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We describe the automorphism group of the endomorphism semi-
group End(K [x1, . . . , xn]) of ring K [x1, . . . , xn] of polynomials over
an arbitrary field K . A similar result is obtained for automorphism
group of the category of finitely generated free commutative–
associative algebras of the variety C A commutative algebras. This
solves two problems posed by B. Plotkin (2003) [18, Problems 12
and 15].
More precisely, we prove that if ϕ ∈ Aut End(K [x1, . . . , xn]) then
there exists a semi-linear automorphism s : K [x1, . . . , xn] → K [x1,

. . . , xn] such that ϕ(g) = s ◦ g ◦ s−1 for any g ∈ End(K [x1, . . . , xn]).
This extends the result obtained by A. Berzins for an infinite
field K .
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1. Introduction

We describe the group G = Aut End(K [x1, . . . , xn]), where K is an arbitrary field. A similar result
is obtained also for automorphism group of the category of finitely generated free commutative–
associative algebras of the variety commutative algebras. This solves two problems posed by B. Plotkin
[18, Problems 12 and 15].

More precisely, we prove that if ϕ ∈ Aut End(K [x1, . . . , xn]) then there exists a semi-linear auto-
morphism s : K [x1, . . . , xn] → K [x1, . . . , xn] such that ϕ(g) = s ◦ g ◦ s−1 for any g ∈ End(K [x1, . . . , xn])
(see Theorem 3.6). Here “semi-linearity” means that s is a composition of an automorphism of the
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field K and an automorphism of the ring K [x1, . . . , xn]. We note that for an infinite ground field K
such result was obtained earlier by A. Berzins [3].

A problem of description of the group G = Aut End(K [x1, . . . , xn]) is also interesting in the context
of Universal Algebraic Geometry (UAG). Let Θ be a variety of algebras over a field K and F = F (X)

be a free algebra from Θ generated by a finite subset X of some infinite universum X0. We refer to
[17,18] (see also [8]) for the Universal Algebraic Geometry (UAG) notions used in our work.

If an algebra G belongs to Θ one can consider the category of algebraic sets KΘ(G) over G . Objects
of this category are algebraic sets in affine space over G; the category KΘ(G) defines a geometry of
the algebra G in Θ . One of the main problems in UAG is to determine whether two different algebras
G1 and G2 have the same geometry. The coincidence of geometries means that the categories KΘ(G1)

and KΘ(G2) are equivalent. It is known that coincidence of geometries of G1 and G2 is determined by
the structure of the group AutΘ0, where Θ0 is the category of free finitely generated algebras of Θ .
On the other hand, there is a natural relation between the structure of the groups Aut End F and
Aut Θ0. The structure of the latter is determined by the group Aut End F . It should be mentioned that
a problem of investigation of the groups Aut End F , F ∈ Θ , for different varieties Θ is quite interesting
by itself and has been considered in many papers (see [1–3,5,8–11,13–19,23]).

Let C A be the variety of a commutative–associative algebras with 1 over a field K , A =
K [x1, . . . , xn] be a free commutative–associative algebra in C A freely generated over K by a set
X = {x1, . . . , xn}, i.e., a polynomial algebra in variables x1, . . . , xn . In this work we obtain a description
of the group Aut C A0 of automorphisms of the category C A0. Note that this description is a general-
ization of previous result on the structure of Aut C A0 for the variety C A of a commutative–associative
algebras over an infinite field K [3].

Our description is based on new characteristics of endomorphisms of A such as rank of endomor-
phisms of A. We discuss external and internal definitions of this notation. The former is expressed
in terms of the action of the semigroup End A on A, while the latter can be written in terms of the
semigroup itself. This approach allows us to describe the above mentioned properties of endomor-
phisms of A in an invariant manner and paves the way for proof of the main assertions in the paper:
the group Aut End A is generated by semi-inner automorphisms of End A.

Our approach employs this technique (developed in [5,9]) supplemented by algebro-geometric
methods of investigations.

2. On the endomorphism semigroup of a free associative–commutative algebra

2.1. Rank of an endomorphism of polynomial algebra

Let A = K [x1, . . . , xn] be a free commutative–associative algebra over a field K generated by
X = {x1, . . . , xn} (below polynomial algebra over K in variables X ). Earlier, in [5], we defined the en-
domorphism of free associative algebra K 〈x1, . . . , xn〉 of rank 0 and 1. In this section we introduce a
definition of endomorphisms of arbitrary rank m in a polynomial algebra K [x1, . . . , xn].

First, we introduce the “external” and “internal” definitions of rank of endomorphism ϕ of algebra
A and show their equivalence.

Definition 2.1 (“External” definition of an endomorphism of rank m). An endomorphism

ϕ : A → A

has rank m if trdeg(Imϕ) = m, i.e., the transcendence degree of the K -algebra M = Imϕ ⊆ A is equal
to m. We denote this as rk(ϕ) = m. It is evident that there exist endomorphisms of K [x1, . . . , xn]
of arbitrary rank � n. For instance, the identical mapping on K [x1, . . . , xn] is the endomorphism of
rank n.

For the internal definition of rank m endomorphisms, we need to define a congruence on the
semigroup End(A) with respect to a fixed endomorphism ϕ of A.
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Definition 2.2. Endomorphisms ϕ1 and ϕ2 of A are ϕ-equivalent if ϕϕ1 = ϕϕ2. In this case we write
ϕ1 �ϕ ϕ2.

It is clear that �ϕ is an equivalence relation on End A. Let S be the set of all ϕ-equivalences
on End A. We determine the preorder � on the set S as follows. We say that �φ � �ψ , where
φ,ψ ∈ End A, if

φϕ1 = φϕ2 ⇒ ψϕ1 = ψϕ2,

for any ϕ1,ϕ2 ∈ End A. The preorder � can be extended up to the order � on the quotient set
S̃ = S/R under equivalence R , where �φ R �ψ if and only if �φ � �ψ and �ψ � �φ . Denote by �ψR

the R-equivalence class of a relation �ψ .

Definition 2.3. We say that φ � ψ iff �φR � �ψR .

