open set U of regular points in (X \ L) ∩U0. Each such point is
mapped to the (k + 1)-dimensional space generated by p and L. Since dim(Tp(X) ∩ L) = r − 1, we have
the inclusion Tp(X) ⊂ p∨L = f(p) for p ∈ U . Let Y be the closure of f(U) in σL. Thus, Y is irreducible.

Since the ground field is assumed to have characteristic zero, there exists a dense open set V of X
such that for any point p in V , the differential dfp is surjective [6, p. 271].

This differential is simply dfp : Tp(X) → Tf(p)(Y ), a 
→ a ∨ L. Since Tp(X) ⊂ p ∨ L, dfp is constant
over Tp(X) \L and takes the value p ∨L = dfp(p). Thus, dimY = 0. Since Y is irreducible, Y is a single
point corresponding to a (k + 1)-dimensional linear space, say K, containing L. Therefore, X ⊂ K.

This proposition does not hold in positive characteristic. Indeed, over a field of characteristic p, for
the curve in P

3 defined by the ideal 〈ytp−1 − xp, ztp
2−1 − xp2〉, all the tangent lines are parallel and,

therefore, intersect in some point at infinity. But the curve is not a line.
Before we come to investigate our initial question, let us first show, in the case of two varieties

embedded in P
n with n ≥ 3, that the join has necessarily a unique joining component, which has the

required dimension, namely 2n − (c1 + c2).

Lemma 6. Let Y1 and Y2 be two distinct irreducible varieties embedded in P
n. Let ci ≥ 2 be the codi-

mension of Yi. Then the join J = J(Y1, Y2) has a unique joining component S, whose dimension is
2n − (c1 + c2).

Proof. Let ∆ = {(y1, y2) ∈ Y1 × Y2 | y1 = y2}. Let U be the open subset of Y1 × Y2 defined as U =
(Y1 × Y2) \ ∆. Let s : U → G(1, n), (p, q) 
→ pq be the morphism that maps an element of U to the line
it generates. Let S be the closure of s(U) in G(1, n). Since U is irreducible, so is S. It is, therefore,
the unique joining component of J . The general fiber is finite. Thus, dimS = dim U = dim(Y1 × Y2) =
2n − (c1 + c2).

Eventually, we also have the following lemma, which will be useful in the sequel.

Lemma 7. Let Y1 and Y2 be two irreducible varieties embedded in P
n, with dimensions d1 and d2 both

smaller than or equal to n − 2. Let S be the unique joining component of J = J(Y1, Y2). Then dim(S) =
s = d1 + d2.

The union of the lines in S is an irreducible variety of dimension strictly greater than max(d1, d2).
For a generic point p in Yi, the dimension of the variety of lines in S passing through p is d3−i.

Moreover, if there exists an irreducible variety Y of dimension d ≤ max(d1, d2) such that S ⊂ ∆(Y ),
then d = max(d1, d2) and for a generic point p in Y the dimension of the variety of lines in S passing
through p is min(d1, d2).
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Proof. We shall assume, without loss of generality, that d1 ≥ d2.
Step 1. Consider first the incidence variety Σ = {(l, p) ∈ S × P

n | p ∈ l} endowed with the canonical
projections π1 : Σ → S and π2 : Σ → P

n. For all l ∈ S, the fiber π−1
1 (l) is irreducible and has dimension 1

and S is irreducible. Thus, Σ is irreducible and dim Σ = dimS + 1 = s + 1. Let

W = π2(π−1
1 (S)) =

⋃

l∈S

l.

Then W is irreducible, since Σ is irreducible. Since Yi ⊂ W for each i, we see that dim W ≥ max(d1, d2).
Furthermore, the generic fiber of π2 has dimension less than or equal to d2. Indeed, the fiber at a generic
point p is included in {(qp, p) | q ∈ Y2}. Thus, dimW > max(d1, d2).

