Automorphisms of the endomorphism semigroup of a polynomial algebra

A. Belov-Kanel ${ }^{\text {a }}$, R. Lipyanski ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Bar Ilan University, Ramat Gan, 52900, Israel
b Department of Mathematics, Ben Gurion University, Beer Sheva, 84105, Israel

A R T I C L E I N F O

Article history:

Received 3 June 2009
Available online 5 March 2011
Communicated by Efim Zelmanov

MSC:

08A35
08C05
17B01

Keywords:
Variety of commutative-associative algebras Polynomial algebra
Semi-inner automorphism
Rank endomorphism
Kronecker endomorphism

Abstract

We describe the automorphism group of the endomorphism semigroup $\operatorname{End}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ of ring $K\left[x_{1}, \ldots, x_{n}\right]$ of polynomials over an arbitrary field K. A similar result is obtained for automorphism group of the category of finitely generated free commutativeassociative algebras of the variety $\mathcal{C A}$ commutative algebras. This solves two problems posed by B. Plotkin (2003) [18, Problems 12 and 15]. More precisely, we prove that if $\varphi \in \operatorname{Aut} \operatorname{End}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ then there exists a semi-linear automorphism $s: K\left[x_{1}, \ldots, x_{n}\right] \rightarrow K\left[x_{1}\right.$, $\left.\ldots, x_{n}\right]$ such that $\varphi(g)=s \circ g \circ s^{-1}$ for any $g \in \operatorname{End}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$. This extends the result obtained by A. Berzins for an infinite field K.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We describe the group $G=\operatorname{Aut} \operatorname{End}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$, where K is an arbitrary field. A similar result is obtained also for automorphism group of the category of finitely generated free commutativeassociative algebras of the variety commutative algebras. This solves two problems posed by B. Plotkin [18, Problems 12 and 15].

More precisely, we prove that if $\varphi \in \operatorname{Aut} \operatorname{End}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ then there exists a semi-linear automorphism $s: K\left[x_{1}, \ldots, x_{n}\right] \rightarrow K\left[x_{1}, \ldots, x_{n}\right]$ such that $\varphi(g)=s \circ g \circ s^{-1}$ for any $g \in \operatorname{End}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ (see Theorem 3.6). Here "semi-linearity" means that s is a composition of an automorphism of the

[^0]0021-8693/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2011.01.020
field K and an automorphism of the ring $K\left[x_{1}, \ldots, x_{n}\right]$. We note that for an infinite ground field K such result was obtained earlier by A. Berzins [3].

A problem of description of the group $G=\operatorname{Aut} \operatorname{End}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ is also interesting in the context of Universal Algebraic Geometry (UAG). Let Θ be a variety of algebras over a field K and $F=F(X)$ be a free algebra from Θ generated by a finite subset X of some infinite universum X^{0}. We refer to [17,18] (see also [8]) for the Universal Algebraic Geometry (UAG) notions used in our work.

If an algebra G belongs to Θ one can consider the category of algebraic sets $K_{\Theta}(G)$ over G. Objects of this category are algebraic sets in affine space over G; the category $K_{\Theta}(G)$ defines a geometry of the algebra G in Θ. One of the main problems in UAG is to determine whether two different algebras G_{1} and G_{2} have the same geometry. The coincidence of geometries means that the categories $K_{\Theta}\left(G_{1}\right)$ and $K_{\Theta}\left(G_{2}\right)$ are equivalent. It is known that coincidence of geometries of G_{1} and G_{2} is determined by the structure of the group Aut Θ^{0}, where Θ^{0} is the category of free finitely generated algebras of Θ. On the other hand, there is a natural relation between the structure of the groups Aut End F and Aut Θ^{0}. The structure of the latter is determined by the group Aut End F. It should be mentioned that a problem of investigation of the groups AutEnd $F, F \in \Theta$, for different varieties Θ is quite interesting by itself and has been considered in many papers (see [1-3,5,8-11,13-19,23]).

Let $\mathcal{C A}$ be the variety of a commutative-associative algebras with 1 over a field $K, A=$ $K\left[x_{1}, \ldots, x_{n}\right]$ be a free commutative-associative algebra in $\mathcal{C A}$ freely generated over K by a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$, i.e., a polynomial algebra in variables x_{1}, \ldots, x_{n}. In this work we obtain a description of the group Aut $\mathcal{C} \mathcal{A}^{0}$ of automorphisms of the category $\mathcal{C} \mathcal{A}^{0}$. Note that this description is a generalization of previous result on the structure of Aut $\mathcal{C} \mathcal{A}^{0}$ for the variety $\mathcal{C A}$ of a commutative-associative algebras over an infinite field K [3].

Our description is based on new characteristics of endomorphisms of A such as rank of endomorphisms of A. We discuss external and internal definitions of this notation. The former is expressed in terms of the action of the semigroup End A on A, while the latter can be written in terms of the semigroup itself. This approach allows us to describe the above mentioned properties of endomorphisms of A in an invariant manner and paves the way for proof of the main assertions in the paper: the group Aut End A is generated by semi-inner automorphisms of End A.

Our approach employs this technique (developed in [5,9]) supplemented by algebro-geometric methods of investigations.

2. On the endomorphism semigroup of a free associative-commutative algebra

2.1. Rank of an endomorphism of polynomial algebra

Let $A=K\left[x_{1}, \ldots, x_{n}\right]$ be a free commutative-associative algebra over a field K generated by $X=\left\{x_{1}, \ldots, x_{n}\right\}$ (below polynomial algebra over K in variables X). Earlier, in [5], we defined the endomorphism of free associative algebra $K\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of rank 0 and 1. In this section we introduce a definition of endomorphisms of arbitrary rank m in a polynomial algebra $K\left[x_{1}, \ldots, x_{n}\right]$.

First, we introduce the "external" and "internal" definitions of rank of endomorphism φ of algebra A and show their equivalence.

Definition 2.1 ("External" definition of an endomorphism of rank m). An endomorphism

$$
\varphi: A \rightarrow A
$$

has rank m if $\operatorname{trdeg}(\operatorname{Im} \varphi)=m$, i.e., the transcendence degree of the K-algebra $M=\operatorname{Im} \varphi \subseteq A$ is equal to m. We denote this as $\operatorname{rk}(\varphi)=m$. It is evident that there exist endomorphisms of $K\left[x_{1}, \ldots, x_{n}\right]$ of arbitrary rank $\leqslant n$. For instance, the identical mapping on $K\left[x_{1}, \ldots, x_{n}\right]$ is the endomorphism of rank n.

For the internal definition of rank m endomorphisms, we need to define a congruence on the semigroup $\operatorname{End}(A)$ with respect to a fixed endomorphism φ of A.

Definition 2.2. Endomorphisms φ_{1} and φ_{2} of A are φ-equivalent if $\varphi \varphi_{1}=\varphi \varphi_{2}$. In this case we write $\varphi_{1} \backsim_{\varphi} \varphi_{2}$.

It is clear that \sim_{φ} is an equivalence relation on End A. Let S be the set of all φ-equivalences on End A. We determine the preorder \vDash on the set S as follows. We say that $\sim_{\phi} \sharp \sim_{\psi}$, where $\phi, \psi \in \operatorname{End} A$, if

$$
\phi \varphi_{1}=\phi \varphi_{2} \quad \Rightarrow \quad \psi \varphi_{1}=\psi \varphi_{2}
$$

for any $\varphi_{1}, \varphi_{2} \in \operatorname{End} A$. The preorder \vDash can be extended up to the order \preccurlyeq on the quotient set $\widetilde{S}=S / R$ under equivalence R, where $\sim_{\phi} R \sim_{\psi}$ if and only if $\sim_{\phi} \sharp \sim_{\psi}$ and $\sim_{\psi} \leqslant \sim_{\phi}$. Denote by $\sim_{\psi_{R}}$ the R-equivalence class of a relation \sim_{ψ}.

Definition 2.3. We say that $\phi \preccurlyeq \psi$ iff $\backsim_{\phi_{R}} \preccurlyeq \sim_{\psi_{R}}$.
Definition 2.4. We say that $\phi \prec \psi$ if $\backsim_{\phi_{R}} \preccurlyeq \sim_{\psi_{R}}$ and $\backsim_{\psi_{R}} \nsim \sim_{\phi_{R}}$.
It is clear that relations \preccurlyeq and \prec are an order and a strong order, respectively, on End A. Note that the smaller endomorphism φ (in the sense of \preccurlyeq) corresponds to the stronger equivalence relation \sim_{φ}. The proof of the following lemma is straightforward.

