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Optical-pulse dynamics under quasi-PT -symmetry
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The parity-time (PT )-symmetric optical properties are significantly restored for broadband radiation if the
width of the field spectrum is substantially less than the width of the spectral line of a resonant medium.
This is the so-called quasi-PT -symmetry for broadband radiation. Under the quasi-PT -symmetric light-matter
interaction, we describe the dynamics of a short spatially localized pulse propagating in the extended medium,
when the length of propagation significantly exceeds the pulse size. As an example, the boundary problem
of dynamical Bragg diffraction in the Laue geometry for a short laser pulse in a photonic crystal (PhC) with
strong material dispersion is solved. It is shown that at exceptional point of the PT -symmetry breaking, the
dynamics and parameters of the pulse change dramatically when the sign of the Bragg angle of incidence θB

changes. Unidirectional zero Bragg reflection and unidirectional Bragg-diffraction-induced pulse splitting are
revealed. At a positive angle, θB > 0, the localized short pulse propagates in a quasi-PT -symmetric PhC with
gain and loss under Bragg diffraction condition as in a conservative transparent homogeneous medium. A change
in the sign θB < 0 leads to the appearance of an amplified diffracted pulse. In the case of a small detuning
from the exact Bragg condition, at θB < 0, the directions and magnitudes of the group velocities of different
field modes change and, as a result, the temporal and spatial diffraction-induced pulse splitting occurs. Such
asymmetric dynamics of the pulse propagation in a quasi-PT -symmetric PhC can be used to effectively control
the parameters and dynamics of short optical pulses by small changes in its frequency, in the magnitude of the
gain and loss parameter of the medium, etc.
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I. INTRODUCTION

A new direction of modern optics associated with the study
of the optical properties of PT -symmetric media, or non-
Hermitian optics, has been actively developing over the last
two decades [1,2]. Initially, physical systems invariant with
respect to the parity-time transformation, or PT -symmetric
systems, were considered in problems of quantum mechan-
ics, where it was shown that in the case of non-Hermitian
systems with a PT -symmetric complex potential, there can
exist quantum states with real energy [3–5]. In PT -symmetric
optical systems with complex alternating dielectric permit-
tivity ε(x) = ε∗(−x), i.e., with gain and loss, new PT -
symmetric optical phenomena were discovered theoretically
and experimentally. As examples we mention the propagation
of PT -symmetric modes and their breaking at an exceptional
point [6–9], increased transparency under loss enhancement
in dissipative structures [10], lasing and antilasing effects
[11,12], unidirectional zero Bragg reflection in the Bragg
[13–15] and the Laue geometries [16–21], etc. However, the
Kramers-Kronig relation, which relates the real and imaginary
parts of the dielectric permittivity of a resonant medium and
follows from the fundamental principle of causality, permits
the PT -symmetry condition to be realized for a discrete
set of frequencies only [22,23]. Therefore, linear optical
PT -symmetric phenomena have been studied mainly for
monochromatic waves and beams. Recently [24], a method for
significant restoring of the PT -symmetric properties of dis-
persive media for broadband radiation with a finite continuous
spectrum was proposed. The restoring is possible in the case

of quasi-PT -symmetry, when in a PT -symmetric medium,
the width of the inhomogeneous broadening spectral line of
resonant impurities is much larger than the width of the propa-
gating radiation spectrum. Thus, quasi-PT -symmetry allows
us to include the problems of the propagation dynamics of
short localized optical pulses and nonmonochromatic beams
in the number of problems of non-Hermitian optics.

In this paper, we demonstrate the dynamics of a short
spatially localized optical pulse propagating in a quasi-PT -
symmetric medium with material dispersion. As an exam-
ple, we study theoretically the propagation of a pulse in a
quasi-PT -symmetric photonic crystal (PhC) under dynami-
cal Bragg diffraction in the Laue scheme “on transmission.”
Using the spectral method, the boundary problem of dynam-
ical Bragg pulse diffraction in the two-wave approximation
beyond paraxial approximation is solved. It is shown that
although light-matter interaction in such medium is not ex-
actly PT -symmetric, the optical properties of the structure
are close to PT -symmetric ones, even at large propagation
lengths of the order of tens of pulse sizes. We have de-
scribed several quasi-PT -symmetric optical phenomena for
short broadband pulses. In particular, it is shown that near
an exceptional point of the PT -symmetry breaking at the
central pulse frequency, a pulse with a finite continuous spec-
trum demonstrates not only a unidirectional zero diffraction
reflection depending on the sign of the angle of radiation
incidence on the structure, but also a change in the dynamics
of pulse propagation and their mode structure—unidirectional
Bragg-diffraction-induced pulse splitting. At a positive angle
of incidence and a small deviation from the Bragg condition,
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FIG. 1. Schematic representation of two cases of pulse incidence
onto the PhC: (a) θ > 0 and (b) θ < 0; T and D are the transmitted
and diffracted pulses, respectively.

the pulse propagates in a gain and loss medium as in a
transparent and homogeneous one. A change in the sign of
the incidence angle leads to a space-time splitting of the pulse,
and, in addition, one of the pulses is formed by the amplified
diffracted wave only and the other one by the transmitted and
diffracted waves. Unlike the conservative PhC, the diffraction
pulse splitting does not occur in the exceptional point under
exact Bragg condition. Analytical estimations of the wave’s
amplitudes of different modes and their group velocities are
in good agreement with the numerical results that take into
account the finite pulse spectrum and the material dispersion
of a resonant medium.

The paper is organized as follows. In Sec. II, we es-
timate the parameters for quasi-PT -symmetric light-matter
interaction. The boundary problem of the dynamical Bragg
diffraction in the Laue scheme for a short laser pulse in quasi-
PT -symmetric PhC with dispersion is solved in Sec. III. In
Sec. IV, we describe different regimes of dynamics of short
localized pulse propagation in quasi-PT -symmetric PhC. The
results are summarized in Sec. V.