Step 2. For p ∈ Y1, consider the open set U = Y2 \{p} and the morphism f : U → S, q 
→ pq. Since U
is irreducible, so is f(U). For a generic line l in f(U), the fiber f−1(l) is finite (otherwise Y2 is a cone with
vertex p, which is impossible for a generic p ∈ Y1). Therefore, dim f(U) = dimY2. A similar conclusion
is valid for a generic point of Y2. Therefore, the dimension of the variety of lines in S passing through
a general point in Yi is d3−i.

Step 3. For a point p ∈ Y , let Xp be the variety of lines in S passing through p. Let Z be the
subvariety of Y defined as the set of points for which Xp is not empty. Then S ⊂ ∆(Z).

Let us show that Z is irreducible. Let Z = E ∪F , where E and F are closed subsets of Z. Denote by
S1 and S2 the unique joining components of J(E, Y2) and J(F, Y2), respectively. Then dimS1 = dim E+d2

and dimS2 = dimF + d2. Moreover, S ⊂ S1 ∪S2. Therefore, max(dimE + d2, dim F + d2)) ≥ d1 + d2, so
that max(dim E, dimF ) ≥ d1. However, dim Z ≤ dim Y ≤ d1. We conclude that either E = Z or F = Z,
and dimZ = d1. Thus, Z = Y1 and dimY = d1.

Let S′ be the unique joining component of J(Z, Y2). Then we have S ⊂ S′. But dim S = dim S′ and
both varieties are irreducible closed varieties. Thus, S = S′. By a similar argument as in step 2, we get
that for a generic point p in Y , the dimension of Xp is d2 = min(d1, d2).

3.2. Equidimensional Varieties. We are in a position to present our derivation of the general trisecant
lemma valid for equidimensional varieties. We shall first consider the following situation. Let Y1 and Y2 be
two irreducible varieties embedded in P

n, for some n ∈ 2N + 1. Assume that dim Y1 = dimY2 = k = n−1
2 .

The join J(Y1, Y2) has necessarily a joining component S of dimension n − 1, as shown in Lemma 6. We
will show that if a third irreducible variety Y of the same dimension is such that S ⊂ ∆(Y ), then the
three varieties lie in the same (k +1)-dimensional linear subspace. Then we generalize to equidimensional
varieties.

3.2.1. Two Varieties of Equal Dimension in a Space Whose Dimension Is Odd.

Theorem 1. Let n be an odd number. Consider two distinct irreducible closed varieties Y1 and Y2

in P
3, each of dimension k = n−1

2 . By Lemma 6, consider the joining component S of J(Y1, Y2), having
dimension n − 1. If there exists a third irreducible variety Y of dimension k, distinct from Y1 and Y2,
such that S ⊂ ∆(Y ), then the three varieties lie in the same (k +1)-dimensional linear space, equal to the
union of the lines in S.

Proof. Step 1. Let
W =

⋃

l∈S

l.

By Lemma 7, W has dimension strictly greater than k. Moreover, the same lemma shows that the
dimension of the variety of lines in S passing through a generic point p in Y has dimension k.

Step 2. Let l0 be a generic line in S. Let qi = l0 ∩Yi and p0 = l0 ∩Y . Since l0 is generic, these points
can be assumed to be regular and p0 /∈ Y1 ∪ Y2.

Let σp0 ⊂ G(1, n) be the set of lines passing through p0. In general, Xp0 = σp0 ∩ S has dimension
equal to k.
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Consider now the morphism f : Y1 → σp0 , a 
→ a ∨ p0. It is clear that Xp0 ⊂ f(Y1). Since the
general fiber of f is finite, dimXp0 = dimY1, and f(Y1) is irreducible, we have even the following equality:
Xp0 = f(Y1). Therefore, f can be regarded as a morphism from Y1 to Xp0 : f : Y1 → Xp0 , a 
→ a∨ p. Here
again the expression of the differential of f at q1 is simply given by dfp1 : Tq1(Y1) → Tl0(Xp0), a 
→ a∨ p0.
The line l0 being generic, we shall assume that dim Tl0(Xp0) = dimXp0 = k.