Definition 2.4. We say that φ ≺ ψ if �φR � �ψR and �ψR � �φR .

It is clear that relations � and ≺ are an order and a strong order, respectively, on End A. Note that
the smaller endomorphism ϕ (in the sense of �) corresponds to the stronger equivalence relation ∼ϕ .
The proof of the following lemma is straightforward.

Lemma 2.5. Let ϕ = (ϕ1(�x), . . . , ϕn(�x)) and φ = (ψ1(�x), . . . ,ψn(�x)) be two endomorphisms of K [x1, . . . , xn].
Then

(1) φ ∼ ψ iff for all H(�x) ∈ K [x1, . . . , xn] the condition H(ϕ1(�x), . . . , ϕn(�x)) = 0 is equivalent to H(ψ1(�x),
. . . ,ψn(�x)) = 0.

(2) φ � ψ iff for all H(�x) ∈ K [x1, . . . , xn] the condition H(ϕ1(�x), . . . , ϕn(�x)) = 0 implies H(ψ1(�x), . . . ,
ψn(�x)) = 0.

(3) φ ≺ ψ iff for all H(�x) ∈ K [x1, . . . , xn] the condition H(ϕ1(�x), . . . , ϕn(�x)) = 0 implies H(ψ1(�x), . . . ,
ψn(�x)) = 0 and there exists R(�x) ∈ K [x1, . . . , xn] such that R(ϕ1(�x), . . . , ϕn(�x)) = 0 but H(ψ1(�x), . . . ,
ψn(�x)) = 0.

Definition 2.6 (“Internal” definition of an endomorphism of rank m). An endomorphism ψ : A → A is of
rank m, if maximum of the lengths of all chains of endomorphisms of A of the form

ψ � ψm−1 � · · · � ψ1 � ψ0, (2.1)

is equal to m. If there is no endomorphism ψ such that ψ � ψ0, then ψ has rank 0.

Remark 2.7. If rk(ϕ) = 0, then image of ϕ is the ground field. The definition of endomorphisms of
rank 0 and 1 for associative–commutative algebra is in accordance with the definition for a free
associative algebra given in [5]. The internal definition of rank 0 is pretty similar.

Proposition 2.8. Definitions 2.6 and 2.1 are equivalent.

We precede the proof of this proposition by several lemmas. Denote by An
K an n-dimensional affine

space over the algebraic closure K̄ of the field K . It is clear that An
K � Specm(K [x1, . . . , xn]), where

Specm(K [x1, . . . , xn]) is the set of all maximal ideals of K [x1, . . . , xn]. Let us investigate the algebro-
geometric properties of polynomial endomorphisms of K [x1, . . . , xn] and their relation to polynomial
maps of An

K into itself.
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Each endomorphism ϕ : K [x1, . . . , xn] → K [x1, . . . , xn] such that

ϕ(xi) = ϕi(x1, . . . , xn), where ϕi = ϕi(x1, . . . , xn) ∈ K [x1, . . . , xn],

determines a polynomial map ϕ∗ = (ϕ1, . . . , ϕn) : An
K → An

K of the affine space An
K into itself of the

form

(x1, . . . , xn) → (
ϕ1(x1, . . . , xn), . . . ,ϕn(x1, . . . , xn)

)
. (2.2)

The converse is also true: to each polynomial map ϕ∗ : An
K → An

K of the form (2.2) corresponds to
the above mentioned endomorphism ϕ of the algebra K [x1, . . . , xn]. We will make use of this relation
below.

Denote by Mϕ the variety ϕ∗(An
K ). We shall say that the variety Mϕ corresponds to the endomor-

phism ϕ of the polynomial algebra K [x1, . . . , xn]. The coordinate ring K [Mϕ] of the variety Mϕ is
K [Mϕ] = K [x1, . . . , xn]/I , where

I = {
H(x1, . . . , xn)

∣∣ H
(
ϕ1(�x), . . . ,ϕn(�x)) = 0

}

is the ideal in K [x1, . . . , xn] corresponding to the variety Mϕ . It is clear that K [Mϕ] � K [ϕ1(�x), . . . ,
ϕn(�x)] and dim Mϕ = trdeg K [ϕ1(�x), . . . ,ϕn(�x)].

Lemma 2.9. The variety Mϕ is irreducible.

Proof. Since the affine variety An
K corresponding to the algebra K [x1, . . . , xn] is irreducible and the

image of an irreducible algebraic variety is also irreducible [6,22], the variety Mϕ is irreducible. Hint:
coordinate ring of an image isomorphic to subring of the coordinate ring of the preimage, hence has
no zero divisors. �
Lemma 2.10. Let φ1 , φ2 be endomorphisms of K [x1, . . . , xn] and Mφ1 , Mφ2 be two corresponding varieties,
respectively. The following properties hold:

(1) If φ1 ∼ φ2 , then Mφ1
∼= Mφ2 and the corresponding coordinate rings are isomorphic.

(2) φ1 � φ2 if and only if the coordinate ring of Mφ1 is a quotient ring of the coordinate ring of Mφ2 . In this
case dim Mφ2 � dim Mφ1 , where dim X is the Krull dimension of a variety X. If the quotient ring is proper,
then the inequality is strict.

Proof. (1) By item (3) of Lemma 2.5, the coordinate rings of the varieties Mφ1 and Mφ2 are isomor-
phic. Therefore, the above varieties themselves are isomorphic.

(2) By item (2) of Lemma 2.5, the coordinate ring of the variety Mφ1 is a quotient ring of the
coordinate ring of the variety Mφ2 by some its ideal. As a consequence, dim Mφ1 � dim Mφ2 (see also
[6,22]). �

Let ψ be an endomorphism of K [x1, . . . , xn] of “external” rank m. The last lemma shows that there
exist no chains of endomorphisms ψi of the form (2.1) of length more than m beginning with ψ . It
means that the inner rank of ψ is less or equal than the outer its rank. In order to prove Proposi-
tion 2.8 we need to establish an opposite inequality, i.e., to prove that there exists a chain (2.1) of
length m beginning with ψ .