II. QUASI-PT -SYMMETRY FOR BROADBAND
RADIATION

Here we estimate analytically the decreasing of the param-
eter of deviation from PT symmetry in the case of quasi-PT -
symmetric light-matter interaction for broadband radiation
and a rectangular inhomogeneous spectrum line of a resonant
structure.

Let a short optical pulse with a central resonant frequency
ω0 and a finite spectral width δω = 2/τ , where τ is the pulse
duration, be incident onto a one-dimensional dispersive PT -
symmetric PhC (Fig. 1) with a dielectric permittivity

ε(x, ω) = ε0 + ε′ cos(hx) + iε̂(ω) sin(hx), (1)

where h = 2π/d is the modulus of reciprocal lattice vector h,
which is directed along the x axis, and d is the lattice period.

The first two terms ε0 + ε′ cos(hx) > 1 in expression (1)
describe a periodically modulated even function of the di-
electric permittivity, which is determined by a transparent
dielectric matrix with negligible material dispersion. The odd
function iε̂(ω) sin(hx) in Eq. (1) corresponds to the con-
tribution to the dielectric permittivity of resonant two-level
oscillators,

εres(x, ω) = iε̂(ω) sin(hx). (2)

Here the spatially periodic function of the inversion of
oscillators is chosen to be w(x) = − sin(hx). The dielectric

permittivity of a dispersive resonant medium with two-level
oscillators for a sufficiently long pulse with a duration τ � T2

is described by the complex function [24,25]

ε̂(ω) = iβ
∫ ∞

−∞

g(	 − 	0)

	 + i/T2
d	 = ε̂R(ω) + iε̂I (ω), (3)

where

ε̂R(ω) = β

T2

∫ ∞

−∞

g(	 − 	0)

	2 + 1/T2
2 d	,

ε̂I (ω) = β

∫ ∞

−∞

g(	 − 	0)	

	2 + 1/T2
2 d	. (4)

Here, β = 4πNμ2/h̄, N is the concentration of resonant
atoms, μ is the magnitude of the dipole moment of the transi-
tion of an atom, 	 = ω − ω′

0 is the deviation of the radiation
frequency ω from the resonance frequency of the atom ω′

0,
	0 = ω − ω0 is the detuning of the field frequency from
the central frequency of the resonance ω0, T2 is the time of
transverse homogeneous relaxation of the dipole moment, and
g(	 − 	0) = g(ω0 − ω′

0) is the function of inhomogeneous
broadening of the spectral line.

Let us introduce the parameter of deviation from the exact
PT -symmetry condition: 	PT (x, ω) = ε(x, ω) − ε∗(−x, ω)
[26]; then it follows from Eqs. (1)–(3) that

	PT (x, ω) = 2Reεres(x, ω) = 2ε̂I (ω)w(x). (5)

From Eqs. (2) and (3), it can be seen that the quantity
ε̂I (ω) determines the anti-PT -symmetric odd contribution of
resonant atoms, −ε̂I (ω) sin(hx), to the real part of the dielec-
tric permittivity (1). Thus, the material dispersion, ε̂I (ω) �=
0, violates the PT symmetry for an arbitrary value of the
radiation frequency ω. However, the value 	PT (x, ω) (5)
can be significantly reduced and, therefore, the system PT
symmetry in the region of the finite spectral width of a short
pulse can be largely restored under increase of inhomoge-
neous line broadening [24], i.e., when quasi-PT -symmetry
for broadband radiation is implemented. Mathematically, this
follows from the oddness of the integrand in expression ε̂I (ω)
(4) in the case of an even function g(	 − 	0). Indeed, this
is clearly seen in the example of a rectangular function of
inhomogeneous broadening of the spectral line,

g(	 − 	0) =
{

(γ ∗
2 ω0)−1, |	 − 	0| � γ ∗

2 ω0/2,

0, |	 − 	0| > γ ∗
2 ω0/2,

(6)

with width γ ∗
2 ω0, where γ ∗

2 = 2/T ∗
2 ω0 is the dimension-

less inhomogeneous width of the spectral line, T ∗
2 is the

time of inhomogeneous transverse relaxation of the dipole
moment. From Eqs. (4)–(6), it follows that the parameter
	PT of the deviation from PT symmetry is proportional to
ε̂I (ω) = β	0/(γ ∗

2 ω0)2. This quantity decreases rapidly with
growth of the value γ ∗

2 if the width of the pulse spectrum
δω is substantially less than the width of the spectrum line
of the resonant atom: δω ∼ 	0 � γ ∗

2 ω0. It is important to
note that the antisymmetric part of resonant dielectric per-
mittivity decreases much faster than the PT -symmetric one:
|Reεres(x, ω)/Imεres(x, ω)| = 2|	0|/πγ ∗

2 ω0 � 1. Therefore,
the quasi-PT -symmetry allows PT -symmetric optical prop-
erties of the medium to be restored within the pulse spectrum
under increase of inhomogeneous broadening γ ∗

2 .
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FIG. 2. (a) −Im(εres ) (red lines 1 and 2) and Re(εres ) (blue lines 3
and 4) vs frequency detuning at small γ ∗

2 = 0.005 (dashed lines 1 and
3) and large values of inhomogeneous broadening γ ∗

2 = 0.1 (solid
lines 2 and 4) plotted for the points where w(x) = 1 compared with
the spectrum Ain(	0) of the pulse with duration τ = 1 ps (dotted
line 5) and with the inhomogeneous broadening function g(	0)
(line 6). (b) Dependence of |	PT |/Im(εres ) on frequency detuning
corresponding to (a) for γ ∗

2 = 0.005 (blue dashed line 1) and γ ∗
2 =

0.1 (red solid line 2) compared with the pulse spectrum (dotted line
3, right scale). Parameters: β = 1/T2, γ2 = 0.005, λ0 = 1 μm. Inset:
curves 1, 2, and 3 in a small area near the point 	0 = 0.