Consider now
H0 =

⋃

l∈Tl0
(Xp0 )

l.

This linear space has dimension k +1. The expression for dfp1 shows that Tq1(Y1) ⊂ H0. Similarly we can
deduce that Tq2(Y2) ⊂ H0. Therefore, the following inequality holds: dim(Tq1(Y1) ∩ Tq2(Y2)) ≥ k − 1.

By the same reasoning, there exists a dense open subset U of Y1 such that for each q ∈ U , we have
dim(Tq(Y1) ∩ Tq2(Y2)) ≥ k − 1.

Step 3. If Y2 is a linear space of dimension k, then by Proposition 2, Y1 is contained in a (k + 1)-di-
mensional linear space containing Y2. A similar conclusion can be done if Y1 is a linear space.

Step 4. Assume now that neither Y1 nor Y2 is a linear space. Applying the reasoning as in step 2 to
Xq1 and Xq2 , which are, respectively, the sets of lines in S passing through q1 and q2, we get the following
facts:

(1) there exists an open subset U1 of Y1 such that for all q ∈ U1, we have dim(Tq(Y1)∩Tp0(Y )) ≥ k−1;
(2) there exists an open subset U2 of Y2 such that for all q ∈ Y2, we have dim(Tq(Y2)∩Tp0(Y )) ≥ k−1.
When k = 1 (this is the case for curves in P

3), these inequalities just mean that the intersections are
not empty. Then by Proposition 2, each Yi lies in a (k+1)-dimensional linear space Qi containing Tp0(Y ).
These two linear spaces Q1 and Q2 are identical, since they are both generated by a line of S, namely l0,
and Tp0(Y ). Let Q denote this linear space.

Then W , being the union of the lines in S, is included in Q. Thus, Y is also included in Q. Then
every line in Q intersects the three varieties Y1, Y2, and Y . Therefore, the Fano variety of Q is the unique
joining component of J(Y1, Y2). The union of these lines is exactly Q.

3.2.2. Generalized Trisecant Lemma for Equidimensional Varieties. Since the proof is still valid if some
or all of the varieties Y1, Y2, and Y are identical, we get a generalization of the trisecant lemma. We shall
use the following notation: for a variety X, V1,3(X) is the closure in G(1, n) of

{l ∈ G(1, n) | ∃p, q, r ∈ X, p �= q, p �= r, q �= r, p, q, r ∈ l}.
Theorem 2 (the first generalization of the trisecant lemma). Let Z be a possibly singular equidimensional
variety (maybe reducible or not) of dimension n, other than a linear space, embedded into P

r, where
r ≥ n + 1. The variety of trisecant lines of Z, i.e., V1,3(Z), has dimension strictly less than 2n, unless Z
is included in an (n+1)-dimensional linear space and has degree at least 3, in which case dim V1,3(Z) = 2n.

Proof. Two cases must be considered.
Case 1. If r < 2n + 1, then we can embed P

r into P
2n+1 by a projective equivalence, so that we are

in the setting of Theorem 1. Then the assertion follows immediately.
Case 2. In the case where r ≥ 2n + 1, let us define s = r − 2n − 1 ≥ 0. We shall prove the result by

induction over s. If s = 0, it is the content of Theorem 1.
Now it remains to show that if the result holds for some s, then it also holds for s + 1. Let p be

a generic point in P
r, where r = 2n+1+ s+1, and let H be any hyperplane in P

r, not passing through p.
Let Z ′ be the projection of Z over H through p. We can canonically identify H with P

2n+1+s. Since the
projection is generic and dimZ < r− 1, the general fiber of the projection π : Z → H is empty. However,
over π(Z), the general fiber is finite and nonempty. Therefore, the dimension of V1,3(Z ′) is also 2n. Then,
by the induction assumption, Z ′ is included in a linear space L′ ⊂ H of dimension n + 1.