Lemma 2.11. Notations being as above, let dim Mϕ = m. Then there exists an endomorphism ϕ′ of
K [x1, . . . , xn] such that ϕ′ ≺ ϕ and dim Mϕ′ = m − 1.
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The assertion of this lemma is evident for m = 1: in this case it is sufficient to consider specializa-
tion xi → ξi , ξi ∈ K , into ground field K .

Now we pass to the general case. We need the following lemma:

Lemma 2.12. Let R be a subalgebra of K [x1, . . . , xn] of a transcendence degree m (m � n). Then there exists
an embedding from R into K [x1, . . . , xm].

Remark 2.13. A similar statement for field embeddings was established in [4].

Proof of Lemma 2.12. It is known that any transcendence base of a subalgebra A of an algebra
B can be extended to a transcendence base of the algebra B . Let y1, . . . , ym be a transcendence
base of R . We can complete this base to a base y1, . . . , ym, z1, . . . , zn−m of K [x1, . . . , xn]. It is clear
that the elements z1, . . . , zn−m are algebraically independent over R and they generate a subalgebra
R[z1, . . . , zn−m] of K [x1, . . . , xn]. Therefore, the affine domain R[z1, . . . , zn−m] can be embedded into
an affine domain K [x1, . . . , xm][x1, . . . , xn−m]. However, it is known that if A and B are two domains
such that A[x1, . . . , xs] can be embedded into B[x1, . . . , xs], then A can be embedded into B (see [4]).
Therefore, R can be embedded into the polynomial algebra K [x1, . . . , xm]. �

Now, by Lemma 2.12 one can assume that polynomials ϕ1, . . . , ϕn defining the mapping ϕ belong
to K [x1, . . . , xm] and trdeg(ϕ1, . . . , ϕn) = m, m � n.

Lemma 2.14. Let ϕ1(x1, . . . , xm), . . . , ϕn(x1, . . . , xm), where n � m, be a collection of polynomials from
K [x1, . . . , xm] which generates the subalgebra of K [x1, . . . , xn] of transcendence degree m. Then for any spe-
cialization xm → ξ , ξ ∈ K , except a finite set of values of ξ ∈ K , the algebra K [ϕ1(x1, . . . , xm−1, ξ), . . . ,

ϕn(x1, . . . , xm−1, ξ)] has the transcendence degree m − 1.

Proof. Without loss of generality it is sufficient to consider the case when K is an algebraically
closed field (tensoring over algebraic closure, if necessary). Consider a mapping Φ : Am

K → An+1
K

such that Φ(�x) = (ϕ1(�x), . . . ,ϕn(�x), xm) where �x = (x1, . . . , xm). Denote by M the image of Φ . Since
trdeg(ϕ1, . . . , ϕn) = m and the dimension of image Φ is at most m, we have dim M = m. Now we
consider a projection π : An+1

K → A1
K such that π(z1, . . . , zn, xm) = xm . Denote by π1 the restriction of

π to M . It is clear that π1 is an epimorphic mapping. Further we use the following

Theorem 2.15. (See [6,22].) If f : X → Y is a regular mapping between irreducible varieties X and Y :
f (X) = Y , dim X = n, dim Y = m, then m � n and

(1) dim f −1(y) � n − m for every point y ∈ Y .
(2) There exists a non-empty set U ⊂ Y such that dim f −1(y) = n − m for all y ∈ U .

In our case Y = A1
K , dim Y = 1, dim X = m. Therefore, for all points of A1

K , except points of closed
subvariety T of A1

K , the fiber π−1(ξ) has the dimension m − 1. Therefore,

trdeg K
[

P1(x1, . . . , xm−1, ξ), . . . , Pn(x1, . . . , xm−1, ξ)
] = m − 1,

except a finite set of ξ ∈ K . This concludes the proof of Lemma 2.14. �
Remark 2.16. A proof of Lemma 2.11 follows immediately from the above lemma in the case of an
infinite ground field. Indeed, if a field K is infinite, by Lemma 2.14 we can choose ξ ∈ K such that
ϕ′

1 = ϕ1(x1, x2, . . . , xn−1, ξ), . . . , ϕ′
n = ϕn(x1, . . . , xn−1, ξ) and trdeg K [ϕ′

1(�x), . . . , ϕ′
n(�x)] = m − 1. As a

corollary, we have dim Mϕ′ = k − 1, where ϕ′ = (ϕ′
1, . . . , ϕ

′
n). Hence, our Lemma 2.11 is proven in the

case of an infinite field. This provides a description of the group Aut(End(K [x1, . . . , xn])) for the case
of an infinite ground field K as was obtained earlier by Berzins [3].
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However, in the case of a finite ground field there can be no such small jumps from ϕi to ϕ′
i , such

that dim Mϕ′ = dim Mϕ − 1, for any specialization of variables into a ground field K .

Example 2.17. Let |K | = q and ϕi = ∏n
k=1(xq

k −xk) · xi . It is evident that trdeg(ϕ1, . . . , ϕn) = n. However,
any specialization of ϕi of the form: xn → ξ , ξ ∈ K , yields us ϕ′

i = 0.

If a field K is finite instead of specializations of xn into ground field we consider substitutions into poly-
nomials depending on other variables, in particular, on powers of other variables. We need the following

Theorem 2.18. (See [4].) Letting ξ1, . . . , ξs be algebraic over K [x1, . . . , xm], the polynomials Q i(�t, �x, �ξ), i =
1, . . . ,n, are algebraically independent for some value of set of parameter �t = (t1, . . . , tn) in some extension
field k1 of the ground field k. Then there exist polynomials Ri ∈ Φ[x1], i = 1,2, . . . , r, �R = (R1, . . . , Rr) such
that the set of polynomial

{
Q 1(�t, �x, �ξ), . . . , Q n(�t, �x, �ξ)

}

is algebraically independent. Moreover, if the growth of the sequence

n1 � n2 � · · · � nr

is sufficiently large, we may assume Ri = xni
1 . The above statement is still valid if we replace “k[x1, . . . , xm]” by

“k(x1, . . . , xm)” and “polynomial” for rational function. In this case we can put Ri = x−ni
1 .