In Fig. 2(a), it is shown that for a short pulse with a duration
τ = 1 ps, an increase in the inhomogeneous linewidth from
γ ∗

2 = 0.005 to γ ∗
2 = 0.1 reduces the antisymmetric contri-

bution Reεres(x, ω) (lines 3 and 4) to the resonant permit-
tivity by almost an order of magnitude in the region of the
spectral width of the pulse (dotted line 5). At the edges
of the function g(	 − 	0) = g(ω0 − ω′

0) (line 6), the value
Reεres(x, ω) increases significantly, but this occurs outside
the pulse spectrum. The ratio |	PT (x, ω)/Imεres(x, ω)| in the
region of the pulse spectrum also decreases significantly with
increase of γ ∗

2 [Fig. 2(b)].
It is clearly seen from Eq. (4) that quasi-PT -symmetry can

also be realized by increasing the width of a homogeneously
broadened line ∼1/T2. However, it is apparently much eas-
ier to achieve a significant increase in the inhomogeneous
broadening of the spectral line, for example, using well-
known optics glass doped with resonant ions [27] or structures
with quantum dots [28]. In solid-state structures, a large
homogeneous broadening is observed much less frequently;
Ti-sapphire crystals [29] are more likely an exception.

The quasi-PT -symmetry allows one to consider the dy-
namics of broadband short spatially localized pulses in a
medium with material dispersion, as well as to investigate spe-
cific quasi-PT -symmetric dynamic effects for a pulse. In the
next section, we consider the boundary problem of dynamical
Bragg diffraction in the Laue geometry of picosecond pulse in
a quasi-PT -symmetric PhC with strong dispersion.

III. DYNAMICAL BRAGG DIFFRACTION OF SHORT
PULSE IN QUASI-PT -SYMMETRIC PHOTONIC

CRYSTALS UNDER THE LAUE SCHEME

Let an s-polarized short optical pulse

Ein(r, t ) = Ain(r, t ) exp(ik0 · r − iω0t ) (7)

with slowly varying amplitude Ain(r, t ) and a finite spectral
width δω be incident at an angle θ onto the surface z =
0 of one-dimensional dispersive quasi-PT -symmetric PhC
(Fig. 1) with dielectric permittivity (1). Here, k0 = (k0x, k0z )

is the central wave vector in a vacuum, k0 = ω0/c = 2π/λ0,
ω0 is the central frequency of the pulse, с is the speed of
light in a vacuum, λ0 is the wavelength, k0x = k0 sin θ , and
k0z = k0 cos θ . The pulse duration τ is assumed to be rather
long, i.e., τ � T2, T ∗

2 , so that it is possible to ensure the
quasi-PT -symmetry of the structure-pulse interaction in the
presence of material dispersion.

The real field in the PhC, Ẽ (r, t ), obeys the wave equation

	Ẽ (r, t ) − 1

c2

∂2D̃(r, t )

∂t2
= 0, (8)

where 	 = ∂2/∂x2 + ∂2/∂z2 is the Laplacian, and D̃(r, t ) =
Ẽ (r, t ) + 4π P̃(r, t ) is the electric field induction. For a linear
isotropic medium, whose properties do not change with time,
in accordance with the principle of causality, polarization
P̃(r, t ) can be represented as a material integral relation,

P̃(r, t ) =
∫ ∞

0
χ̃ (x, τ ′)Ẽ (r, t − τ ′)dτ ′, (9)

where χ̃ (x, τ ′) is the real function that takes into account the
dependence of polarization on the fields acting at previous
points in time t − τ ′, and τ ′ is the delay time. Represent the
field Ẽ (r, t ) in Eqs. (8) and (9) as a Fourier integral,

Ẽ (r, t ) =
∫ ∞

−∞
Ẽ (r, ω) exp(−iωt )dω. (10)

Substitution of Eq. (10) into Eqs. (8) and (9) and subse-
quent transition to the complex field E (r, t ), i.e., Ẽ (r, t ) =
(1/2)[E (r, t ) + c.c.], leads to the wave equation in the spec-
tral representation for the complex field:

	E (r, ω) + k2ε(x, ω)E (r, ω) = 0, (11)

where E (r, ω) = (1/2π )
∫ ∞
−∞ E (r, t ) exp(iωt )dt , k = ω/c,

ε(x, ω) = 1 + 4πχ (x, ω) is the complex dielectric permittiv-
ity, and

χ (x, ω) =
∫ ∞

0
χ̃ (x, τ ′) exp(iωτ ′)dτ ′. (12)

We expand the periodic function ε(x, ω) in series by the
reciprocal lattice vectors

ε(x, ω) =
∞∑

m=−∞
εm(ω) exp(−imhx), (13)

where

εm(ω) = (1/d )
∫ d

0
ε(x, ω) exp(imhx)dx. (14)

To solve the problem of pulse propagation in a periodic
medium with a function of the dielectric permittivity (1), we
use the spectral method [30,31]. The field of the incident pulse
(7) on the surface z = 0 is expressed in the form of a two-
dimensional Fourier integral,

Ein(x, t ) =
∫ +∞

−∞

∫ +∞

−∞
Ein(kx, ω) exp(ikxx − iωt )dkxdω,

(15)
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where

Ein(kx, ω) ≡ Ain(K,�) = 1

(2π )2

∫ +∞

−∞

∫ +∞

−∞
Ain(x, t )

× exp(−iKx + i�t )dxdt, (16)

and � = ω − ω0, K = kx − k0x. Next, we solve the Bragg
diffraction problem for a single spectral component, i.e., a
plane monochromatic wave, and carry out Fourier synthesis
to find the pulse field E (r, t ) at each point of the medium at
any time instant.