Let L be the space generated by p and L′. Then dim L = n + 2 and Z ⊂ L. Since n + 2 < 2n + 1,
for n > 1, we can use the first step of the proof to conclude. Note that for n = 1, the result can be easily
deduced from the classical trisecant lemma.
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This result can also be expressed in the following terms.

Corollary. Let Z be a variety of dimension n. If the variety of trisecant lines V1,3(Z) has dimension 2n,
then Z can be embedded into P

n+1.

3.3. Nonequidimensional Case. In this section, we turn to a more general case. Our purpose is to
generalize Theorem 2 to the case where the variety Z is not equidimensional. As we proceeded before, we
shall first inquire what happens with two irreducible varieties of complementary dimension.

3.3.1. A Two Varieties Statement. Let Y1 and Y2 be two irreducible closed varieties embedded in P
n. Let

us assume that dim Y1 = k and dimY2 = n − 1 − k, where n−1
2 ≤ k ≤ n − 2. The varieties Y1 and Y2

are assumed to be distinct. Let Y be another irreducible variety of dimension at most k, distinct from
Y1 and Y2. By Lemma 6, let S be the joining component of J(Y1, Y2), whose dimension is n − 1. Let W
be the subvariety of P

n being the union of the lines in S. This setting is used throughout Sec. 3.3. Our
purpose is to show that W has dimension k + 1.
The dimension of Y is k.

Lemma 8. Let Y1, Y2, and Y be varieties defined as just above. If S ⊂ ∆(Y ), then the dimension of Y
must be equal to k.

Proof. It is clear by Lemma 7.

We are now in a position to turn to the determination of the dimension of W .
W has dimension k + 1.

Lemma 9. Let Y1, Y2, and Y be varieties as in Lemma 8. Let q1 and q2 be generic points on Y1 and Y2,
respectively. Let p(q1, q2) = q1q2 ∩ Y be an intersection point of the line q1q2 and the variety Y . The
points q1, q2, and p(q1, q2) can be assumed to be regular. Then the tangent spaces Tq1(Y1), Tq2(Y2), and
Tp(q1,q2)(Y ) lie in the same (k + 1)-dimensional linear space.

Proof. Step 1. The points q1, q2, and p(q1, q2) can, indeed, be assumed to be regular, since the set of
singular points of an algebraic variety is a proper closed subvariety [10].

First, let us prove that the line q1q2 and the tangent spaces Tq1(Y ) and Tp(q1,q2)(Y ) lie in the same
(k + 1)-dimensional linear space.

Let σq2 ⊂ G(1, n) be the set of lines passing through q2. In general, Xq2 has dimension equal to k (by
Lemma 7).

Consider now the morphism f : Y1 → σq2 , a 
→ a ∨ q2. For each a ∈ Y1, the line a ∨ q2 lies in S.
Therefore, f can be regarded as a morphism from Y1 to Xq2 : f : Y1 → Xq2 , a 
→ a ∨ q2. Again the
differential of f at q1 is given as follows: dfq1 : Tq1(Y1) → Tq1q2(Xq2), a 
→ a ∨ q2.

Consider now
Hq1,q2 =

⋃

l∈Tq1q2
(Xq2 )

l.

This linear space has dimension k + 1. The expression of dfq1 shows that Tq1(Y1) ⊂ Hq1,q2 . Thus, Hq1,q2

is the (k + 1)-dimensional linear space generated by Tq1(Y1) and the line q1q2:

Hq1,q2 = 〈Tq1(Y1), q1q2〉,
where 〈 〉 denotes the linear span as in Terracini’s lemma. Similarly, one can prove that Tp(q1,q2)(Y ) ⊂
Hq1,q2 .