Instead of x1 one can take any other variable xi ; Φ = Zp if char K = p and Φ = Z if char K = 0.

We use a special case of this theorem for r = 1 and s = 0, i.e., a variant of this theorem without ξi .
The next assertion is also needed for the proof of Lemma 2.11 in the case of a finite ground field K .

Assertion 2.19. Let Q 1(x1, . . . , xm), . . . , Q n(x1, . . . , xm) be a set of polynomials from K [x1, . . . , xm],
|K | < ∞, and the transcendence degree of the algebra

K
[

Q 1(x1, . . . , xm), . . . , Q n(x1, . . . , xm)
]

equal to m, where 1 < m � n. If r ∈ N is sufficiently large, then

trdeg
(

K
[

Q 1
(
x1, . . . , xr

1

)
, . . . , Q n

(
x1, . . . , xr

1

)]) = m − 1.

Proof. Denote A = K [Q 1(x1, . . . , xm−1, xr
1), . . . , Q n(x1, . . . , xm−1, xr

1)]. It is clear that A ⊆ K [x1, . . . ,

xm−1], i.e., trdeg(A) � m − 1. We have to prove that the opposite inequality is also fulfilled for suffi-
ciently large r. Since

trdeg
(

K
[

Q 1(x1, . . . , xm), . . . , Q n(x1, . . . , xm)
]) = m,

we can choose m algebraically independent polynomials between Q i . Without loss of generality, we
can set that these polynomials are Q 1, . . . , Q m . By Lemma 2.14, there exists η ∈ K̄ , where K̄ is the
algebraic closure of field K , such that

trdeg
(

K̄
[

Q 1(x1, . . . , xm−1, η), . . . , Q m(x1, . . . , xm−1, η)
]) = m − 1.

Without loss of generality, we can suppose that the first m − 1 polynomials Q i(x1, . . . , xm−1, η),
1 � i � m − 1, are algebraically independent over K̄ . By Theorem 2.18, there exists a natural r0, such
that the polynomials
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Q 1
(
x1, . . . , xm−1, xr), . . . , Q m−1

(
x1, . . . , xm−1, xr)

are algebraically independent over K for any r � r0. Since the dimension of the subring K [Q 1(x1,

. . . , xm−1, xr), . . . , Q m−1(x1, . . . , xm−1, xr)] is not less than the dimension of its subring K [Q 1(x1, . . . ,

xm−1, xr), . . . , Q n(x1, . . . , xm−1, xr)], the proof is complete. �
We summarize our results in the following

Assertion 2.20. Let ϕ = (ϕ1(x1, . . . , xn), . . . , ϕn(x1, . . . , xn)) be an endomorphisms of K [x1, . . . , xn] of “inter-
nal” rank m. Then there exists an endomorphism ψ = (ψ1(x1, . . . , xm), . . . ,ψn(x1, . . . , xm)), ψi(x1, . . . , xm) ∈
K [x1, . . . , xm], such that ϕ ∼ ψ . In addition, an endomorphism

ψ ′
(r) = (

ψ1
(
x1, . . . , xm−1, xr

1

)
, . . . ,ψn

(
x1, . . . , xm−1, xr

1

))

has the rank at most m − 1 for any r ∈ N. Moreover, there exists r0 ∈ N such that for all r � r0 holds: ψ ′
(r) ≺ ψ .

As a consequence, ψ ′
(r) ≺ ϕ and an “internal” rank of ψ ′

(r) is equal to m − 1 for all r � r0 .

With these assertions, the proof of Lemma 2.11 is straightforward. Now we are ready to prove
Proposition 2.8.

Proof of Proposition 2.8. Suppose that ϕ has an “internal” rank m, i.e., there exists a maximal chain
of length m beginning with ϕ:

ϕ � ϕm−1 � · · · � ϕ1 ≺ ϕ0. (2.3)

We have a descending chain of the corresponding varieties Mϕi :

Mϕ0 ⊆ Mϕ1 ⊆ · · · ⊆ Mϕm−1 ⊆ Mϕ. (2.4)

The induction argument on the length m of the chain (2.4) leads us to the case m = 0 for which our
assertion is evident. Therefore, the “external” rank of ϕ is also equal to m.

Conversely, let an endomorphism ϕ be of “external” rank m, i.e., trdeg Imϕ = m. By Lemma 2.11,
there exists an endomorphism ψm−1 of K [x1, . . . , xn] such that ψm−1 ≺ ϕ and dim Mψm−1 = m − 1. In
the same way, we can construct a chain of the form (2.3) beginning with ϕ . It is clear that this chain
has the length m, as desired. �

Since the chain (2.1) is invariant under automorphisms of End K [x1, . . . , xn], we have

Corollary 2.21. Let Φ ∈ Aut(End(A)), ψ ∈ End(A), and rk(ψ) = m. Then rk(Φ(ψ)) = m.

Remark 2.22. Below we need endomorphisms of rank 0 and 1. By Definition 2.1, an endomorphism ψ

of A is of rank 0 if ψ(A) = K . An endomorphism ϕ of A is of rank 1 if trdeg(Imϕ) = 1. It is known
[4,21], that every integrally closed subalgebra B of A = K [x1, . . . , xn] of transcendence degree 1 is
isomorphic to a polynomial algebra K [t] in variable t . Taking into account that the integer closure B
of the algebra ϕ(A) in A is an algebra of the same transcendence degree as ϕ(A), we conclude that
the algebra B is isomorphic to a polynomial algebra K [t] in variable t . As a consequence, the algebra
ϕ(A) is a polynomial algebra K [y], where y is an element in K [x1, . . . , xn].
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2.2. Representations of Kronecker semigroup of rank n

Recall the definition of Kronecker endomorphisms of the free associative algebra A.