Near the Bragg condition 2k0 sin θB = sh, where θB is
the Bragg angle, the field into the periodic structure can be
represented in a two-wave approximation as a sum of two
strongly coupled transmitted, E0, and diffracted, Eh, waves,

E (r, ω) = E0(r, ω) + Eh(r, ω), (17)

where, taking into account relation (13),

Eg(x, z, ω) =
∫ ∞

−∞
Ag(K,�) exp[i(q0x − sg)x + iq0zz]dK .

(18)

Here, g = 0, h; s = 1 if θ > 0 and s = −1 if θ < 0
(Fig. 1), and A0(K,�) and Ah(K,�) are amplitudes of the
spectral components of transmitted and diffracted waves,
respectively. Due to the conservation of the tangential com-
ponents of the wave vectors on the boundary z = 0, the x
projection of the wave vectors of the transmitted waves within
the medium is q0x(K ) = kx = k0x + K . Explicit view of the z
projections q0z = qhz is presented below [Eq. (21)]. The full
field E (x, z, t ) is obtained by substituting Eqs. (17) and (18)
into the Fourier integral,

E (x, z, t ) =
∫ ∞

−∞
[E0(x, z, ω) + Eh(x, z, ω)] exp(−iωt )dω.

(19)
Substitution of Eqs. (13), (17), and (18) into the wave

equation (11) results in the following system of equations for
the amplitudes of the fields A0,h(K,�):(

ε0k2 − q2
0x − q2

0z

)
A0 + ε−sk

2Ah = 0, (20a)

εsk
2A0 + [

ε0k2 − (q0x − sh)2 − q2
0z

]
Ah = 0, (20b)

where ε1 = [ε′ − ε̂(ω)]/2, ε−1 = [ε′ + ε̂(ω)]/2, and the
quantities ε′, ε̂(ω) are introduced in Eq. (1).

The condition for the existence of nontrivial solutions of
the system of Eqs. (20) allows us to write dispersion relations
for z projections of wave vectors of the transmitted and
diffracted waves of two eigenmodes, called the Borrmann,
q(1)

0z , and anti-Borrmann, q(2)
0z , modes:(

q(1,2)
0z

)2 = k2
[
γ 2

0 + αs ∓ (
α2

s + εsε−s
)1/2]

, (21)

where γ0 =
√

ε0 − (q0x/k)2, and

αs = (sq0x − h/2)h/k2 (22)

defines the degree of detuning from the exact Bragg condition
q0x = sh/2. For radiation with a frequency ω = ω0, it follows
from Eq. (22) that in the vicinity of the Bragg condition, a
simpler relation is satisfied: αs = 	θ sin(2|θB|), where 	θ =
θ − θB � θB. Dispersion relations for the diffracted waves

are obtained by the replacement q0x = qhx + sh and q(1,2)
0z =

q(1,2)
hz into Eq. (21). From Eq. (20a), we obtain the relations

connecting the amplitudes of direct and diffracted waves,

Ah j = RjA0 j, R1,2 = [
αs ∓ (

α2
s + εsε−s

)1/2]
/ε−s, (23)

where Rj are partial amplitude coefficients of diffraction
reflection of the waves; and A0 j and Ah j are amplitudes of the
Borrmann ( j = 1) and anti-Borrmann ( j = 2) modes.

Considering a specular reflection from the input bound-
ary of the PhC, the expressions for the amplitudes of the
fields in one-dimensional PhC are found from the continuity
conditions for the tangential components of the electric and
magnetic fields at the boundary z = 0:

Ain + AS = A01 + A02,

kz(Ain − AS ) = q(1)
0z A01 + q(2)

0z A02, (24)

R1A01 + R2A02 = 0,

where AS is the amplitude of the specularly reflected wave.
The solution of the system (24) is

A01 = −[(1 + RS )R2/R12]Ain, A02 = [(1 + RS )R1/R12]Ain,

(25)

where R12 = R1 − R2, RS = AS/Ain = (kz − fS )/(kz + fS ) is
the diffraction-modified Fresnel reflection coefficient, fS =
(q(2)

0z R1 − q(1)
0z R2)/R12, and kz =

√
k2 − k2

x .
The total field, Eqs. (19) and (25), of the pulse at each point

of the PhC at any time is given by the following expression:

E (r, t ) = [A0(r, t ) + Ah(r, t ) exp(−ishx)] exp(ik0xx − iω0t ),
(26)

where

Ag(r, t ) =
∫ ∞

−∞

∫ ∞

−∞

(
Ag1eiq(1)

0z z + Ag2eiq(2)
0z z

)
eiKx−i�t dKd�,

(g = 0, h), (27)

and the amplitudes Agj are determined from the relations (23)
and (25).

For greater clarity of the effects under study, we consider
in detail analytically the case of weak specular reflection of
radiation from the boundary z = 0, AS � Ain, using the corre-
sponding values of the PhC parameters. So, let the amplitude
of the incident field be Ain = 1; then, from the boundary
conditions in the case of neglect of reflection, it follows
that A01 + A02 = 1 and Ah1 + Ah2 = 0. Using the expressions
(23), we get

A01 = − R2

R1 − R2
, A02 = R1

R1 − R2
, (28)

where

R1,2

R1 − R2
= −αs ± (

α2
s + εsε−s

)1/2

2
(
α2

s + εsε−s
)1/2 . (29)

Let us obtain the amplitudes of the fields at different signs
of the angles of incidence θ > 0 and θ < 0, i.e., s = 1 and
s = −1, respectively, in cases of different values of gain and
loss parameter of the medium ε̂(ω). The first one is ε̂(ω) = ε′,
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and as a result ε1 = [ε′ − ε̂(ω)]/2 = 0. This is an excep-
tional point (EP) of the PT -symmetry breaking. The second
case is below the EP threshold ε̂R(ω) < ε′ when there exists
the propagation of orthogonal Borrmann and anti-Borrmann
modes [Eq. (21)]. The degree of proximity to the EP will be
characterized by the parameter η = ε̂R(ω0)/ε′.