Lemma 2.5. Let $\varphi=\left(\varphi_{1}(\vec{x}), \ldots, \varphi_{n}(\vec{x})\right)$ and $\phi=\left(\psi_{1}(\vec{x}), \ldots, \psi_{n}(\vec{x})\right)$ be two endomorphisms of $K\left[x_{1}, \ldots, x_{n}\right]$. Then
(1) $\phi \sim \psi$ iff for all $H(\vec{x}) \in K\left[x_{1}, \ldots, x_{n}\right]$ the condition $H\left(\varphi_{1}(\vec{x}), \ldots, \varphi_{n}(\vec{x})\right)=0$ is equivalent to $H\left(\psi_{1}(\vec{x})\right.$, $\left.\ldots, \psi_{n}(\vec{x})\right)=0$.
(2) $\phi \preccurlyeq \psi$ iff for all $H(\vec{x}) \in K\left[x_{1}, \ldots, x_{n}\right]$ the condition $H\left(\varphi_{1}(\vec{x}), \ldots, \varphi_{n}(\vec{x})\right)=0$ implies $H\left(\psi_{1}(\vec{x}), \ldots\right.$, $\left.\psi_{n}(\vec{x})\right)=0$.
(3) $\phi \prec \psi$ iff for all $H(\vec{x}) \in K\left[x_{1}, \ldots, x_{n}\right]$ the condition $H\left(\varphi_{1}(\vec{x}), \ldots, \varphi_{n}(\vec{x})\right)=0$ implies $H\left(\psi_{1}(\vec{x}), \ldots\right.$, $\left.\psi_{n}(\vec{x})\right)=0$ and there exists $R(\vec{x}) \in K\left[x_{1}, \ldots, x_{n}\right]$ such that $R\left(\varphi_{1}(\vec{x}), \ldots, \varphi_{n}(\vec{x})\right)=0$ but $H\left(\psi_{1}(\vec{x}), \ldots\right.$, $\left.\psi_{n}(\vec{x})\right) \neq 0$.

Definition 2.6 ("Internal" definition of an endomorphism of rank m). An endomorphism $\psi: A \rightarrow A$ is of rank m, if maximum of the lengths of all chains of endomorphisms of A of the form

$$
\begin{equation*}
\psi \precsim \psi_{m-1} \precsim \cdots \nprec \psi_{1} \precsim \psi_{0}, \tag{2.1}
\end{equation*}
$$

is equal to m. If there is no endomorphism ψ such that $\psi \nprec \nprec \psi_{0}$, then ψ has rank 0 .
Remark 2.7. If $\operatorname{rk}(\varphi)=0$, then image of φ is the ground field. The definition of endomorphisms of rank 0 and 1 for associative-commutative algebra is in accordance with the definition for a free associative algebra given in [5]. The internal definition of rank 0 is pretty similar.

Proposition 2.8. Definitions 2.6 and 2.1 are equivalent.
We precede the proof of this proposition by several lemmas. Denote by \mathbf{A}_{K}^{n} an n-dimensional affine space over the algebraic closure \bar{K} of the field K. It is clear that $\mathbf{A}_{K}^{n} \simeq \operatorname{Specm}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$, where $\operatorname{Specm}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ is the set of all maximal ideals of $K\left[x_{1}, \ldots, x_{n}\right]$. Let us investigate the algebrogeometric properties of polynomial endomorphisms of $K\left[x_{1}, \ldots, x_{n}\right]$ and their relation to polynomial maps of \mathbf{A}_{K}^{n} into itself.

Each endomorphism $\varphi: K\left[x_{1}, \ldots, x_{n}\right] \rightarrow K\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\varphi\left(x_{i}\right)=\varphi_{i}\left(x_{1}, \ldots, x_{n}\right), \quad \text { where } \varphi_{i}=\varphi_{i}\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right] \text {, }
$$

determines a polynomial map $\varphi^{*}=\left(\varphi_{1}, \ldots, \varphi_{n}\right): \mathbf{A}_{K}^{n} \rightarrow \mathbf{A}_{K}^{n}$ of the affine space \mathbf{A}_{K}^{n} into itself of the form

$$
\begin{equation*}
\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(\varphi_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, \varphi_{n}\left(x_{1}, \ldots, x_{n}\right)\right) \tag{2.2}
\end{equation*}
$$

The converse is also true: to each polynomial map $\varphi^{*}: \mathbf{A}_{K}^{n} \rightarrow \mathbf{A}_{K}^{n}$ of the form (2.2) corresponds to the above mentioned endomorphism φ of the algebra $K\left[x_{1}, \ldots, x_{n}\right]$. We will make use of this relation below.

Denote by M_{φ} the variety $\varphi^{*}\left(\mathbf{A}_{K}^{n}\right)$. We shall say that the variety M_{φ} corresponds to the endomorphism φ of the polynomial algebra $K\left[x_{1}, \ldots, x_{n}\right]$. The coordinate ring $K\left[M_{\varphi}\right]$ of the variety M_{φ} is $K\left[M_{\varphi}\right]=K\left[x_{1}, \ldots, x_{n}\right] / I$, where

$$
I=\left\{H\left(x_{1}, \ldots, x_{n}\right) \mid H\left(\varphi_{1}(\vec{x}), \ldots, \varphi_{n}(\vec{x})\right)=0\right\}
$$

is the ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ corresponding to the variety M_{φ}. It is clear that $K\left[M_{\varphi}\right] \simeq K\left[\varphi_{1}(\vec{x}), \ldots\right.$, $\left.\varphi_{n}(\vec{x})\right]$ and $\operatorname{dim} M_{\varphi}=\operatorname{trdeg} K\left[\varphi_{1}(\vec{x}), \ldots, \varphi_{n}(\vec{x})\right]$.

Lemma 2.9. The variety M_{φ} is irreducible.
Proof. Since the affine variety \mathbf{A}_{K}^{n} corresponding to the algebra $K\left[x_{1}, \ldots, x_{n}\right]$ is irreducible and the image of an irreducible algebraic variety is also irreducible [6,22], the variety M_{φ} is irreducible. Hint: coordinate ring of an image isomorphic to subring of the coordinate ring of the preimage, hence has no zero divisors.

Lemma 2.10. Let ϕ_{1}, ϕ_{2} be endomorphisms of $K\left[x_{1}, \ldots, x_{n}\right]$ and $M_{\phi_{1}}, M_{\phi_{2}}$ be two corresponding varieties, respectively. The following properties hold:
(1) If $\phi_{1} \sim \phi_{2}$, then $M_{\phi_{1}} \cong M_{\phi_{2}}$ and the corresponding coordinate rings are isomorphic.
(2) $\phi_{1} \preccurlyeq \phi_{2}$ if and only if the coordinate ring of $M_{\phi_{1}}$ is a quotient ring of the coordinate ring of $M_{\phi_{2}}$. In this case $\operatorname{dim} M_{\phi_{2}} \leqslant \operatorname{dim} M_{\phi_{1}}$, where $\operatorname{dim} X$ is the Krull dimension of a variety X. If the quotient ring is proper, then the inequality is strict.

Proof. (1) By item (3) of Lemma 2.5, the coordinate rings of the varieties $M_{\phi_{1}}$ and $M_{\phi_{2}}$ are isomorphic. Therefore, the above varieties themselves are isomorphic.
(2) By item (2) of Lemma 2.5, the coordinate ring of the variety $M_{\phi_{1}}$ is a quotient ring of the coordinate ring of the variety $M_{\phi_{2}}$ by some its ideal. As a consequence, $\operatorname{dim} M_{\phi_{1}} \leqslant \operatorname{dim} M_{\phi_{2}}$ (see also $[6,22]$).

Let ψ be an endomorphism of $K\left[x_{1}, \ldots, x_{n}\right]$ of "external" rank m. The last lemma shows that there exist no chains of endomorphisms ψ_{i} of the form (2.1) of length more than m beginning with ψ. It means that the inner rank of ψ is less or equal than the outer its rank. In order to prove Proposition 2.8 we need to establish an opposite inequality, i.e., to prove that there exists a chain (2.1) of length m beginning with ψ.

Lemma 2.11. Notations being as above, let $\operatorname{dim} M_{\varphi}=m$. Then there exists an endomorphism φ^{\prime} of $K\left[x_{1}, \ldots, x_{n}\right]$ such that $\varphi^{\prime}<\varphi$ and $\operatorname{dim} M_{\varphi^{\prime}}=m-1$.

The assertion of this lemma is evident for $m=1$: in this case it is sufficient to consider specialization $x_{i} \rightarrow \xi_{i}, \xi_{i} \in K$, into ground field K.

Now we pass to the general case. We need the following lemma:

Lemma 2.12. Let R be a subalgebra of $K\left[x_{1}, \ldots, x_{n}\right]$ of a transcendence degree $m(m \leqslant n)$. Then there exists an embedding from R into $K\left[x_{1}, \ldots, x_{m}\right]$.