Definition 2.23. (Cf. [9,11].) Kronecker endomorphisms of A in the base X = {x1, . . . , xn}, xi ∈ A, are
the endomorphisms ei j , i, j ∈ [1n], of A which are determined on free generators xk ∈ X by the rule:
ei j(xk) = δ jkxi , xi ∈ X , i, j,k ∈ [1n] and δ jk is the Kronecker delta.

It is clear that any Kronecker endomorphism of A has rank 1.

Definition 2.24. A semigroup Γn with an adjoint zero element 0 generated by bij , i j ∈ [1n], with
defining relations

bij · bkm = δ jkbim, bij · 0 = 0 · bij = 0

is called a Kronecker semigroup of rank n.

Denote by En a semigroup generated by ei j , i, j ∈ [1n], and an adjoint zero. Clearly, the semigroup
En is a Kronecker semigroup of rank n.

Remark 2.25. We have a notion of the rank of a Kronecker semigroup Γ . Don’t confuse it with the
rank of an endomorphism of A.

Definition 2.26. A representation of a semigroup T in the semigroup End A is a homomorphism ν : T →
End A.

Definition 2.27. Let ρ : Γn → End A be a representation of the Kronecker semigroup Γ of rank n in
End A. We say that the representation ρ is singular if rkρ(bij) = 0 for any i, j ∈ [1n].

In fact, it is sufficient to require that rkρ(b11) = 0.

Proposition 2.28. Let ρ : Γn → End A be a singular representation of the Kronecker semigroup Γ of rank n
in End A and q = ρ · ρ−1 the kernel congruence on Γn. Then Γn/q ∼= A, where A = 〈ϕ〉 is a one-element
semigroup such that ρ(0) = ϕ , ϕ ∈ End A, and rk(ϕ) = 0. Conversely, if ϕ ∈ End A is an endomorphism of
rank 0, then there exists a representation ρ : Γn → End A such that ρ(0) = ϕ .

Proof. From 0 · bij = 0, i, j ∈ [1n], it follows ϕρ(bij) = ϕ , where ρ(0) = ϕ . Since ϕ is the identical
mapping on K and rk(ρ(bij)) = 0, we have ρ(bij) = ϕ for any i, j ∈ [1n]. Thus, Γn/q ∼= A, where
A = 〈ϕ〉.

Conversely, if ϕ is an endomorphism of End A such that rk(ϕ) = 0, define a representation
ρ : Γn → End A by the rule ρ(0) = ρ(bij) = ϕ for all i, j ∈ [1n]. It is clear that we obtained a re-
quired representation ρ . �
Remark 2.29. Let ρ : Γn → End A be a singular representation of the Kronecker semigroup Γn of rank
n in End A such that ρ(0) = ϕ , ϕ ∈ End A, and rk(ϕ) = 0. We can set ϕ(xi) = αi , αi ∈ K . Denote by
ψ : K n → K n the mapping on K n such that ψ(x1, . . . , xn) = (x1 − α1, . . . , xn − αn). Define a represen-
tation ρ̂ : Γn → End A of Γn in End A by the rule ρ̂(0) = ρ̂(bij) = ϕψ for all i, j ∈ [1n]. Then ϕψ = Ô

and ρ̂(0) = Ô , where Ô ∈ End A such that Ô (xi) = 0 for all i ∈ [1n] and Ô (1) = 1.

Proposition 2.30. Let ρ : Γn → End A be a non-singular representation of a Kronecker semigroup Γn. Then,
rk(ρ(bij)) = 1 for all i, j ∈ [1n].
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Proof. We use the above mentioned relationship (2.2) between endomorphisms ϕ : K [x1, . . . , xn] →
K [x1, . . . , xn] of the polynomial algebra K [x1, . . . , xn] and polynomial maps ϕ∗ = (ϕ1, . . . , ϕn) : K n →
K n of the affine space K n into itself, where ϕi(x1, . . . , xn) = ϕ(xi).

Denote ρ(bij) by ϕi j , i, j ∈ [1n]. Let ϕ̄i j be the endomorphisms of the algebra B = K [x1, . . . , xn] of
commutative polynomials in variables x1, . . . , xn induced by the endomorphisms ϕi j of the algebra A.
Clearly, ϕ̄i jϕ̄km = δ jkϕ̄im . For a fix j ∈ [1n] consider ϕ̄ j j as a polynomial mapping from K n into K n ,
i.e., ϕ̄ j j(x1, . . . , xn) = (ϕ̄ j j(x1), . . . , ϕ̄ j j(xn)). Since ϕ̄2

j j = ϕ̄ j j , the mapping ϕ̄ j j has a fixed point in K n .
This point d = (d1, . . . ,dn), di ∈ K , can be chosen arbitrarily from the image of ϕ̄ j j . Therefore, we have
ϕ̄ j j(d1, . . . ,dn) = (d1, . . . ,dn).

Denote by T : K n → K n the polynomial mapping on K n such that T (x1, . . . , xn) = (x1 +d1, . . . , xn +
dn). Let ϕ̃i j = T −1ϕ̄i j T be a mapping K n into itself. Denote by p(k)

i j the element T −1ϕ̄i j T (xk). Since

the mapping ϕ̃ii has the fixed point 0 ∈ K n , the elements p(k)
ii do not have constant terms for any

i,k ∈ [1n]. Now we will prove that the elements p(k)
i j , i, j,k ∈ [1n], also do not have constant terms.

Assume, on the contrary, that there exist i, j,k ∈ [1n], i = j, such that the element p(k)
i j has a constant

term. Since the elements p(m)
j j = T −1ϕ̄ j j T (xm) do not have a constant term for any m, j ∈ [1n], we

obtain

(
T −1ϕ̄ j j T

)(
T −1ϕ̄i j T

)
(xk) = (

T −1ϕ̄ j j T
)

p(k)
i j = 0.

On the other hand, since i = j

(
T −1ϕ̄ j j T

)(
T −1ϕ̄i j T

)
(xk) = (

T −1ϕ̄ j jϕ̄i j T
)
(xk) = 0.

This contradiction proves that the elements p(k)
i j = T −1ϕ̄i j T (xk) do not have a constant term for any

i, j,k ∈ [1n]. As a consequence, the elements T −1ϕi j T (xk) do not have constant terms for any i, j,k ∈
[1n], too.