As it follows from Eqs. (28) and (29), in the EP, the
amplitudes of transmitted waves A01,02 do not depend on the
sign of the angle θ , but depend on the sign of the detuning
αs on the exact Bragg angle. Indeed, with εs = 0 and αs > 0
values,

R1,2/(R1 − R2) = (−αs ± |αs|)/2|αs| = 0; −1.

Then,

A01 = 1, A02 = 0. (30)

If αs < 0, then

A01 = 0, A02 = 1 (31)

[Fig. 3(a)]. Under the exact Bragg condition αs = 0, as can be
seen from Eqs. (28) and (29), in the EP: A01 = A02 = 1/2.

In contrast to the amplitudes of the transmitted waves, the
amplitudes of the diffracted waves Ah1,h2 in the EP and around
it depend radically on the sign of the angle of incidence θ and
do not depend on the sign of the detuning αs. Let us show it.
From Eqs. (23), (28), and (29), it is easy to obtain that

Ah2 = εs

2
(
α2

s + εsε−s
)1/2 . (32)

From this expression, it follows that when θ > 0 at EP, the
magnitude εs = ε1 ≡ (ε′ − ε̂)/2 = 0 and amplitudes Ah1 =
−Ah2 = 0, i.e., diffracted waves are missing [curves 1 and 2
in Fig. 3(b)]. If the angle θ < 0, then εs = ε−1 ≡ (ε′ + ε̂)/2 �=
0, ε−s = ε1 = 0, and the amplitudes Ah2 = −Ah1 = ε−1/2|αs|
tend to infinity if αs → 0 [curves 3 and 4 in Fig. 3(b)]. In this
case, the field of diffracted waves, given by Eq. (33), in the
PhC of finite thickness is the final value and increases linearly
in z [inset in Fig. 3(b)]. Indeed, in the case of exact Bragg
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FIG. 3. (a) Dependences of amplitudes A01 (curves 1 and 3) and
A02 (curves 2 and 4) on the detuning 	θ = θ − θB from the exact
Bragg angle near EP when η = 0.9999 (curves 1 and 2) and far from
EP when η = 0.5 (curves 3 and 4); they do not depend on the sign
of the angle θ . (b) Dependences of amplitudes Ah1 (curves 1 and 3)
and Ah2 (curves 2 and 4) on 	θ near EP (η = 0.9999) when θ > 0
(curves 1 and 2) and θ < 0 (curves 3 and 4). Inset: the dependence
of the full field of diffracted waves |Eh| on the depth z near the ET
at θ < 0. Parameters: λ = 1 μm, d = 1 μm, ε0 = 2.25, ε′ = 0.008.
All curves are given taking into account specular reflection from the
entrance surface of the PhC [Eqs. (23)–(25)].

condition α−1 = 0, the full field of diffracted plane waves,

Eh(x, z; ω, q0x ) = Eh1(x, z; ω, q0x ) + Eh2(x, z; ω, q0x )

= Ah1
[

exp
(
iq(1)

0z z
) − exp

(
iq(2)

0z z
)]

× exp[i(q0x − sh)x], (33)

at small ε1ε−1 � γ0 and |αs| � γ0, is determined by the
expression

Eh(x, z; ω, q0x ) ≈ i(ε−1kz/2γ0) exp[i(q0x − sh)x + ikγ0z].
(34)

Thus, despite a significant increase in the amplitudes of the
diffracted waves Ah j → ∓∞ near the EP, the simultaneous
fulfillment of the condition q(1,2)

0z → kγ0 [Eq. (21)] leads to a
linear increase of the amplitude of the total field Eh (34) within
the PhC with depth z � λ0γ0/π

√
α2

s + ε1ε−1.

IV. PULSE PROPAGATION AND UNIDIRECTIONAL
BRAGG-DIFFRACTION-INDUCED PULSE SPLITTING

IN QUASI-PT -SYMMETRIC PHOTONIC CRYSTAL

As shown above, the amplitudes of the spectral compo-
nents of transmitted and diffracted waves in a quasi-PT -
symmetric PhC near an EP significantly depend on the sign
of the angle of incidence θ and the deviation αs from the exact
Bragg condition. Therefore, we can rightly expect that the dy-
namics of optical pulses near an EP in a quasi-PT -symmetric
PhC will have a number of features uncharacteristic for a
conservative PhC.

Let the Gaussian spatially confined pulse (7) with ampli-
tude

Ain(x, 0, t ) = A exp[−(x cos θ/r0)2 − (t − x sin θ/c)2/τ 2]
(35)

be incident at the angle θ onto the surface z = 0 of PhC. Here,
r0 is the transverse size of the pulse and τ is the pulse duration.