Remark 2.13. A similar statement for field embeddings was established in [4].
Proof of Lemma 2.12. It is known that any transcendence base of a subalgebra A of an algebra B can be extended to a transcendence base of the algebra B. Let y_{1}, \ldots, y_{m} be a transcendence base of R. We can complete this base to a base $y_{1}, \ldots, y_{m}, z_{1}, \ldots, z_{n-m}$ of $K\left[x_{1}, \ldots, x_{n}\right]$. It is clear that the elements z_{1}, \ldots, z_{n-m} are algebraically independent over R and they generate a subalgebra $R\left[z_{1}, \ldots, z_{n-m}\right]$ of $K\left[x_{1}, \ldots, x_{n}\right]$. Therefore, the affine domain $R\left[z_{1}, \ldots, z_{n-m}\right]$ can be embedded into an affine domain $K\left[x_{1}, \ldots, x_{m}\right]\left[x_{1}, \ldots, x_{n-m}\right]$. However, it is known that if A and B are two domains such that $A\left[x_{1}, \ldots, x_{s}\right]$ can be embedded into $B\left[x_{1}, \ldots, x_{s}\right]$, then A can be embedded into B (see [4]). Therefore, R can be embedded into the polynomial algebra $K\left[x_{1}, \ldots, x_{m}\right]$.

Now, by Lemma 2.12 one can assume that polynomials $\varphi_{1}, \ldots, \varphi_{n}$ defining the mapping φ belong to $K\left[x_{1}, \ldots, x_{m}\right]$ and $\operatorname{trdeg}\left(\varphi_{1}, \ldots, \varphi_{n}\right)=m, m \leqslant n$.

Lemma 2.14. Let $\varphi_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, \varphi_{n}\left(x_{1}, \ldots, x_{m}\right)$, where $n \geqslant m$, be a collection of polynomials from $K\left[x_{1}, \ldots, x_{m}\right]$ which generates the subalgebra of $K\left[x_{1}, \ldots, x_{n}\right]$ of transcendence degree m. Then for any specialization $x_{m} \rightarrow \xi, \xi \in K$, except a finite set of values of $\xi \in K$, the algebra $K\left[\varphi_{1}\left(x_{1}, \ldots, x_{m-1}, \xi\right), \ldots\right.$, $\left.\varphi_{n}\left(x_{1}, \ldots, x_{m-1}, \xi\right)\right]$ has the transcendence degree $m-1$.

Proof. Without loss of generality it is sufficient to consider the case when K is an algebraically closed field (tensoring over algebraic closure, if necessary). Consider a mapping $\Phi: \mathbf{A}_{K}^{m} \rightarrow \mathbf{A}_{K}^{n+1}$ such that $\Phi(\vec{x})=\left(\varphi_{1}(\vec{x}), \ldots, \varphi_{n}(\vec{x}), x_{m}\right)$ where $\vec{x}=\left(x_{1}, \ldots, x_{m}\right)$. Denote by M the image of Φ. Since $\operatorname{trdeg}\left(\varphi_{1}, \ldots, \varphi_{n}\right)=m$ and the dimension of image Φ is at most m, we have $\operatorname{dim} M=m$. Now we consider a projection $\pi: \mathbf{A}_{K}^{n+1} \rightarrow \mathbf{A}_{K}^{1}$ such that $\pi\left(z_{1}, \ldots, z_{n}, x_{m}\right)=x_{m}$. Denote by π_{1} the restriction of π to M. It is clear that π_{1} is an epimorphic mapping. Further we use the following

Theorem 2.15. (See [6,22].) If $f: X \rightarrow Y$ is a regular mapping between irreducible varieties X and Y : $f(X)=Y, \operatorname{dim} X=n, \operatorname{dim} Y=m$, then $m \leqslant n$ and
(1) $\operatorname{dim} f^{-1}(y) \geqslant n-m$ for every point $y \in Y$.
(2) There exists a non-empty set $U \subset Y$ such that $\operatorname{dim} f^{-1}(y)=n-m$ for all $y \in U$.

In our case $Y=\mathbf{A}_{K}^{1}$, $\operatorname{dim} Y=1$, $\operatorname{dim} X=m$. Therefore, for all points of \mathbf{A}_{K}^{1}, except points of closed subvariety T of \mathbf{A}_{K}^{1}, the fiber $\pi^{-1}(\xi)$ has the dimension $m-1$. Therefore,

$$
\operatorname{trdeg} K\left[P_{1}\left(x_{1}, \ldots, x_{m-1}, \xi\right), \ldots, P_{n}\left(x_{1}, \ldots, x_{m-1}, \xi\right)\right]=m-1
$$

except a finite set of $\xi \in K$. This concludes the proof of Lemma 2.14.

Remark 2.16. A proof of Lemma 2.11 follows immediately from the above lemma in the case of an infinite ground field. Indeed, if a field K is infinite, by Lemma 2.14 we can choose $\xi \in K$ such that $\varphi_{1}^{\prime}=\varphi_{1}\left(x_{1}, x_{2}, \ldots, x_{n-1}, \xi\right), \ldots, \varphi_{n}^{\prime}=\varphi_{n}\left(x_{1}, \ldots, x_{n-1}, \xi\right)$ and $\operatorname{trdeg} K\left[\varphi_{1}^{\prime}(\vec{x}), \ldots, \varphi_{n}^{\prime}(\vec{x})\right]=m-1$. As a corollary, we have $\operatorname{dim} M_{\varphi^{\prime}}=k-1$, where $\varphi^{\prime}=\left(\varphi_{1}^{\prime}, \ldots, \varphi_{n}^{\prime}\right)$. Hence, our Lemma 2.11 is proven in the case of an infinite field. This provides a description of the group $\operatorname{Aut}\left(\operatorname{End}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)\right)$ for the case of an infinite ground field K as was obtained earlier by Berzins [3].

However, in the case of a finite ground field there can be no such small jumps from φ_{i} to φ_{i}^{\prime}, such that $\operatorname{dim} M_{\varphi^{\prime}}=\operatorname{dim} M_{\varphi}-1$, for any specialization of variables into a ground field K.

Example 2.17. Let $|K|=q$ and $\varphi_{i}=\prod_{k=1}^{n}\left(x_{k}^{q}-x_{k}\right) \cdot x_{i}$. It is evident that $\operatorname{trdeg}\left(\varphi_{1}, \ldots, \varphi_{n}\right)=n$. However, any specialization of φ_{i} of the form: $x_{n} \rightarrow \xi, \xi \in K$, yields us $\varphi_{i}^{\prime}=0$.

If a field K is finite instead of specializations of x_{n} into ground field we consider substitutions into polynomials depending on other variables, in particular, on powers of other variables. We need the following

Theorem 2.18. (See [4].) Letting ξ_{1}, \ldots, ξ_{s} be algebraic over $K\left[x_{1}, \ldots, x_{m}\right]$, the polynomials $Q_{i}(\vec{t}, \vec{x}, \vec{\xi}), i=$ $1, \ldots, n$, are algebraically independent for some value of set of parameter $\vec{t}=\left(t_{1}, \ldots, t_{n}\right)$ in some extension field k_{1} of the ground field k. Then there exist polynomials $R_{i} \in \Phi\left[x_{1}\right], i=1,2, \ldots, r, \vec{R}=\left(R_{1}, \ldots, R_{r}\right)$ such that the set of polynomial

$$
\left\{Q_{1}(\vec{t}, \vec{x}, \vec{\xi}), \ldots, Q_{n}(\vec{t}, \vec{x}, \vec{\xi})\right\}
$$

is algebraically independent. Moreover, if the growth of the sequence

$$
n_{1} \ll n_{2} \ll \cdots \ll n_{r}
$$

is sufficiently large, we may assume $R_{i}=x_{1}^{n_{i}}$. The above statement is still valid if we replace " $k\left[x_{1}, \ldots, x_{m}\right]$ " by " $k\left(x_{1}, \ldots, x_{m}\right)$ " and "polynomial" for rational function. In this case we can put $R_{i}=x_{1}^{-n_{i}}$.

Instead of x_{1} one can take any other variable $x_{i} ; \Phi=\mathbb{Z}_{p}$ if char $K=p$ and $\Phi=\mathbb{Z}$ if char $K=0$.
We use a special case of this theorem for $r=1$ and $s=0$, i.e., a variant of this theorem without ξ_{i}. The next assertion is also needed for the proof of Lemma 2.11 in the case of a finite ground field K.