Denote the mapping T −1ϕi j T : A → A by ϕ̂i j . We now prove that ϕ̂i j(A) is a subalgebra of
K [w] for some w ∈ A. Let I be the ideal of A generated by x1, . . . , xn . Since the elements ϕ̂i j(xk),
i, j,k ∈ [1n], do not have a constant term, ϕ̂i j(I s) ⊆ I s for any s � 1. Now we fix some i, j ∈ [1n]
and consider induced maps ϕ̃

(s)
i j : I s/I s+1 → I s/I s+1 for any s � 1. We intend to prove that Im ϕ̃

(s)
i j

are one-dimensional vector spaces over K . Let s = 1. Then ϕ̃
(1)
i j : I/I2 → I/I2 is a linear mapping

from the vector space I/I2 into itself. Since ϕ̃
(1)
i j ϕ̃

(1)

mk = δ jmϕ̃
(1)

ik , by [11, Lemma 4.7] there exists a ba-

sis z̄r1 = zr + I2, where zr ∈ I , r ∈ [1n], of I/I2 such that ϕ̃
(1)
i j (z̄r1) = δ jr z̄i1. For a fix number s � 2

denote z̄rs = zr + I s+1, r ∈ [1n]. We have ϕ̃
(s)
i j (z̄i1s · · · z̄is s) = δ ji1 · · · δ jis z̄s

is . Thus, ϕ̃
(s)
i j (I s/I s+1) is a one-

dimensional vector space with a basis {z̄s
is}. The latter assertion holds for any s � 2. As a consequence,

we have ϕ̂i j(A) ⊆ K [zi]. Hence, ϕi j(A) is a subalgebra of K [w], where w = T zi . Since the representa-
tion ρ of Γ is non-singular, K ⊂ ϕi j(A). Thus, rk(ϕi j) = rkρ(bij) = 1 for all i, j ∈ [1n]. �
2.3. Bases and subbases of the semigroup End A

Definition 2.31. A set of endomorphisms Be = {e′
i j | e′

i j ∈ End A and e′
i j = Ô , ∀i, j ∈ [1n]} of A is called

a subbase of End A if e′
i je

′
km = δ jke′

im , ∀i, j,k,m ∈ [1n].

Denote by E ′ a semigroup of End A generated by endomorphisms e′
i j and the endomorphism Ô .

By Proposition 2.30, we obtain the following

Corollary 2.32. rk(e′
i j) = 1 for any i, j ∈ [1n].
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We can assume that e′
i j(A) is a subalgebra of K [zi j], i, j ∈ [1n], where zi j ∈ A. For the sake of

simplicity we write zii = zi , i ∈ [1n].

Definition 2.33 (“External” definition of a base collection of End A). We say that the subbase Be is a base
collection of endomorphisms of A (or a base of End A, for short) if Z = {zi | zi ∈ A such that e′

ii(A) ⊆
K [zi], i ∈ [1n]} is a base of A.

Now we show that there exists a subbase of End A that is not its base.

Example 2.34. Let ϕi j : K [x1, x2] → K [x1, x2], where i, j ∈ {1,2}, be endomorphisms of the free
associative–commutative algebra A = K [x1, x2] such that

ϕ11(x1) = x1 + x1x2, ϕ11(x2) = 0, ϕ22(x1) = 0, ϕ22(x2) = x2,

ϕ12(x1) = 0, ϕ12(x2) = x1 + x1x2, ϕ21(x1) = x2, ϕ21(x2) = 0. (2.5)

It is easy to see that rk(ϕi j) = 1 and ϕi jϕkm = δ jkϕim for any i, j,k,m ∈ {1,2}, i.e., the set of
endomorphisms Bϕ = {ϕi j | ϕi j ∈ End A, i, j ∈ {1,2}} is a subbase of the semigroup End A. We will
prove that Bϕ is not its base. It is clear that ϕ11(A) = K [u], where u = x1 + x1x2, and ϕ22(A) =
K [x1]. We can take z1 = u and z2 = x1. The elements z1 and z2 generate the algebra K [x1 + x1x2, x1].
Let us show that K [x1 + x1x2, x2] = K [x1, x2]. If, on the contrary, K [x1 + x1, x2, x2] = K [x1, x2] then
x1 = α(x1 + x1x2) + βx2 + P (u, x2), where deg P (u, x2) � 2 and α,β ∈ K . Hence β = 0, α = 1 and
P (u, x2) = 0. We come to a contradiction. Therefore, the subbase Bϕ is not a base of End A.

“Internal” definition of a base collection of End A is a bit tricky (see [11,9]). It was inspired by
G. Zhitomirski (see [23]).

Definition 2.35 (“Internal” definition of a base collection of End A). The subbase of endomorphisms Be =
{e′

i j | e′
i j ∈ End A, i, j ∈ [1n]} of End A is its base if for any collection of endomorphisms αi : A → A,

∀i ∈ [1n], and any subbase B f = { f ′
i j | i, j ∈ [1n]} of End A there exist endomorphisms ϕ,ψ ∈ End A

such that

αi ◦ f ′
ii = ψ ◦ e′

ii ◦ ϕ, for all i ∈ [1n]. (2.6)

Our aim is to prove the statement similar to Proposition 2.27 in [5].

Proposition 2.36. Internal and external definitions of a base collection of End A are equivalent.

Proof. Let a subbase of endomorphisms Be be a base according Definition 2.33. Since rk( f ′
i j) = 1,

∀i, j ∈ [1n], there exist elements yij ∈ A, i, j ∈ [1n], such that K ⊂ f ′
i j(A(X)) ⊆ K [yij] for all i, j ∈ [1n].

Define endomorphisms ψ and ϕ of A as follows:

ϕ(xi) = zi and ψ(zi) = αi(yi), for all i ∈ [1n],
where e′

ii(A) ⊆ K [zi], zi ∈ A, and yi = yii , ∀i ∈ [1n]. Since Z = 〈zi | zi ∈ A, i ∈ [1n]〉 is a base of A, the
endomorphism ψ is well defined. Now it is easy to check that the condition (2.6) with the given ϕ
and ψ is fulfilled.