We select the structure and radiation parameters in such a
way that the EP condition ε̂(ω0) = ε′ and the Bragg condition
αs = 0 for the center frequency of the pulse are exactly
fulfilled. In Fig. 4, using solutions (26) and (27), we show
the spatial distribution of the intensity of the pulse field,
|E (x, z, t )|2, at different times, with θ > 0 (upper panels) and
θ < 0 (lower panels). We also consider the different pulse
durations, as well as the cases of dispersive breaking of
PT symmetry and the existence of quasi-PT -symmetry. In
Figs. 4(a) and 4(b), the intensity of the field of an extended
quasimonochromatic pulse with long duration τ = 100 ps and
the longitudinal size τc � L, where L is the thickness of
the PhC, is represented. If θ > 0, the pulse propagates in a
periodic Bragg structure with absorption and amplification as
in a continuous conservative medium, i.e., without diffraction
[in accordance with Eqs. (23), (30), and (31), Eh = 0 at ε1 =
0] and without gain or loss. The medium is transparent. With
the sign of angle changing θ < 0 [Fig. 4(b)], the pulse Bragg
diffraction occurs, as well as its significant amplification and
spatial expansion, similar to the gain saturation described
earlier for monochromatic beams [18]. The output pulse in
the forward direction is not amplified, while the diffracted
pulse is amplified many times. The dynamics of an extended
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FIG. 4. The intensity of the pulse field |E (x, z, t )|2 at different points in time in EP at the angles of incidence θ = θB = +300 (upper
panels) and θ = θB = −300 (lower panels). (a), (b) Gaussian pulse duration τ = 100 ps; (c)–(h) τ = 1 ps. Parameters: inhomogeneous
broadening (e), (f) γ ∗

2 = 0.005 and (g), (h) γ ∗
2 = 0.1; the magnitude of the homogeneous broadening γ2 = 0.005, λ0 = 1 μm, d = 1 μm,

ε0 = 2.25, ε′ = 0.008, η(ω0) = 0.9999, the transverse radius of the pulse r0 = 60 μm, the times in the panels: (a), (b) t = 1 ps and (c)–(h)
t = −1, 2, 5, 8, 11 ps. The black lines indicate the crystal boundaries z = 0 and z = L = 1.8 mm; the arrows indicate the directions of
pulse falling on the PhC.

quasimonochromatic pulse in a thin PhC with dispersion is
almost the same as the dynamics of a monochromatic beam,
and the effect of unidirectional diffraction Bragg reflection is
observed.

Figures 4(c) and 4(d) represent the dynamics of a short
pulse with τ = 1 ps in different moments of time, but in
the case when, formally mathematically, the frequency de-
pendence is not taken into consideration in the dielectric
permittivity, ε̂(ω) = const in Eq. (1), i.e., the disruptive effect
of dispersion on PT symmetry is not formally taken into ac-
count. The only difference of these snapshots from Figs. 4(a)
and 4(b) is in the possibility to observe the localization of the
pulse in the medium at different points in time due to the short
pulse duration.

Accounting for physically real material dispersion with
a small inhomogeneous broadening, γ ∗

2 = 0.005, leads to
a breaking of PT symmetry for a broadband short pulse
with a duration τ = 1 ps and, as a consequence, to the
disappearance of the PT -symmetric effect of unidirectional
Bragg diffraction reflection with a change in the sign of
the angle of incidence [Figs. 4(e) and 4(f)]. The intensity
distributions in Figs. 4(e) and 4(f) are not fundamentally
different. It is important to note that in the case of a thick
PhC with a thickness L � τc, the quasimonochromatic pulse,
τ = 100 ps, localized in the structure also begins to decay
despite the small width of the pulse spectrum. The dynamics
of the pulse in this case will have the characteristic features
similar to Figs. 4(e) and 4(f), which qualitatively differs from
Figs. 4(a) and 4(b) for a thin PhC with L � τc. Numerical
calculations show that the characteristic depth of the PhC
Lc, at which the pulse dynamics loses its PT -symmetric

properties and the pulse is destroyed, can be estimated as
follows: Lc ≈ 1/|Im[q(1,2)

0z (	�c)]|, where 	�c = 1/τ .
Finally, we create a quasi-PT -symmetry condition, in-

creasing the magnitude of the inhomogeneous broadening by
an order of magnitude γ ∗

2 = 0.1, while retaining all the other
parameters. This leads to dramatic changes in the dynam-
ics of the pulse [Figs. 4(g) and 4(h)]. The PT -symmetric
properties of the medium are almost completely restored, and
unidirectional diffraction reflection is observed for a short
localized pulse with a change in the sign of the Bragg angle.
At a positive angle of incidence, a short pulse propagates
in a quasi-PT -symmetric PhC as in a transparent homoge-
neous medium—without diffraction reflection and change of
parameters [Fig. 4(g)]. A change in the sign θ < 0 results in
the appearance of an amplified diffracted pulse [Fig. 4(h)].
Moreover, the snapshots of the intensity in Figs. 4(g) and 4(h)
for a realistic physical model of a medium with a material
dispersion are close to the idealized formally mathematical
case of PT symmetry without taking into account dispersion
[compare with Figs. 4(c) and 4(d)]. In Figs. 4(g) and 4(h), it
is also clearly seen that the quasi-PT -symmetric dynamics of
a short pulse persists at the depth of propagation in the PhC
for more than ten pulse lengths, whereas without quasi-PT -
symmetry, the localized pulse already decays at a depth of the
order of several pulse lengths. In addition, the dynamics of a
pulse in a quasi-PT -symmetric PhC in Figs. 4(g) and 4(h),
under Bragg condition and at EP, is radically different from
the pulse dynamics in a conservative PhC. In the latter case,
a temporal splitting of the pulse is observed due to the
orthogonality of the Borrmann and anti-Borrmann modes
[30–32], whereas in quasi-PT -symmetric PhC at EP, these
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FIG. 5. (a)–(c), (e), (f) The intensity of the pulse field |E (x, z, t )|2 in the EP and under small deviation αs �= 0 from exact Bragg condition
at different points in time t . (a)–(e) αs < 0; (a) angle of incidence θ = +29.50(shown in panels), γ ∗

2 = 0.1; (b) θ = −29.50, γ ∗
2 = 0.005; (c)

θ = −29.50, γ ∗
2 = 0.1; t = −1, 2, 5, 8, 11 ps. (e) θ = −29.50, t = 100 ps; (f) αs > 0, θ = −30.50, t = 100 ps. (a)–(d) r0 = 60 μm; (e),

(f) r0 = 300 μm; (a)–(с), (e), (f) ε′ = 0.008, η = 0.9999; (d) ε′ = 0.08, εres = 0, t = −1, 3, 7, 11, 15 ps. Other parameters are as in Fig. 4.
Letters “B” and “aB” indicate Borrmann and anti-Borrmann pulses.

modes are nonorthogonal [from Eq. (21), it follows that q(1)
0z =

q(2)
0z = kγ0] and there is no temporal pulse splitting.