Step 2. Consider now σp(q1,q2), simply denoted σp below, the set of lines passing through p(q1, q2).
Let Xp = σp ∩ S. Lemma 7 shows that dim Xp = n − k − 1. Let g : Y2 → σp be the morphism that

sends a point a ∈ Y2 to the line a ∨ p, where p = p(q1, q2). Since Xp ⊂ g(Y2), the general fiber of g is
finite, g(Y2) is irreducible, and dimY2 = dimXp, we see that the image of g is simply Xp. Thus, we can
consider the morphism g : Y2 → Xp, a 
→ a ∨ p. The differential of g at q2 gives rise to the morphism
dgq2 : Tq2(Y2) → Tq1q2(Xp) given by a 
→ a ∨ p.
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Let
Kq1,q2 =

⋃

l∈Tq1q2
(Xp)

l

be the union of lines in Tq1q2(Xp). It has dimension n − k. The expression for dgq2 shows that Tq2(Y ) ⊂
Kq1,q2 .

Now let Z1 be the subvariety of Y1 defined as follows: Z1 = {q ∈ Y1 | qp ∈ S}. It can be viewed as
the trace on Y1 of Xp. Let h be the morphism h : Z1 → Xp, a 
→ a ∨ p. Computing the differential of h
at q1, we see that Tq1(Z1) ⊂ Kq1,q2 .

In view of dimTq1(Z1) ≥ n − k − 1, and, in general, q1q2 �⊂ Tq1(Z1), and dimKq1,q2 = n − k, we have
Kq1,q2 = 〈Tq1(Z1), q1q2〉. Since Tq1(Z1) ⊂ Tq1(Y1), we have Kq1,q2 ⊂ Hq1,q2 , whence Tq2(Y2) ⊂ Hq1,q2 .

Thus, Tq1(Y1), Tq2(Y2), and Tp(q1,q2)(Y ), indeed, linearly span a (k + 1)-dimensional linear space.

It is now possible to conclude using Terracini’s lemma.

Theorem 3. Let Y1, Y2, and Y be varieties as in Lemma 8. Then W must have dimension k + 1.

Proof. Consider smooth points q1 ∈ Y1 and q2 ∈ Y2. According to Lemma 9, the tangent spaces Tq1(Y1)
and Tq2(Y2) linearly span, together with the line q1q2, a (k + 1)-dimensional linear space, which we shall
denote Kq1,q2 .

According to Terracini’s lemma (Lemma 4), the tangent space of W at αq1 + q2 for some α �= 0 lies in
Kq1,q2 . Thus, dimW ≤ k + 1. Lemma 7 implies that dim W > k. Therefore, we have dim W = k + 1.

In particular, the theorem shows that if W covers all the space, then there is no variety Y distinct
from Y1 and Y2 that intersects every line in S.
Example.

We shall now proceed to show how one can construct varieties as in Sec. 3.3. For any k such that
n−1

2 < k ≤ n − 2, we can build varieties Y1, Y2, and Y satisfying the following conditions:
(1) dimY1 = dimY = k;
(2) dimY2 = n − 1 − k;
(3) J(Y1, Y2) has a joining component S of dimension n − 1;
(4) S ⊂ ∆(Y ).
For this purpose, let d = k − (n − 1 − k) = 2k − n + 1 > 0. Let m > d be a natural number. Let Z1

be a d-dimensional irreducible variety in A
m, not passing through the origin. Let Z2 be the single point

variety made of the origin of A
m. Let f : A

m → A
m, (a1, . . . , am) 
→ (a1/2, . . . , am/2). Let Z = f(Z1).

Consider now Ŷ1 = Z1 × A
s, Ŷ2 = Z2 × A

s, and Ŷ = Z × A
s.

If we take s = k − d = n − k − 1 and m = n − s = k + 1 > d, then we have the following conditions:
dim Ŷ1 = dim Ŷ = k, dim Ŷ2 = n − k − 1, and Ŷ1, Ŷ2, Ŷ ⊂ A

n.
Now we define Y1, Y2, and Y to be the projective closures of Ŷ1, Ŷ2, and Ŷ . Then by Lemma 6, we

know that J(Y1, Y2) has a joining component S of dimension n − 1. Moreover, by construction we have
S ⊂ ∆(Y ) and W =

⋃
l∈S

l has dimension k + 1.