Conversely, assume that the condition (2.6) is fulfilled for the subbase Be . Let us prove that Z =
〈zi | zi ∈ A, i ∈ [1n]〉 is a base of A. Choosing αi = eii and f ′

i j = ei j , i, j ∈ [1n], in (2.6), we obtain

eii = ψ ◦ e′
ii ◦ ϕ,
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i.e., ψ(e′
iiϕ(xi)) = xi for any i ∈ [1n]. Denote by ti = e′

iiϕ(xi). We have ψ(ti) = xi . Since A is Hopfian,
i.e., any surjective endomorphism of A into itself is isomorphism, the elements ti , i ∈ [1n], form the
base of A. By Corollary 2.32 and Remark 2.22, K ⊂ e′

ii(A) ⊆ K [zi]. Therefore, there exists a non-scalar
polynomial χi(zi) ∈ K [zi] such that ti = χi(zi). Since ti = χi(zi), i = 1, . . . ,n, forms the base of A, the
elements zi , i = 1, . . . ,n, form a base of A as claimed. �

Now we deduce

Corollary 2.37. Let Φ ∈ Aut End A and E be the subsemigroup of End A generated by the Kronecker endomor-
phisms eij , i, j ∈ [1n] (see Definition 2.23). Then C = {Φ(ei j) | i, j ∈ [1n]} is a base of End A.

Proof. Assume that rk(Φ(ei j)) = 0 for some i, j ∈ [1n]. By Corollary 2.21, we obtain rk(ei j) = 0. We
arrived at a contradiction. Thus, rk(Φ(ei j)) = 0. Since Φ(ei j)Φ(ekm) = δ jkΦ(eim), the set C is a subbase
of End A. It is easy to check that the condition (2.6) is fulfilled for the subbase C . Thus, C is a base of
End A. �
Lemma 2.38. Let Be = {e′

i j | e′
i j ∈ End A, i, j ∈ [1n]} be a base collection of endomorphisms of End A. Then

there exists a base Z ′ = {z′
k | z′

k ∈ A, k ∈ [1n]} of A such that the endomorphisms e′
i j from Be are Kronecker

ones of A in Z ′ .

Proof. With the preceding notation from Definition 2.33 we have that the equality (e′
ii)

2 = e′
ii im-

plies e′
ii(zi) = zi , i ∈ [1n]. Since e′

iie
′
i j(z j) = e′

i j(z j) and K ⊂ e′
ii(A) ⊆ K [zi], there exists a non-scalar

polynomial f j(zi) ∈ K [zi] such that e′
i j(z j) = f j(zi). Similarly, there exists a non-scalar polynomial

gi(z j) ∈ K [z j] such that e′
ji(zi) = gi(z j). We have

z j = e′
j j(z j) = e′

jie
′
i j(z j) = e′

ji

(
f j(zi)

) = f j
(

gi(z j)
)

for all i, j ∈ [1n]
and, in a similar way, zi = gi( f j(zi)) for all i, j ∈ [1n]. Thus f j and gi are linear polynomials over K
in variables zi and z j , respectively. Therefore,

e′
i j(z j) = ai zi + bi, ai,bi ∈ K and ai = 0. (2.7)

Note that e′
i j(zk) = e′

i j(e′
kk(zk)) = 0 if k = j. Now we have for i = j

0 = e′
i j

2
(z j) = e′

i j(ai zi + bi) = e′
i j(bi) = bi,

i.e., e′
i j(z j) = ai zi , ai = 0. Let z′

i = a−1
i zi . We obtain a base Z = {z′

k | z′
k ∈ A, k ∈ [1n]} of A such that

e′
i j(z′

k) = δ jk z′
k , i, j,k ∈ [1n], i.e., e′

i j are Kronecker endomorphisms of A in the base Z ′ . The proof is
completed. �
3. Automorphisms of the semigroup End A

3.1. On the group Aut End A

We need the following notion.

Definition 3.1. (See [7].) Let A1 and A2 be algebras over K from a variety A, δ be an automorphism
of K and ϕ : A1 → A2 be a ring homomorphism of these algebras. A pair (δ,ϕ) is called a semi-linear
homomorphism from A1 to A2 if

ϕ(α · u) = δ(α) · ϕ(u), ∀α ∈ K , ∀u ∈ A1.
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Definition 3.2. (See [17].) An automorphism Φ of the semigroup End A of endomorphisms of A is
called quasi-inner if there exists an adjoined bijection s : A → A such that Φ(ν) = sνs−1, for any ν ∈
End A.

Definition 3.3. (See [17].) A quasi-inner automorphism Φ of End A is called semi-inner if there exists a
field automorphism δ : K → K such that (δ, s) is a semi-linear automorphism of A, i.e., for any α ∈ K
and a,b ∈ A the following conditions hold:

1. s(a + b) = s(a) + s(b),
2. s(a · b) = s(a) · s(b),
3. s(αa) = δ(α)s(a).

We say that the pair (δ, s) defines the semi-inner automorphism Φ of A with the adjoined ring auto-
morphism s. If δ is the identity automorphism of K , we call the automorphism Φ inner.

The description of quasi-inner automorphisms of End A is as follows.

Proposition 3.4. (See [3,9,11].) Let Φ ∈ Aut End A be a quasi-inner automorphism of End A. Then Φ is of
semi-inner automorphisms of End A.

We will use the following fact:

Proposition 3.5. (See [9,11].) Let Φ ∈ Aut End A and E be the subsemigroup of End A generated by eij , i, j ∈
[1n]. Elements of the semigroup Φ(E) are Kronecker endomorphisms of A in some base U = {u1, . . . , un},
ui ∈ A, if and only if Φ is a quasi-inner automorphism of End A.

Now we obtain one of the main results of the paper.

Theorem 3.6. Every automorphism of the group Aut End A is semi-inner.