With the choosing of a small deviation αs �= 0 from the
exact Bragg condition at EP with θ > 0, the pulse propagation
dynamics [Fig. 5(a)] is similar to the case αs = 0 discussed
above [Fig. 4(g)] and practically does not depend on the sign
of the detuning αs. A small change αs in the angle of incidence
leads only to a change in the angle of refraction of the pulse
in the structure, as in a homogeneous transparent medium.
The amplitudes of the diffracted waves remain negligibly
small.

With the changing in sign θ < 0 at αs �= 0, the pulse dy-
namics becomes much more complicated—spatial diffraction
splitting of the pulse occurs [Figs. 5(b) and 5(c)]. However, as
can be seen from Fig. 5(b), in a dispersive PhC with a small
inhomogeneous line broadening γ ∗

2 = 0.005, the separated
pulses already quickly lose localization at a small depth on
the order of several pulse sizes. At a quasi-PT -symmetry,
i.e., at increasing in broadening up to γ ∗

2 = 0.1, the pulse
reveals spatial and temporal diffraction-induced splitting into
the Borrmann (B) and anti-Borrmann (aB) pulses [Fig. 5(c)],
which are formed by the Borrmann and anti-Borrmann modes,
respectively. Here the unidirectional diffraction-induced split-
ting is observed, in contrast to the case of a conservative
PhC [Fig. 5(d)], when the pulse splitting does not depend on
the sign of the incident angle [30–32]. In addition, there are
differences in the amplitudes and the structure of the separated
pulses compared with the conservative PhC. The amplitudes
of the pulses are amplified by increasing the amplitudes of the
diffracted waves, Ah1 and Ah2, given by Eq. (32). The direct
wave exists only in the Borrmann pulse if αs > 0 and in the

anti-Borrmann pulse if αs < 0, in accordance with Eq. (30)
and Eq. (31). In Fig. 5(c), it is seen that at the output of
PhC, the transmitted anti-Borrmann pulse disintegrates into
direct and amplified diffracted pulses, while the outgoing
Borrmann pulse propagates in the direction of the diffracted
wave since it is formed inside the PhC only by the diffracted
wave. Within the PhC in Fig. 5(c), the intensity oscillations of
the anti-Borrmann pulse occur because of the superposition
of transmitted and diffracted waves. The intensity of the
Borrmann pulse does not oscillate, and the pulse consists of
only a diffracted field.

When the sign of detuning from the exact Bragg condi-
tion αs changes, the Borrmann and anti-Borrmann impulses
change places [Figs. 5(e) and 5(f)]. The interference of direct
and diffracted waves leads to oscillations, clearly visible on
the left pulses in Figs. 5(e) and 5(f). There are no oscillations
in the right pulses since there are no direct waves in them
(A01 = A02 = 0). From Figs. 5(e) and 5(f), it is also seen
that the group velocity of the Borrmann pulse is less than
that of the anti-Borrmann pulse, V (1)

z < V (2)
z . Below it will be

shown that this is typical for PT -symmetric PhCs at EP [see
Fig. 6(a)]. In the case of detuning from EP, as well as in a
conservative PhC, the Borrmann pulse is always ahead of the
anti-Borrmann pulse in a fairly wide range of angles near the
Bragg condition [Fig. 6(b)].

To explain this unusual pulse dynamics, we obtain the
expressions for the z and x projections of their group velocities
V (1,2)

z and V (1,2)
x , respectively. We take into account that in the

case of broadband quasi-PT -symmetry, the material disper-
sion in the region of the pulse spectrum is small compared
to grating-induced dispersion, and therefore, it slightly affects
the magnitude of the group velocity. So, in calculating the
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FIG. 6. (а) Group velocities V (1)
z (solid lines) and V (2)

z (dashed
lines) vs angular detuning 	θ near the EP, η = 0.9999, and (b) far
from the ET, η = 0.5. Velocities V (1,2)

z do not depend on the sign
of the angle of incidence θ . (c) The transverse group velocities V (1)

x

(solid lines) and V (2)
x (dashed lines) vs 	θ near the EP, η = 0.9999,

and (d) far from the ET, η = 0.5, when θ > 0. Other parameters are
the same as those in Fig. 3.

group velocities, we consider only the grating-induced disper-
sion. From the dispersion relation (21), for group velocities
V (1,2)

z = (∂ω/∂q(1,2)
0z )|q0x=const, we obtain

V (1,2)
z = cq(1,2)

0z W

k(ε0W ∓ ε1ε−1)
, (36)

where W = (α2
s + ε1ε−1)1/2. Exactly at the EP, the value ε1 =

0; then,

V (1,2)
z = (c/ε0)(ε0 − sin2θ + αs ∓ |αs|)1/2. (37)

The dependences of these velocities on the angular detun-
ing 	θ = θ − θB at the central frequency of the pulse are
shown in Fig. 6. From Fig. 6(a), it is seen that when the Bragg
condition αs = 0 is fulfilled exactly, the group velocities (37)
coincide and are equal to the velocity in a homogeneous
medium with a dielectric constant ε0:

V (1,2)
z = (c/ε0)(ε0 − sin2θ )1/2. (38)

In this case, the diffraction splitting of pulses does not occur,
which corresponds to the dynamics of the pulse in Figs. 4(g)
and 4(h).