3.3.2. A General Statement. The proof being true even when Y2 ⊂ Y1 and Y1 = Y , we get the following
consequence, which can be regarded as a generalization of the trisecant lemma as well.

Theorem 4 (the second generalization of the trisecant lemma). Let Z be a possibly singular variety of
dimension n, that may be neither irreducible nor equidimensional, embedded into P

r, where r ≥ n + 1.
Let Y be a proper subvariety of Z of dimension k ≥ 1. Let S be an irreducible component of maximal
dimension of V1,3(Y, Z), where V1,3(Y, Z) is the closure of

{l ∈ G(1, r) | ∃p ∈ Y, q1, q2 ∈ Z \ Y, q1 �= q2, p, q1, q2 ∈ l}.
Then S has dimension strictly less than n+k unless the union of lines in S has dimension n+1, in which
case S has dimension n + k.
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Proof. Step 1. The dimension of S is at most n + k, since n + k is exactly the dimension of the join
J(Y, Z).

Step 2. If r < n + k + 1, then we can embed P
r into P

n+k+1 by a projective equivalence. According
to Theorem 3, if dimS = n + k, then the union of lines in S has dimension n + 1.

Step 3. If r ≥ n+k +1, then let s = r− (n+k +1). If s = 0, the result holds by Theorem 3. Assume
now that the result is true for some s ∈ N; let us prove it for s + 1.

The dimension r of the space can be expressed as r = s + 1 + n + k + 1. Let p be a generic point
in P

s+1+n+k+1 and H be a hyperplane not passing through p. Then let Z ′ (Y ′) be the projection of Z
(respectively, Y ) over H through p. Then Z ′ is embedded into a projective space of dimension s+n+k+1.
The general fiber of the projection π : Z → Z ′ is finite.

Each line in S is projected onto a line of the closure V1,3(Y ′, Z ′) of

{l ∈ G(1, r − 1) | ∃p ∈ Y ′, q1, q2 ∈ Z ′ \ Y ′, q1 �= q2, p, q1, q2 ∈ l}.

Let S′ ⊂ V1,3(Y ′, Z ′) be defined as consisting of those lines that are built by the projection of lines in S.
Since the general fiber of π is finite, we see that dim(S′) = dim(S).

Therefore, if dimS = n + k, then dimS′ = n + k. In that case, since dim J(Y ′, Z ′) = n + k, S′ must
be an irreducible component of maximal dimension of V1,3(Y ′Z ′) ⊂ J(Y ′, Z ′). Thus, by the induction
assumption, W ′ =

⋃
l∈S′

l has dimension n+1 and so dimW = n+1, because the general fiber of π : W → W ′
is finite.

Note that if r > n + 1 and dim(S) = n + k, then the theorem implies that the union of lines in S
cannot cover the whole space.

Example.
We shall now conclude by giving an example of an n-dimensional variety with k-secant lines variety

of dimension 2n − 1, for k ≥ 3. This improves the well-known construction, also presented in [9], of
n-dimensional varieties admitting an (n + 1)-dimensional variety of k-secant lines.

Let p ∈ A
3 be the origin and consider an irreducible curve X1 ⊂ A

3 not passing through p. For
m ∈ N, where m ≥ 2, let Xm be fm(X1), where fm(x, y, z) = (mx, my, mz). For each m ≥ 1, we denote
Ym = Xm×A

n−1. For a given k ≥ 3, we define Zk =
⋃

1≤m≤k

Ym. Then dim Zk = n and Zk admits a family
of k-secant lines whose dimension is 2n − 1.

We can also find an irreducible variety Z containing Zk and having dimension n′ = n + 1. For this
variety, the family of lines has dimension 2n′ − 3.
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