Assertion 2.19. Let $Q_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, Q_{n}\left(x_{1}, \ldots, x_{m}\right)$ be a set of polynomials from $K\left[x_{1}, \ldots, x_{m}\right]$, $|K|<\infty$, and the transcendence degree of the algebra

$$
K\left[Q_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, Q_{n}\left(x_{1}, \ldots, x_{m}\right)\right]
$$

equal to m, where $1<m \leqslant n$. If $r \in \mathbb{N}$ is sufficiently large, then

$$
\operatorname{trdeg}\left(K\left[Q_{1}\left(x_{1}, \ldots, x_{1}^{r}\right), \ldots, Q_{n}\left(x_{1}, \ldots, x_{1}^{r}\right)\right]\right)=m-1 .
$$

Proof. Denote $A=K\left[Q_{1}\left(x_{1}, \ldots, x_{m-1}, x_{1}^{r}\right), \ldots, Q_{n}\left(x_{1}, \ldots, x_{m-1}, x_{1}^{r}\right)\right]$. It is clear that $A \subseteq K\left[x_{1}, \ldots\right.$, x_{m-1}], i.e., $\operatorname{trdeg}(A) \leqslant m-1$. We have to prove that the opposite inequality is also fulfilled for sufficiently large r. Since

$$
\operatorname{trdeg}\left(K\left[Q_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, Q_{n}\left(x_{1}, \ldots, x_{m}\right)\right]\right)=m
$$

we can choose m algebraically independent polynomials between Q_{i}. Without loss of generality, we can set that these polynomials are Q_{1}, \ldots, Q_{m}. By Lemma 2.14, there exists $\eta \in \bar{K}$, where \bar{K} is the algebraic closure of field K, such that

$$
\operatorname{trdeg}\left(\bar{K}\left[Q_{1}\left(x_{1}, \ldots, x_{m-1}, \eta\right), \ldots, Q_{m}\left(x_{1}, \ldots, x_{m-1}, \eta\right)\right]\right)=m-1 .
$$

Without loss of generality, we can suppose that the first $m-1$ polynomials $Q_{i}\left(x_{1}, \ldots, x_{m-1}, \eta\right)$, $1 \leqslant i \leqslant m-1$, are algebraically independent over \bar{K}. By Theorem 2.18 , there exists a natural r_{0}, such that the polynomials

$$
Q_{1}\left(x_{1}, \ldots, x_{m-1}, x^{r}\right), \quad \ldots, \quad Q_{m-1}\left(x_{1}, \ldots, x_{m-1}, x^{r}\right)
$$

are algebraically independent over K for any $r \geqslant r_{0}$. Since the dimension of the subring $K\left[Q_{1}\left(x_{1}\right.\right.$, $\left.\left.\ldots, x_{m-1}, x^{r}\right), \ldots, Q_{m-1}\left(x_{1}, \ldots, x_{m-1}, x^{r}\right)\right]$ is not less than the dimension of its subring $K\left[Q_{1}\left(x_{1}, \ldots\right.\right.$, $\left.\left.x_{m-1}, x^{r}\right), \ldots, Q_{n}\left(x_{1}, \ldots, x_{m-1}, x^{r}\right)\right]$, the proof is complete.

We summarize our results in the following
Assertion 2.20. Let $\varphi=\left(\varphi_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, \varphi_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$ be an endomorphisms of $K\left[x_{1}, \ldots, x_{n}\right]$ of "internal" rank m. Then there exists an endomorphism $\psi=\left(\psi_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, \psi_{n}\left(x_{1}, \ldots, x_{m}\right)\right), \psi_{i}\left(x_{1}, \ldots, x_{m}\right) \in$ $K\left[x_{1}, \ldots, x_{m}\right]$, such that $\varphi \sim \psi$. In addition, an endomorphism

$$
\psi_{(r)}^{\prime}=\left(\psi_{1}\left(x_{1}, \ldots, x_{m-1}, x_{1}^{r}\right), \ldots, \psi_{n}\left(x_{1}, \ldots, x_{m-1}, x_{1}^{r}\right)\right)
$$

has the rank at most $m-1$ for any $r \in \mathbb{N}$. Moreover, there exists $r_{0} \in \mathbb{N}$ such that for all $r \geqslant r_{0}$ holds: $\psi_{(r)}^{\prime} \prec \psi$. As a consequence, $\psi_{(r)}^{\prime} \prec \varphi$ and an "internal" rank of $\psi_{(r)}^{\prime}$ is equal to $m-1$ for all $r \geqslant r_{0}$.

With these assertions, the proof of Lemma 2.11 is straightforward. Now we are ready to prove Proposition 2.8.

Proof of Proposition 2.8. Suppose that φ has an "internal" rank m, i.e., there exists a maximal chain of length m beginning with φ :

$$
\begin{equation*}
\varphi \precsim \varphi_{m-1} \precsim \cdots \precsim \varphi_{1} \prec \varphi_{0} . \tag{2.3}
\end{equation*}
$$

We have a descending chain of the corresponding varieties $M_{\varphi_{i}}$:

$$
\begin{equation*}
M_{\varphi_{0}} \subseteq M_{\varphi_{1}} \subseteq \cdots \subseteq M_{\varphi_{m-1}} \subseteq M_{\varphi} \tag{2.4}
\end{equation*}
$$

The induction argument on the length m of the chain (2.4) leads us to the case $m=0$ for which our assertion is evident. Therefore, the "external" rank of φ is also equal to m.

Conversely, let an endomorphism φ be of "external" rank m, i.e., $\operatorname{trdeg} \operatorname{Im} \varphi=m$. By Lemma 2.11, there exists an endomorphism ψ_{m-1} of $K\left[x_{1}, \ldots, x_{n}\right]$ such that $\psi_{m-1} \prec \varphi$ and $\operatorname{dim} M_{\psi_{m-1}}=m-1$. In the same way, we can construct a chain of the form (2.3) beginning with φ. It is clear that this chain has the length m, as desired.

Since the chain (2.1) is invariant under automorphisms of End $K\left[x_{1}, \ldots, x_{n}\right]$, we have
Corollary 2.21. Let $\Phi \in \operatorname{Aut}(\operatorname{End}(A)), \psi \in \operatorname{End}(A)$, and $\operatorname{rk}(\psi)=m$. Then $\mathrm{rk}(\Phi(\psi))=m$.
Remark 2.22. Below we need endomorphisms of rank 0 and 1. By Definition 2.1, an endomorphism ψ of A is of rank 0 if $\psi(A)=K$. An endomorphism φ of A is of $\operatorname{rank} 1$ if $\operatorname{trdeg}(\operatorname{Im} \varphi)=1$. It is known [4,21], that every integrally closed subalgebra B of $A=K\left[x_{1}, \ldots, x_{n}\right]$ of transcendence degree 1 is isomorphic to a polynomial algebra $K[t]$ in variable t. Taking into account that the integer closure B of the algebra $\varphi(A)$ in A is an algebra of the same transcendence degree as $\varphi(A)$, we conclude that the algebra B is isomorphic to a polynomial algebra $K[t]$ in variable t. As a consequence, the algebra $\varphi(A)$ is a polynomial algebra $K[y]$, where y is an element in $K\left[x_{1}, \ldots, x_{n}\right]$.

2.2. Representations of Kronecker semigroup of rank n

Recall the definition of Kronecker endomorphisms of the free associative algebra A.
Definition 2.23. (Cf. [9,11].) Kronecker endomorphisms of A in the base $X=\left\{x_{1}, \ldots, x_{n}\right\}, x_{i} \in A$, are the endomorphisms $e_{i j}, i, j \in[1 n]$, of A which are determined on free generators $x_{k} \in X$ by the rule: $e_{i j}\left(x_{k}\right)=\delta_{j k} x_{i}, x_{i} \in X, i, j, k \in[1 n]$ and $\delta_{j k}$ is the Kronecker delta.

It is clear that any Kronecker endomorphism of A has rank 1.
Definition 2.24. A semigroup Γ_{n} with an adjoint zero element 0 generated by $b_{i j}, i j \in[1 n]$, with defining relations

$$
b_{i j} \cdot b_{k m}=\delta_{j k} b_{i m}, \quad b_{i j} \cdot 0=0 \cdot b_{i j}=0
$$

is called a Kronecker semigroup of rank n.
Denote by E_{n} a semigroup generated by $e_{i j}, i, j \in[1 n]$, and an adjoint zero. Clearly, the semigroup E_{n} is a Kronecker semigroup of rank n.

Remark 2.25. We have a notion of the rank of a Kronecker semigroup Γ. Don't confuse it with the rank of an endomorphism of A.

Definition 2.26. A representation of a semigroup T in the semigroup End A is a homomorphism $v: T \rightarrow$ End A.

Definition 2.27. Let $\rho: \Gamma_{n} \rightarrow$ End A be a representation of the Kronecker semigroup Γ of rank n in End A. We say that the representation ρ is singular if $\operatorname{rk} \rho\left(b_{i j}\right)=0$ for any $i, j \in[1 n]$.

In fact, it is sufficient to require that $\operatorname{rk} \rho\left(b_{11}\right)=0$.
Proposition 2.28. Let $\rho: \Gamma_{n} \rightarrow$ End A be a singular representation of the Kronecker semigroup Γ of rank n in End A and $q=\rho \cdot \rho^{-1}$ the kernel congruence on Γ_{n}. Then $\Gamma_{n} / q \cong A$, where $A=\langle\varphi\rangle$ is a one-element semigroup such that $\rho(0)=\varphi, \varphi \in \operatorname{End} A$, and $\operatorname{rk}(\varphi)=0$. Conversely, if $\varphi \in \operatorname{End} A$ is an endomorphism of rank 0 , then there exists a representation $\rho: \Gamma_{n} \rightarrow$ End A such that $\rho(0)=\varphi$.

Proof. From $0 \cdot b_{i j}=0, i, j \in[1 n]$, it follows $\varphi \rho\left(b_{i j}\right)=\varphi$, where $\rho(0)=\varphi$. Since φ is the identical mapping on K and $\operatorname{rk}\left(\rho\left(b_{i j}\right)\right)=0$, we have $\rho\left(b_{i j}\right)=\varphi$ for any $i, j \in[1 n]$. Thus, $\Gamma_{n} / q \cong A$, where $A=\langle\varphi\rangle$.