With a nonzero detuning αs �= 0, the Borrmann pulse
always lags behind, V (1)

z < V (2)
z , independently of the signs

of the angle θ and of the detuning αs [Fig. 6(a); Figs. 5(e)
and 5(f)]. Inequality of group velocities, V (1)

z �= V (2)
z , leads to

diffraction-induced temporal splitting of the pulses [Figs. 5(c),
5(e), and 5(f)].

Beyond the EP, the ratio between group velocities is re-
versed. As it follows from Fig. 6(b), independently of the
angle θ sign, in a certain interval of angular detuning, the
inequality V (1)

z > V (2)
z takes place. Therefore, the Borrmann

pulse is ahead of the anti-Borrmann one.

The transverse components of the group velocities V (1,2)
x =

(∂ω/∂q(1,2)
0x )|q0z=const are given by the following expressions:

V (1,2)
x = sαsck(W ± h2/2k2)

h(ε0W ∓ ε1ε−1)
. (39)

Exactly at the EP and near the Bragg condition, when
|αs| � h2/2k2, we obtain

V (1,2)
x = sαsck

hε0

(
1 ± h2

2k2|αs|
)

≈ ± sαsch

2|αs|kε0
. (40)

As it follows from Eq. (40), the signs of the velocities
V (1,2)

x depend on the sign of the angle of incidence, which
is determined by the parameter s as well as on the sign of
the detuning αs. When s = +1 (θ > 0), the Borrmann pulse
propagates to the right with V (1)

x > 0, if αs > 0, and to the left
with V (1)

x < 0, if αs < 0 [Figs. 6(c) and 6(d)]. Anti-Borrmann
pulses propagate in opposite directions with velocities V (2)

x .
However, in this case, both diffracted waves [Eq. (32)] are ab-
sent, and, moreover, when αs > 0, there is no anti-Borrmann
direct mode, i.e., A02 = 0 [Fig. 3(a)]. Therefore, only one
nonzero mode with the amplitude A01 = 1 propagates to the
right with velocity V (1)

x > 0. If αs < 0, then, on the contrary,
there exists only an anti-Borrmann mode with A02 = 1, which
will also have a positive velocity, V (2)

x ∼ −αs > 0. Thus,
the entire wave packet of the pulse propagates to the right,
as shown in Fig. 5(a). If s = −1 (θ < 0), the signs of the
velocities V (1,2)

x [Eq. (40)] are reversed, which corresponds to
the dynamics of the pulses shown in Figs. 5(с), 5(e), and 5(f).

As can be seen from Fig. 3(a) and from the dispersion
relation given by Eq. (21), under the exact Bragg condition
at the EP (αs = 0, ε1 = 0), the amplitudes and propagation
constants of the direct Borrmann and anti-Borrmann waves
in the PhC coincide. The group velocity of direct waves in
this case is equal to Vx = (q0x/ε0k)c = (sh/2ε0k)c, but the
velocities of nonzero diffracted waves at θ < 0 are directed
in the opposite direction: −Vx > 0. This leads to a strong
expansion of the pulse along the x axis at θ < 0, as is clearly
seen from Figs. 4(g) and 4(h).

Thus, the above analytical estimations of the velocities and
amplitudes of the waves, calculated for the central spectral
component of the pulse, quite well describe the propagation
dynamics of the spatially localized wave packet, i.e., of the
pulse as a whole, in a quasi-PT -symmetric medium.

V. CONCLUSION

We have demonstrated the dynamics of a short spatially
localized optical pulse propagating in a quasi-PT -symmetric
medium with strong material dispersion and beyond the
paraxial approximation. In such a medium, the propagation of
pulses with a finite frequency spectrum becomes possible due
to a significant restoration of the PT -symmetric properties
of the structure under broadening of the spectral line of the
resonant medium. We solved the boundary problem of short
picosecond pulse propagation in quasi-PT -symmetric PhC
under the dynamic Bragg diffraction in the Laue geometry.
Optical phenomena caused by the short pulse dynamics in a
quasi-PT -symmetric medium are described. Near the Bragg
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condition at the EP of the spontaneous breaking of the PT -
symmetry, a unidirectional Bragg-diffraction-induced short
pulse splitting is revealed. At a positive angle of incidence θ >

0, the pulse propagates in a periodic quasi-PT -symmetric
structure as in a homogeneous transparent medium, i.e., with-
out diffraction, amplification, and absorption. A change in the
sign of the angle of incidence, θ < 0, leads to a spatial-time
splitting of the pulse, and moreover, one of the pulses being
formed only by the amplified diffracted wave, and the other
one by the direct and diffracted waves. In contrast to the con-
servative PhC, the diffraction pulse splitting does not occur at
the EP when the Bragg condition is exactly fulfilled, where
a significant pulse amplification appears due to enhancement
of the diffracted waves. There also exists a large diffraction
transverse expansion of the pulse. Numerical calculations of
the pulses dynamics are in good agreement with the analytical

estimations of group velocities and wave amplitudes. Thus,
we have shown the possibility of the propagation of short
spatially localized pulses in a quasi-PT -symmetric medium.
The described quasi-PT -symmetric effects—asymmetry of
propagation, splitting, and amplification of pulses—open
wide opportunities for effective control of the parameters
and dynamics of short optical pulses due to small changes
in the radiation frequency, as well as the medium gain-loss
parameter or the angle of radiation incidence on the structure.
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