Proof. By Corollary 2.37, the set of endomorphisms C = {Φ(ei j) | ∀i ∈ [1n]} is a base collection of
endomorphisms of A. By Lemma 2.38, there exists a base S = 〈sk | sk ∈ A, k ∈ [1n]〉 such that the
endomorphisms Φ(ei j) are Kronecker endomorphisms in S . According to Proposition 3.5, we obtain
that Φ is quasi-inner. By virtue of Proposition 3.4, every automorphism of the group Aut End A is
semi-inner and as claimed. �
Remark 3.7. If C A is the category of commutative–associative algebras over a field K , let S C A be the
category with the same objects as in the category C A, morphisms be all pairs ψδ = (ψ, δ) : A → B ,
A, B ∈ Ob S C A, such that ψ : A → B are ring homomorphisms from A to B , δ : K → K are auto-
morphisms of the field K and ψδ(λa) = λδψ(a), a ∈ A. Morphisms ψδ of the category S C A are
called semi-linear homomorphisms (or semi-homomorphisms) from A to B (cf. Definition 3.1). Denote
by SEnd A the semigroup of semi-endomorphisms of A with the usual composition of maps in the
category S C A.

Clearly, that the definitions of endomorphisms of rank 1 and 0 can be transfer to the category
S C A. All results about bases and subbases from Section 2.3 are also true. As a consequence, we
obtain the following

Theorem 3.8. Every automorphism of the group Aut SEnd A is semi-inner.
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4. Automorphisms of the category A◦

Recall the following notions of the category isomorphism and equivalence (cf. [12]). An isomor-
phism ϕ : C → M of categories is a functor ϕ from C to M, which is a bijection both on objects and
morphisms. In other words, there exists a functor ψ : M → C such that ψϕ = 1C and ϕψ = 1M .

Let ϕ1 and ϕ2 be two functors from C1 to C2. A functor isomorphism s : ϕ1 → ϕ2 is a collection of
isomorphisms sD : ϕ1(D) → ϕ2(D) defined for all D ∈ Ob C1 such that for every ν : D → B , ν ∈ Mor C1,
B ∈ Ob C1

sB · ϕ1(ν) = ϕ2(ν) · sD

holds, i.e., the following diagram

ϕ1(D)
sD

ϕ1(ν)

ϕ2(D)

ϕ2(ν)

ϕ1(B)
sB

ϕ2(B)

is commutative. An isomorphism of functors ϕ1 and ϕ2 is denoted by ϕ1 ∼= ϕ2.
An equivalence of categories C and M is a pair of functors ϕ : C → M and ψ : M → C such that

ψϕ ∼= 1C and ϕψ ∼= 1M . If C = M, then we get the notions of automorphism and autoequivalence of
the category C .

For every small category C , denote the group of all its automorphisms by Aut C . We distinguish
the following classes of automorphisms of C .

Definition 4.1. (See [8,15,20].) An automorphism ϕ : C → C is equinumerous if ϕ(D) ∼= D for any object
D ∈ Ob C ; ϕ is stable if ϕ(D) = D for any object D ∈ Ob C ; and ϕ is inner if ϕ and 1C are naturally
isomorphic, i.e., ϕ ∼= 1C .

In other words, an automorphism ϕ is inner if for all D ∈ Ob C there exists an isomorphism
sD : A → ϕ(D) such that

ϕ(ν) = sBνs−1
D : ϕ(D) → ϕ(B)

for any morphism ν ∈ MorC (A, B).

Denote by Eqn Aut C , St Aut C , and Int C the collections of equinumerous, stable, and inner auto-
morphisms of the group Aut C , respectively.

Let Θ be a variety of linear algebras over K . Denote by Θ0 the full subcategory of finitely generated
free algebras F (X), |X | < ∞, of the variety Θ . Consider a constant morphism ν0 : F (X) → F (X) such
that ν0(x) = x0, x0 ∈ F (X), for every x ∈ X .

Theorem 4.2 (Reduction Theorem). (See [8,13,16,20,23].) Let the free algebra F (X) generate a variety Θ ,
and ϕ ∈ St Aut Θ0 . If ϕ acts trivially on the monoid MorΘ0 (F (X), F (X)) and ϕ(ν0) = ν0 , then ϕ is inner, i.e.,
ϕ ∈ Int Θ0 .

Define the notion of a semi-inner automorphism of the category Θ0 of free finitely generated
algebras in the category Θ .

Definition 4.3. (See [15].) An automorphism ϕ ∈ Aut Θ0 is called semi-inner if there exists a family of
semi-isomorphisms {sF (X) = (δ, ϕ̃): F (X) → ϕ̃(F (X)), F (X) ∈ ObΘ0}, where δ ∈ Aut K and ϕ̃ is a ring
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isomorphism from F (X) to ϕ̃(F (X)) such that for any homomorphism ν : F (X) → F (Y ) the following
diagram

F (X)
sF (X)

ν

ϕ̃(F (X))

ϕ(ν)

F (Y )
sF (Y )

ϕ̃(F (Y ))

is commutative.

Further, we will need the following

Proposition 4.4. (See [8,15].) For any equinumerous automorphism ϕ ∈ Aut C there exist a stable automor-
phism ϕS and an inner automorphism ϕI of the category C such that ϕ = ϕSϕI .

Now we give a description of the groups Aut C A◦ over any field. Note that a description of this
group over infinite fields was given in [2].

Theorem 4.5. All automorphisms of the group Aut A◦ of automorphisms of the category C A◦ are semi-inner
automorphisms of the category C A◦ .

Proof. Let ϕ ∈ Aut A◦ . It is clear that ϕ is an equinumerous automorphism. By Proposition 4.4, ϕ can
be represented as a composition of a stable automorphism ϕS and an inner automorphism ϕI . Since
stable automorphisms do not change free algebras from A◦ , we obtain that ϕS ∈ Aut End A. By The-
orem 3.6, ϕS is semi-inner of End A. Using this fact and Reduction Theorem 4.2, we obtain that all
automorphisms of the group Aut C A◦ are semi-inner automorphisms of the category C A◦ . This com-
pletes the proof. �
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