Conversely, if φ is an endomorphism of $\operatorname{End} A$ such that $\operatorname{rk}(\varphi)=0$, define a representation $\rho: \Gamma_{n} \rightarrow$ End A by the rule $\rho(0)=\rho\left(b_{i j}\right)=\varphi$ for all $i, j \in[1 n]$. It is clear that we obtained a required representation ρ.

Remark 2.29. Let $\rho: \Gamma_{n} \rightarrow$ End A be a singular representation of the Kronecker semigroup Γ_{n} of rank n in End A such that $\rho(0)=\varphi, \varphi \in \operatorname{End} A$, and $\operatorname{rk}(\varphi)=0$. We can set $\varphi\left(x_{i}\right)=\alpha_{i}, \alpha_{i} \in K$. Denote by $\psi: K^{n} \rightarrow K^{n}$ the mapping on K^{n} such that $\psi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}-\alpha_{1}, \ldots, x_{n}-\alpha_{n}\right)$. Define a representation $\hat{\rho}: \Gamma_{n} \rightarrow \operatorname{End} A$ of Γ_{n} in End A by the rule $\hat{\rho}(0)=\hat{\rho}\left(b_{i j}\right)=\varphi \psi$ for all $i, j \in[1 n]$. Then $\varphi \psi=\hat{O}$ and $\hat{\rho}(0)=\hat{O}$, where $\hat{O} \in$ End A such that $\hat{O}\left(x_{i}\right)=0$ for all $i \in[1 n]$ and $\hat{O}(1)=1$.

Proposition 2.30. Let $\rho: \Gamma_{n} \rightarrow$ End A be a non-singular representation of a Kronecker semigroup Γ_{n}. Then, $\operatorname{rk}\left(\rho\left(b_{i j}\right)\right)=1$ for all $i, j \in[1 n]$.

Proof. We use the above mentioned relationship (2.2) between endomorphisms $\varphi: K\left[x_{1}, \ldots, x_{n}\right] \rightarrow$ $K\left[x_{1}, \ldots, x_{n}\right]$ of the polynomial algebra $K\left[x_{1}, \ldots, x_{n}\right]$ and polynomial maps $\varphi^{*}=\left(\varphi_{1}, \ldots, \varphi_{n}\right): K^{n} \rightarrow$ K^{n} of the affine space K^{n} into itself, where $\varphi_{i}\left(x_{1}, \ldots, x_{n}\right)=\varphi\left(x_{i}\right)$.

Denote $\rho\left(b_{i j}\right)$ by $\varphi_{i j}, i, j \in[1 n]$. Let $\bar{\varphi}_{i j}$ be the endomorphisms of the algebra $B=K\left[x_{1}, \ldots, x_{n}\right]$ of commutative polynomials in variables x_{1}, \ldots, x_{n} induced by the endomorphisms $\varphi_{i j}$ of the algebra A. Clearly, $\bar{\varphi}_{i j} \bar{\varphi}_{k m}=\delta_{j k} \bar{\varphi}_{i m}$. For a fix $j \in[1 n]$ consider $\bar{\varphi}_{j j}$ as a polynomial mapping from K^{n} into K^{n}, i.e., $\bar{\varphi}_{j j}\left(x_{1}, \ldots, x_{n}\right)=\left(\bar{\varphi}_{j j}\left(x_{1}\right), \ldots, \bar{\varphi}_{j j}\left(x_{n}\right)\right)$. Since $\bar{\varphi}_{j j}^{2}=\bar{\varphi}_{j j}$, the mapping $\bar{\varphi}_{j j}$ has a fixed point in K^{n}. This point $d=\left(d_{1}, \ldots, d_{n}\right), d_{i} \in K$, can be chosen arbitrarily from the image of $\bar{\varphi}_{j j}$. Therefore, we have $\bar{\varphi}_{j j}\left(d_{1}, \ldots, d_{n}\right)=\left(d_{1}, \ldots, d_{n}\right)$.

Denote by $T: K^{n} \rightarrow K^{n}$ the polynomial mapping on K^{n} such that $T\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+d_{1}, \ldots, x_{n}+\right.$ d_{n}). Let $\tilde{\varphi}_{i j}=T^{-1} \bar{\varphi}_{i j} T$ be a mapping K^{n} into itself. Denote by $p_{i j}^{(k)}$ the element $T^{-1} \bar{\varphi}_{i j} T\left(x_{k}\right)$. Since the mapping $\tilde{\varphi}_{i i}$ has the fixed point $0 \in K^{n}$, the elements $p_{i i}^{(k)}$ do not have constant terms for any $i, k \in[1 n]$. Now we will prove that the elements $p_{i j}^{(k)}, i, j, k \in[1 n]$, also do not have constant terms. Assume, on the contrary, that there exist $i, j, k \in[1 n], i \neq j$, such that the element $p_{i j}^{(k)}$ has a constant term. Since the elements $p_{j j}^{(m)}=T^{-1} \bar{\varphi}_{j j} T\left(x_{m}\right)$ do not have a constant term for any $m, j \in[1 n]$, we obtain

$$
\left(T^{-1} \bar{\varphi}_{j j} T\right)\left(T^{-1} \bar{\varphi}_{i j} T\right)\left(x_{k}\right)=\left(T^{-1} \bar{\varphi}_{j j} T\right) p_{i j}^{(k)} \neq 0 .
$$

On the other hand, since $i \neq j$

$$
\left(T^{-1} \bar{\varphi}_{j j} T\right)\left(T^{-1} \bar{\varphi}_{i j} T\right)\left(x_{k}\right)=\left(T^{-1} \bar{\varphi}_{j j} \bar{\varphi}_{i j} T\right)\left(x_{k}\right)=0 .
$$

This contradiction proves that the elements $p_{i j}^{(k)}=T^{-1} \bar{\varphi}_{i j} T\left(x_{k}\right)$ do not have a constant term for any $i, j, k \in[1 n]$. As a consequence, the elements $T^{-1} \varphi_{i j} T\left(x_{k}\right)$ do not have constant terms for any $i, j, k \in$ [1n], too.

Denote the mapping $T^{-1} \varphi_{i j} T: A \rightarrow A$ by $\hat{\varphi}_{i j}$. We now prove that $\hat{\varphi}_{i j}(A)$ is a subalgebra of $K[w]$ for some $w \in A$. Let I be the ideal of A generated by x_{1}, \ldots, x_{n}. Since the elements $\hat{\varphi}_{i j}\left(x_{k}\right)$, $i, j, k \in[1 n]$, do not have a constant term, $\hat{\varphi}_{i j}\left(I^{s}\right) \subseteq I^{s}$ for any $s \geqslant 1$. Now we fix some $i, j \in[1 n]$ and consider induced maps $\tilde{\varphi}_{i j}^{(s)}: I^{s} / I^{s+1} \rightarrow I^{s} / I^{s+1}$ for any $s \geqslant 1$. We intend to prove that $\operatorname{Im} \tilde{\varphi}_{i j}^{(s)}$ are one-dimensional vector spaces over K. Let $s=1$. Then $\tilde{\varphi}_{i j}^{(1)}: I / I^{2} \rightarrow I / I^{2}$ is a linear mapping from the vector space I / I^{2} into itself. Since $\tilde{\varphi}_{i j}^{(1)} \tilde{\varphi}_{m k}^{(1)}=\delta_{j m} \tilde{\varphi}_{i k}^{(1)}$, by [11, Lemma 4.7] there exists a basis $\bar{z}_{r 1}=z_{r}+I^{2}$, where $z_{r} \in I, r \in[1 n]$, of I / I^{2} such that $\tilde{\varphi}_{i j}^{(1)}\left(\bar{z}_{r 1}\right)=\delta_{j r} \bar{z}_{i 1}$. For a fix number $s \geqslant 2$ denote $\bar{z}_{r s}=z_{r}+I^{s+1}, r \in[1 n]$. We have $\tilde{\varphi}_{i j}^{(s)}\left(\bar{z}_{i_{1} s} \cdots \bar{z}_{i_{s} s}\right)=\delta_{j i_{1}} \cdots \delta_{j i_{s}} \bar{z}_{i s}^{s}$. Thus, $\tilde{\varphi}_{i j}^{(s)}\left(I^{s} / I^{s+1}\right)$ is a onedimensional vector space with a basis $\left\{\bar{z}_{i s}^{s}\right\}$. The latter assertion holds for any $s \geqslant 2$. As a consequence, we have $\hat{\varphi}_{i j}(A) \subseteq K\left[z_{i}\right]$. Hence, $\varphi_{i j}(A)$ is a subalgebra of $K[w]$, where $w=T z_{i}$. Since the representation ρ of Γ is non-singular, $K \subset \varphi_{i j}(A)$. Thus, $\operatorname{rk}\left(\varphi_{i j}\right)=\operatorname{rk} \rho\left(b_{i j}\right)=1$ for all $i, j \in[1 n]$.

2.3. Bases and subbases of the semigroup End A

Definition 2.31. A set of endomorphisms $\mathcal{B}_{e}=\left\{e_{i j}^{\prime} \mid e_{i j}^{\prime} \in\right.$ End A and $\left.e_{i j}^{\prime} \neq \hat{O}, \forall i, j \in[1 n]\right\}$ of A is called a subbase of End A if $e_{i j}^{\prime} e_{k m}^{\prime}=\delta_{j k} e_{i m}^{\prime}, \forall i, j, k, m \in[1 n]$.

Denote by E^{\prime} a semigroup of End A generated by endomorphisms $e_{i j}^{\prime}$ and the endomorphism $\hat{0}$. By Proposition 2.30, we obtain the following

Corollary 2.32. $\operatorname{rk}\left(e_{i j}^{\prime}\right)=1$ for any $i, j \in[1 n]$.

We can assume that $e_{i j}^{\prime}(A)$ is a subalgebra of $K\left[z_{i j}\right], i, j \in[1 n]$, where $z_{i j} \in A$. For the sake of simplicity we write $z_{i i}=z_{i}, i \in[1 n]$.

Definition 2.33 ("External" definition of a base collection of End A). We say that the subbase \mathcal{B}_{e} is a base collection of endomorphisms of A (or a base of End A, for short) if $Z=\left\{z_{i} \mid z_{i} \in A\right.$ such that $e_{i i}^{\prime}(A) \subseteq$ $\left.K\left[z_{i}\right], i \in[1 n]\right\}$ is a base of A.

Now we show that there exists a subbase of End A that is not its base.
Example 2.34. Let $\varphi_{i j}: K\left[x_{1}, x_{2}\right] \rightarrow K\left[x_{1}, x_{2}\right]$, where $i, j \in\{1,2\}$, be endomorphisms of the free associative-commutative algebra $A=K\left[x_{1}, x_{2}\right]$ such that

$$
\begin{array}{llll}
\varphi_{11}\left(x_{1}\right)=x_{1}+x_{1} x_{2}, & \varphi_{11}\left(x_{2}\right)=0, & \varphi_{22}\left(x_{1}\right)=0, & \varphi_{22}\left(x_{2}\right)=x_{2}, \\
\varphi_{12}\left(x_{1}\right)=0, \quad \varphi_{12}\left(x_{2}\right)=x_{1}+x_{1} x_{2}, & \varphi_{21}\left(x_{1}\right)=x_{2}, & \varphi_{21}\left(x_{2}\right)=0 . \tag{2.5}
\end{array}
$$

It is easy to see that $\operatorname{rk}\left(\varphi_{i j}\right)=1$ and $\varphi_{i j} \varphi_{k m}=\delta_{j k} \varphi_{i m}$ for any $i, j, k, m \in\{1,2\}$, i.e., the set of endomorphisms $B_{\varphi}=\left\{\varphi_{i j} \mid \varphi_{i j} \in \operatorname{End} A, i, j \in\{1,2\}\right\}$ is a subbase of the semigroup End A. We will prove that B_{φ} is not its base. It is clear that $\varphi_{11}(A)=K[u]$, where $u=x_{1}+x_{1} x_{2}$, and $\varphi_{22}(A)=$ $K\left[x_{1}\right]$. We can take $z_{1}=u$ and $z_{2}=x_{1}$. The elements z_{1} and z_{2} generate the algebra $K\left[x_{1}+x_{1} x_{2}, x_{1}\right]$. Let us show that $K\left[x_{1}+x_{1} x_{2}, x_{2}\right] \neq K\left[x_{1}, x_{2}\right]$. If, on the contrary, $K\left[x_{1}+x_{1}, x_{2}, x_{2}\right]=K\left[x_{1}, x_{2}\right]$ then $x_{1}=\alpha\left(x_{1}+x_{1} x_{2}\right)+\beta x_{2}+P\left(u, x_{2}\right)$, where $\operatorname{deg} P\left(u, x_{2}\right) \geqslant 2$ and $\alpha, \beta \in K$. Hence $\beta=0, \alpha=1$ and $P\left(u, x_{2}\right)=0$. We come to a contradiction. Therefore, the subbase B_{φ} is not a base of End A.
"Internal" definition of a base collection of End A is a bit tricky (see [11,9]). It was inspired by G. Zhitomirski (see [23]).

Definition 2.35 ("Internal" definition of a base collection of End A). The subbase of endomorphisms $\mathcal{B}_{e}=$ $\left\{e_{i j}^{\prime} \mid e_{i j}^{\prime} \in \operatorname{End} A, i, j \in[1 n]\right\}$ of End A is its base if for any collection of endomorphisms $\alpha_{i}: A \rightarrow A$, $\forall i \in[1 n]$, and any subbase $\mathcal{B}_{f}=\left\{f_{i j}^{\prime} \mid i, j \in[1 n]\right\}$ of End A there exist endomorphisms $\varphi, \psi \in$ End A such that

$$
\begin{equation*}
\alpha_{i} \circ f_{i i}^{\prime}=\psi \circ e_{i i}^{\prime} \circ \varphi, \quad \text { for all } i \in[1 n] . \tag{2.6}
\end{equation*}
$$

Our aim is to prove the statement similar to Proposition 2.27 in [5].
Proposition 2.36. Internal and external definitions of a base collection of End A are equivalent.
Proof. Let a subbase of endomorphisms \mathcal{B}_{e} be a base according Definition 2.33. Since $\operatorname{rk}\left(f_{i j}^{\prime}\right)=1$, $\forall i, j \in[1 n]$, there exist elements $y_{i j} \in A, i, j \in[1 n]$, such that $K \subset f_{i j}^{\prime}(A(X)) \subseteq K\left[y_{i j}\right]$ for all $i, j \in[1 n]$. Define endomorphisms ψ and φ of A as follows:

$$
\varphi\left(x_{i}\right)=z_{i} \quad \text { and } \quad \psi\left(z_{i}\right)=\alpha_{i}\left(y_{i}\right), \quad \text { for all } i \in[1 n],
$$

where $e_{i i}^{\prime}(A) \subseteq K\left[z_{i}\right], z_{i} \in A$, and $y_{i}=y_{i i}, \forall i \in[1 n]$. Since $Z=\left\langle z_{i} \mid z_{i} \in A, i \in[1 n]\right\rangle$ is a base of A, the endomorphism ψ is well defined. Now it is easy to check that the condition (2.6) with the given φ and ψ is fulfilled.

Conversely, assume that the condition (2.6) is fulfilled for the subbase \mathcal{B}_{e}. Let us prove that $Z=$ $\left\langle z_{i} \mid z_{i} \in A, i \in[1 n]\right\rangle$ is a base of A. Choosing $\alpha_{i}=e_{i i}$ and $f_{i j}^{\prime}=e_{i j}, i, j \in[1 n]$, in (2.6), we obtain

$$
e_{i i}=\psi \circ e_{i i}^{\prime} \circ \varphi,
$$

i.e., $\psi\left(e_{i i}^{\prime} \varphi\left(x_{i}\right)\right)=x_{i}$ for any $i \in[1 n]$. Denote by $t_{i}=e_{i i}^{\prime} \varphi\left(x_{i}\right)$. We have $\psi\left(t_{i}\right)=x_{i}$. Since A is Hopfian, i.e., any surjective endomorphism of A into itself is isomorphism, the elements $t_{i}, i \in[1 n]$, form the base of A. By Corollary 2.32 and Remark $2.22, K \subset e_{i i}^{\prime}(A) \subseteq K\left[z_{i}\right]$. Therefore, there exists a non-scalar polynomial $\chi_{i}\left(z_{i}\right) \in K\left[z_{i}\right]$ such that $t_{i}=\chi_{i}\left(z_{i}\right)$. Since $t_{i}=\chi_{i}\left(z_{i}\right), i=1, \ldots, n$, forms the base of A, the elements $z_{i}, i=1, \ldots, n$, form a base of A as claimed.

Now we deduce
Corollary 2.37. Let $\Phi \in$ Aut End A and E be the subsemigroup of End A generated by the Kronecker endomorphisms $e_{i j}, i, j \in[1 n]$ (see Definition 2.23). Then $\mathcal{C}=\left\{\Phi\left(e_{i j}\right) \mid i, j \in[1 n]\right\}$ is a base of End A.

Proof. Assume that $\mathrm{rk}\left(\Phi\left(e_{i j}\right)\right)=0$ for some $i, j \in[1 n]$. By Corollary 2.21, we obtain $\operatorname{rk}\left(e_{i j}\right)=0$. We arrived at a contradiction. Thus, $\operatorname{rk}\left(\Phi\left(e_{i j}\right)\right) \neq 0$. Since $\Phi\left(e_{i j}\right) \Phi\left(e_{k m}\right)=\delta_{j k} \Phi\left(e_{i m}\right)$, the set \mathcal{C} is a subbase of End A. It is easy to check that the condition (2.6) is fulfilled for the subbase \mathcal{C}. Thus, \mathcal{C} is a base of End A.

Lemma 2.38. Let $\mathcal{B}_{e}=\left\{e_{i j}^{\prime} \mid e_{i j}^{\prime} \in\right.$ End $\left.A, i, j \in[1 n]\right\}$ be a base collection of endomorphisms of End A. Then there exists a base $Z^{\prime}=\left\{z_{k}^{\prime} \mid z_{k}^{\prime} \in A, k \in[1 n]\right\}$ of A such that the endomorphisms $e_{i j}^{\prime}$ from \mathcal{B}_{e} are Kronecker ones of A in Z^{\prime}.

Proof. With the preceding notation from Definition 2.33 we have that the equality $\left(e_{i i}^{\prime}\right)^{2}=e_{i i}^{\prime}$ implies $e_{i i}^{\prime}\left(z_{i}\right)=z_{i}, i \in[1 n]$. Since $e_{i i}^{\prime} e_{i j}^{\prime}\left(z_{j}\right)=e_{i j}^{\prime}\left(z_{j}\right)$ and $K \subset e_{i i}^{\prime}(A) \subseteq K\left[z_{i}\right]$, there exists a non-scalar polynomial $f_{j}\left(z_{i}\right) \in K\left[z_{i}\right]$ such that $e_{i j}^{\prime}\left(z_{j}\right)=f_{j}\left(z_{i}\right)$. Similarly, there exists a non-scalar polynomial $g_{i}\left(z_{j}\right) \in K\left[z_{j}\right]$ such that $e_{j i}^{\prime}\left(z_{i}\right)=g_{i}\left(z_{j}\right)$. We have

$$
z_{j}=e_{j j}^{\prime}\left(z_{j}\right)=e_{j i}^{\prime} e_{i j}^{\prime}\left(z_{j}\right)=e_{j i}^{\prime}\left(f_{j}\left(z_{i}\right)\right)=f_{j}\left(g_{i}\left(z_{j}\right)\right) \quad \text { for all } i, j \in[1 n]
$$

and, in a similar way, $z_{i}=g_{i}\left(f_{j}\left(z_{i}\right)\right)$ for all $i, j \in[1 n]$. Thus f_{j} and g_{i} are linear polynomials over K in variables z_{i} and z_{j}, respectively. Therefore,

$$
\begin{equation*}
e_{i j}^{\prime}\left(z_{j}\right)=a_{i} z_{i}+b_{i}, \quad a_{i}, b_{i} \in K \text { and } a_{i} \neq 0 \tag{2.7}
\end{equation*}
$$

Note that $e_{i j}^{\prime}\left(z_{k}\right)=e_{i j}^{\prime}\left(e_{k k}^{\prime}\left(z_{k}\right)\right)=0$ if $k \neq j$. Now we have for $i \neq j$

$$
0=e_{i j}^{\prime 2}\left(z_{j}\right)=e_{i j}^{\prime}\left(a_{i} z_{i}+b_{i}\right)=e_{i j}^{\prime}\left(b_{i}\right)=b_{i}
$$

i.e., $e_{i j}^{\prime}\left(z_{j}\right)=a_{i} z_{i}, a_{i} \neq 0$. Let $z_{i}^{\prime}=a_{i}^{-1} z_{i}$. We obtain a base $Z=\left\{z_{k}^{\prime} \mid z_{k}^{\prime} \in A, k \in[1 n]\right\}$ of A such that $e_{i j}^{\prime}\left(z_{k}^{\prime}\right)=\delta_{j k} z_{k}^{\prime}, i, j, k \in[1 n]$, i.e., $e_{i j}^{\prime}$ are Kronecker endomorphisms of A in the base Z^{\prime}. The proof is completed.

3. Automorphisms of the semigroup End A

3.1. On the group Aut End A

We need the following notion.
Definition 3.1. (See [7].) Let A_{1} and A_{2} be algebras over K from a variety \mathcal{A}, δ be an automorphism of K and $\varphi: A_{1} \rightarrow A_{2}$ be a ring homomorphism of these algebras. A pair (δ, φ) is called a semi-linear homomorphism from A_{1} to A_{2} if

$$
\varphi(\alpha \cdot u)=\delta(\alpha) \cdot \varphi(u), \quad \forall \alpha \in K, \forall u \in A_{1}
$$

Definition 3.2. (See [17].) An automorphism Φ of the semigroup End A of endomorphisms of A is called quasi-inner if there exists an adjoined bijection $s: A \rightarrow A$ such that $\Phi(\nu)=s \nu s^{-1}$, for any $\nu \in$ End A.

Definition 3.3. (See [17].) A quasi-inner automorphism Φ of End A is called semi-inner if there exists a field automorphism $\delta: K \rightarrow K$ such that (δ, s) is a semi-linear automorphism of A, i.e., for any $\alpha \in K$ and $a, b \in A$ the following conditions hold:

1. $s(a+b)=s(a)+s(b)$,
2. $s(a \cdot b)=s(a) \cdot s(b)$,
3. $s(\alpha a)=\delta(\alpha) s(a)$.

We say that the pair (δ, s) defines the semi-inner automorphism Φ of A with the adjoined ring automorphism s. If δ is the identity automorphism of K, we call the automorphism Φ inner.

The description of quasi-inner automorphisms of End A is as follows.

Proposition 3.4. (See [3,9,11].) Let $\Phi \in$ Aut End A be a quasi-inner automorphism of End A. Then Φ is of semi-inner automorphisms of End A.

We will use the following fact:
Proposition 3.5. (See [9,11].) Let $\Phi \in$ Aut End A and E be the subsemigroup of End A generated by $e_{i j}, i, j \in$ [1n]. Elements of the semigroup $\Phi(E)$ are Kronecker endomorphisms of A in some base $U=\left\{u_{1}, \ldots, u_{n}\right\}$, $u_{i} \in A$, if and only if Φ is a quasi-inner automorphism of End A.

Now we obtain one of the main results of the paper.

Theorem 3.6. Every automorphism of the group Aut End A is semi-inner.
Proof. By Corollary 2.37, the set of endomorphisms $\mathcal{C}=\left\{\Phi\left(e_{i j}\right) \mid \forall i \in[1 n]\right\}$ is a base collection of endomorphisms of A. By Lemma 2.38, there exists a base $S=\left\langle s_{k} \mid s_{k} \in A, k \in[1 n]\right\rangle$ such that the endomorphisms $\Phi\left(e_{i j}\right)$ are Kronecker endomorphisms in S. According to Proposition 3.5, we obtain that Φ is quasi-inner. By virtue of Proposition 3.4, every automorphism of the group Aut End A is semi-inner and as claimed.

Remark 3.7. If $\mathcal{C A}$ is the category of commutative-associative algebras over a field K, let $\mathcal{S C A}$ be the category with the same objects as in the category $\mathcal{C} \mathcal{A}$, morphisms be all pairs $\psi_{\delta}=(\psi, \delta): A \rightarrow B$, $A, B \in \operatorname{Ob} \mathcal{S C} \mathcal{A}$, such that $\psi: A \rightarrow B$ are ring homomorphisms from A to $B, \delta: K \rightarrow K$ are automorphisms of the field K and $\psi_{\delta}(\lambda a)=\lambda^{\delta} \psi(a), a \in A$. Morphisms ψ_{δ} of the category $\mathcal{S C} \mathcal{A}$ are called semi-linear homomorphisms (or semi-homomorphisms) from A to B (cf. Definition 3.1). Denote by SEnd A the semigroup of semi-endomorphisms of A with the usual composition of maps in the category $\mathcal{S C A}$.

Clearly, that the definitions of endomorphisms of rank 1 and 0 can be transfer to the category $\mathcal{S C A}$. All results about bases and subbases from Section 2.3 are also true. As a consequence, we obtain the following

Theorem 3.8. Every automorphism of the group Aut SEnd A is semi-inner.

4. Automorphisms of the category \mathcal{A}°

Recall the following notions of the category isomorphism and equivalence (cf. [12]). An isomorphism $\varphi: \mathcal{C} \rightarrow \mathcal{M}$ of categories is a functor φ from \mathcal{C} to \mathcal{M}, which is a bijection both on objects and morphisms. In other words, there exists a functor $\psi: \mathcal{M} \rightarrow \mathcal{C}$ such that $\psi \varphi=1_{\mathcal{C}}$ and $\varphi \psi=1_{\mathcal{M}}$.

Let φ_{1} and φ_{2} be two functors from \mathcal{C}_{1} to \mathcal{C}_{2}. A functor isomorphism $\mathrm{s}: \varphi_{1} \rightarrow \varphi_{2}$ is a collection of isomorphisms $s_{D}: \varphi_{1}(D) \rightarrow \varphi_{2}(D)$ defined for all $D \in \operatorname{Ob} \mathcal{C}_{1}$ such that for every $v: D \rightarrow B, v \in \operatorname{Mor} \mathcal{C}_{1}$, $B \in \mathrm{Ob}_{1}$

$$
s_{B} \cdot \varphi_{1}(\nu)=\varphi_{2}(\nu) \cdot s_{D}
$$

holds, i.e., the following diagram

is commutative. An isomorphism of functors φ_{1} and φ_{2} is denoted by $\varphi_{1} \cong \varphi_{2}$.
An equivalence of categories \mathcal{C} and \mathcal{M} is a pair of functors $\varphi: \mathcal{C} \rightarrow \mathcal{M}$ and $\psi: \mathcal{M} \rightarrow \mathcal{C}$ such that $\psi \varphi \cong 1_{\mathcal{C}}$ and $\varphi \psi \cong 1_{\mathcal{M}}$. If $\mathcal{C}=\mathcal{M}$, then we get the notions of automorphism and autoequivalence of the category \mathcal{C}.

For every small category \mathcal{C}, denote the group of all its automorphisms by Aut \mathcal{C}. We distinguish the following classes of automorphisms of \mathcal{C}.

Definition 4.1. (See [8,15,20].) An automorphism $\varphi: \mathcal{C} \rightarrow \mathcal{C}$ is equinumerous if $\varphi(D) \cong D$ for any object $D \in \mathrm{Ob} \mathcal{C}$; φ is stable if $\varphi(D)=D$ for any object $D \in \mathrm{Ob} \mathcal{C}$; and φ is inner if φ and $1_{\mathcal{C}}$ are naturally isomorphic, i.e., $\varphi \cong 1_{\mathcal{C}}$.

In other words, an automorphism φ is inner if for all $D \in \mathrm{Ob} \mathcal{C}$ there exists an isomorphism $s_{D}: A \rightarrow \varphi(D)$ such that

$$
\varphi(\nu)=s_{B} \nu s_{D}^{-1}: \varphi(D) \rightarrow \varphi(B)
$$

for any morphism $v \in \operatorname{Mor}_{\mathcal{C}}(A, B)$.
Denote by Eqn Aut \mathcal{C}, St Aut \mathcal{C}, and $\operatorname{Int} \mathcal{C}$ the collections of equinumerous, stable, and inner automorphisms of the group Aut \mathcal{C}, respectively.

Let Θ be a variety of linear algebras over K. Denote by Θ^{0} the full subcategory of finitely generated free algebras $F(X),|X|<\infty$, of the variety Θ. Consider a constant morphism $\nu_{0}: F(X) \rightarrow F(X)$ such that $\nu_{0}(x)=x_{0}, x_{0} \in F(X)$, for every $x \in X$.

Theorem 4.2 (Reduction Theorem). (See $[8,13,16,20,23]$.) Let the free algebra $F(X)$ generate a variety Θ, and $\varphi \in \operatorname{St~Aut~} \Theta^{0}$. If φ acts trivially on the monoid $\operatorname{Mor}_{\Theta^{0}}(F(X), F(X))$ and $\varphi\left(\nu_{0}\right)=\nu_{0}$, then φ is inner, i.e., $\varphi \in \operatorname{Int} \Theta^{0}$.

Define the notion of a semi-inner automorphism of the category Θ^{0} of free finitely generated algebras in the category Θ.

Definition 4.3. (See [15].) An automorphism $\varphi \in \operatorname{Aut} \Theta^{0}$ is called semi-inner if there exists a family of semi-isomorphisms $\left\{s_{F(X)}=(\delta, \tilde{\varphi}): F(X) \rightarrow \tilde{\varphi}(F(X)), F(X) \in \mathrm{Ob} \Theta^{0}\right\}$, where $\delta \in \operatorname{Aut} K$ and $\tilde{\varphi}$ is a ring
isomorphism from $F(X)$ to $\tilde{\varphi}(F(X))$ such that for any homomorphism $v: F(X) \rightarrow F(Y)$ the following diagram

is commutative.
Further, we will need the following
Proposition 4.4. (See [8,15].) For any equinumerous automorphism $\varphi \in$ Aut \mathcal{C} there exist a stable automorphism φ_{S} and an inner automorphism φ_{I} of the category \mathcal{C} such that $\varphi=\varphi_{S} \varphi_{I}$.

Now we give a description of the groups Aut $\mathcal{C} \mathcal{A}^{\circ}$ over any field. Note that a description of this group over infinite fields was given in [2].

Theorem 4.5. All automorphisms of the group Aut \mathcal{A}° of automorphisms of the category $\mathcal{\mathcal { C }} \mathcal{A}^{\circ}$ are semi-inner automorphisms of the category $\mathcal{C} \mathcal{A}^{\circ}$.

Proof. Let $\varphi \in \operatorname{Aut} \mathcal{A}^{\circ}$. It is clear that φ is an equinumerous automorphism. By Proposition 4.4, φ can be represented as a composition of a stable automorphism φ_{S} and an inner automorphism φ_{I}. Since stable automorphisms do not change free algebras from \mathcal{A}°, we obtain that $\varphi_{S} \in$ Aut End A. By Theorem 3.6, φ_{S} is semi-inner of End A. Using this fact and Reduction Theorem 4.2, we obtain that all automorphisms of the group Aut $\mathcal{C} \mathcal{A}^{\circ}$ are semi-inner automorphisms of the category $\mathcal{C A} \mathcal{A}^{\circ}$. This completes the proof.

Acknowledgments

The authors are grateful to B. Plotkin for attracting their attention to this problem and interest to this work. The first author was supported by the Israel Science Foundation (grant No. 1178/06).

References

[1] A. Berzins, B. Plotkin, E. Plotkin, Algebraic geometry in varieties of algebras with the given algebra of constants, J. Math. Sci. 102 (3) (2000) 4039-4070.
[2] A. Berzins, The group of automorphisms of the category of free associative algebra, preprint, 2004.
[3] A. Berzins, The group of automorphisms of the semigroup of endomorphisms of free commutative and free associative algebras, Internat. J. Algebra Comput. 17 (5-6) (2007) 941-949.
[4] Alexei Belov, Jie-Tai Yu, Cancellation problems and dimension theory, Comm. Algebra 34 (4) (2006) 1521-1540.
[5] A. Belov-Kanel, A. Berzins, R. Lipyanski, Automorphisms of the endomorphism semigroup of a free associative algebra, Internat. J. Algebra Comput. 17 (5-6) (2007) 923-939.
[6] James E. Humphreys, Linear Algebraic Groups, Grad. Texts in Math., vol. 21, Springer-Verlag, New York, Heidelberg, 1975.
[7] N. Jacobson, The Theory of Rings, Amer. Math. Soc., New York, 1943.
[8] Y. Katsov, R. Lipyanski, B. Plotkin, Automorphisms of categories of free modules, free semimodules and free Lie modules, Comm. Algebra 35 (2007) 931-952.
[9] R. Lipyanski, Automorphisms of the endomorphism semigroups of free linear algebras of homogeneous varieties, Linear Algebra Appl. 429 (2008) 156-180.
[10] R. Lipyanski, B. Plotkin, Automorphisms of categories of free modules and free Lie algebras, preprint, arXiv:math/0502212v1 [math.RA], 2005.
[11] R. Lipyanski, Automorphisms of the semigroup of endomorphisms of free algebras of homogeneous varieties, preprint, arXiv:math/0511654v1 [math.RA], 2005.
[12] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New York, Berlin, 1971.
[13] G. Mashevitzky, Automorphisms of the semigroup of endomorphisms of free ring and free associative algebras, preprint.
[14] G. Mashevitzky, B. Schein, Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup, Proc. Amer. Math. Soc. 8 (2002) 1-10.
[15] G. Mashevitzky, B. Plotkin, E. Plotkin, Automorphisms of the category of free Lie algebras, J. Algebra 282 (2004) 490-512.
[16] G. Mashevitzky, B. Plotkin, E. Plotkin, Automorphisms of the category of free algebras of varieties, Electron. Res. Announc. Amer. Math. Soc. 8 (2002) 1-10.
[17] B. Plotkin, Seven lectures on the universal algebraic geometry, preprint, arXiv:math/0204245v1 [math.GM], 2002.
[18] B. Plotkin, Algebra with the same (algebraic geometry), Proc. Steklov Inst. Math. 242 (2003) 176-207.
[19] B. Plotkin, G. Zhitomirski, On automorphisms of categories of free algebras of some varieties, J. Algebra 306 (2) (2006) 344-367.
[20] B. Plotkin, G. Zhitomirski, On automorphisms of categories of universal algebras, Internat. J. Algebra Comput. 17 (5-6) (2007) 1115-1132.
[21] A. Schinzel, Selected Topic on Polynomial, The University of Michigan Press, Ann Arbor, 1982.
[22] Igor R. Shafarevich, Basic Algebraic Geometry. 1. Varieties in Projective Space, second ed., Springer-Verlag, Berlin, 1994.
[23] G. Zhitomirski, Automorphisms of the semigroup of all endomorphisms of free algebras, preprint, arXiv:math/0510230v1 [math.GM], 2005.

[^0]: * Corresponding author.

 E-mail addresses: belova@macs.biu.ac.il (A. Belov-Kanel), lipyansk@cs.bgu.ac.il (R. Lipyanski).

