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Abstract—The review discusses structural features of T-cadherin (T-cad) that allow it to perform 
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low-density lipoproteins and high-molecular-weight adiponectin. Association of cardiovascular and 

metabolic diseases with the T-cad gene polymorphism, as well as predominant T-cad expression 

in the cardiovascular system, cardioprotection and ischemic limb revascularization, depending on 

T-cad interaction with adiponectin, suggest a major role of this receptor in vascular and cardiac 

cell functioning. Possible mechanisms of T-cad-mediated regulation of metabolic processes are 

discussed.
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as well as our data on its possible involvement in 

the regulation of metabolism.

At first, we consider the associations, revealed in 

clinical studies, of the T-cad gene polymorphism 

with cardiovascular diseases that indirectly indicate 

its involvement in the regulation of metabolism and 

the functions of the cardiovascular system. At sec-

ond, we specify the structural features which dis-

tinguish T-cad from other cadherins and allow it to 

perform functions other than cell–cell adhesion. 

At third, we present the data on T-cad expression 

in the organism in proof of its tissue-specific effect. 

At fourth, we consider the T-cad cellular localiza-

tion and ligands, as well as their role in metabolism. 

In the last section of the review, we provide the 

variants of T-cad-mediated regulatory pathways in 

the cardiovascular system’s cells. Thus, our review 

treats T-cad as a receptor which regulates meta-

bolic processes in the blood vessel and heart cells.

INTRODUCTION

T-cadherin, T-cad (derived from “truncated”), 

also known as H-cadherin (derived from “heart”) 

or cadherin-13, was first discovered in the chick-

en embryonic brain and later in the adult human 

brain as a protein of the glycosyl phosphatidylino-

sitol (GPI)-anchored cadherin superfamily [1, 

2]. In our laboratory, T-cad was isolated from the 

human aorta as a result of the search for the re-

ceptor mediating lipoprotein signaling (stimula-

tion of phosphoinositide metabolism, activation 

of phospholipase C, mobilization of intracellular 

Ca2+) [3–6]. In 2004, the interaction of T-cad 

with adiponectin, a key adipose tissue hormone 

regulating insulin sensitivity and reducing the risk 

of cardiovascular diseases, was found [7]. In this 

review we survey the current ideas on the role of 

T-cad in regulation of the cardiovascular system, 
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ASSOCIATIONS OF T-CAD 

GENE POLYMORPHISM WITH 

CARDIOVASCULAR DISEASES

The genome-wide association studies revealed 

the association of single-nucleotide replace-

ments in the T-cad gene (CDH13) with stroke 

[8] and ischemic heart disease (IHD) [9]. It was 

also found that T-cad gene insertion (variation in 

the number of copies) is associated with the risk 

of myocardial infarction [10], and that there is a 

relationship between single-nucleotide replace-

ments and such the known cardiovascular disease 

risk factors as arterial blood pressure [11–13] and 

the lipid profile [10, 13, 14]. The data on the asso-

ciation between cardiovascular diseases and T-cad 

gene single-nucleotide replacements are summa-

rized in the Table. Our findings indicate a cumu-

lative effect of single-nucleotide replacements on 

the body weight in cardiovascular disease sufferers 

[15].

Many studies support the relationship between 

the T-cad gene polymorphism and adiponectin 

blood level (see Table) [16–21]. Less unambigu-

ous are the data on the other adiponectin recep-

tors: in a few papers significant associations of Ad-

ipoR1 and AdipoR2 with adiponectin blood level 

and various pathologies were detected, although 

other studies failed to reveal such a dependence 

[26–29].

Associations of mononucleotide replacements in CDH13 gene with T-cad expression and adiponectin level as 

well as with cardiovascular diseases and their risk factors

CDH13 poly-

morphism

T-cadherin expres-

sion

Adiponectin blood level Association with cardiovascular diseases 

and their risk factors

rs12444338 ↑expression 2.2-

fold (G-allele) [18]

↑(T-allele linked to A rs3865188 

allele) [17, 18, 30]

T-allele:

↓ IMT, ↑ AH risk [13], ↑ HDL [30]

rs4783244 no data ↓(T-allele) [8, 31] T-alele:

↓ BMI, IR, TG, ↑ HDL [32], ↓ TG, 

AH, fasting glucose, MS and ischemic 

stroke risk [8]

rs12051272 no data ↓ (T-allele) [8, 31] T-allele:

↑ HDL, ↓ IR, TG, DAP, fasting glu-

cose, MS risk [33]

rs8060301 no data ↓ (A-allele) [30] A-allele: ↑ HDL, ↓ SAP, DAP [30]

rs2239857 no data CG/CT genotype: ↓ 4.5-fold [30] no data

rs77068073 no data no data

rs3865188 no data ↓ (T-allel) [17, 19] no data

rs11646213 no data no data A-allele:

↓ AH risk [12], HDL [34], ↑ TG, MS 

risk [34]

rs1048612 no data no data AA genotype: ↑ IHD [13]

rs3096277 no data no data Raised AP (long-term basis) [11]

rs12443878, 

rs62040565

no data no data Alleles С, А respectively: ↑ HDL [30]

rs6565105 no data no data AA genotype: ↑ LDL [13]

rs8055236 no data no data G-allele: ↑ IHD risk [9]

Note: AH—Arterial hypertension, DAP—diastolic arterial pressure, IHD—ischemic heart disease, BMI—body mass index, 

IR—insulin resistance, HDL—high-density lipoproteins, LDL—low-density lipoproteins, MS—metabolic syndrome, 

TG—triglycerides, IMT—intima-media complex thickness in carotid arteries.
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Adiponectin, an adipose tissue hormone, was 

found in several laboratories to be a tissue-spe-

cific soluble factor and gene product expression 

of which increases 100 times during preadipocyte 

differentiation, while remaining at the highest lev-

el in adipocytes in the normal state [35, 36]. How-

ever, under obesity adiponectin gene expression 

and its blood level decrease [37, 38]. A drop in the 

adiponectin level occurs under insulin resistance, 

type 2 diabetes, metabolic syndrome, dyslipid-

emia, hypertension, cardiovascular diseases (for 

more details see the reviews [39, 40]). It was shown 

on mice that administration of full-length adipo-

nectin or its globular form leads to a reduction in 

blood levels of fatty acids, glucose and triglycer-

ides, as well as to body weight loss versus control 

even under high-fat diet [41]. Further studies 

showed that elevation of the level exactly of the 

high-molecular-weight (HMW) adiponectin form 

correlates with body weight loss in humans, while 

its reduction—with insulin resistance and isch-

emic heart disease [42–44]. T-cad not only selec-

tively binds HMW adiponectin, but also mediates 

its cardioprotective effects: deletion of the T-cad 

gene in null mutant mice abolishes the protective 

effect of adiponectin, as manifested in exacerbat-

ed cardiac hypertrophy and increased infarct size 

[45]. T-cad is implicated in adiponectin binding 

with the heart, aorta and muscles, since without 

T-cad these tissues cannot bind adiponectin [46]. 

The inverse relationship was also demonstrated: 

adiponectin was found to be essential for stabiliza-

tion of the T-cad protein on the membrane, prob-

ably, because it can prevent GPI-anchor cleavage 

by phospholipase [46].

Thus, a direct relationship between T-cad and 

adiponectin was proved both on the mouse model 

and in genome-wide studies of different popula-

tions. The clinically revealed correlations suggest 

that T-cad plays a certain role in the pathogenesis 

of cardiovascular diseases, but deeper understand-

ing of the cause-and-effect relations requires the 

identification of molecular mechanisms of inter-

actions between T-cad and its ligands.

T-CADHERIN STRUCTURAL FEATURES 

AND MATURATION

Studying the structural features of T-cad is one 

of the ways to understand its role in the organism 

and the molecular mechanisms of its function-

ing. T-cad in humans is synthesized as a prepro-

protein with the length of 713 animo acid residues 

(Fig. 1a).

At the N-terminus of the immature protein 

there is a 22-residue signaling peptide, charac-

teristic of many membrane-bound (including 

cadherins) and most secreted proteins [1]. After 

the maturing protein comes to the endoplasmic 

reticulum (ER), peptidase splits off the signaling 

peptide from the proprotein. Like in classical cad-

herins, the signaling peptide is followed in T-cad 

by the N-terminal 116-residue propeptide. It was 

shown experimentally that usually in cells, ex-

pressing T-cad, both the heavier T-cad proprotein 

form (p130) and the mature form (p105) can be 

detected on the membrane [48, 49]. Classical cad-

herins, E- and N-cadherins, require a proteolytic 

cleavage of the propeptide to perform their func-

tion, i.e. calcium-dependent cell adhesion (that 

is why they are called a “cadherin” superfamily) 

[50–52]. Presumably, propeptide cleavage is ex-

ecuted by endoprotease furin (EC 3.4.21.75) in 

the distal parts of the Golgi apparatus (trans-Gol-

gi) [47], as well as on the cell surface and in en-

dosomes [53]. Interestingly, in adiponectin gene 

null mice only T-cad form p105 was detected in 

skeletal muscles and myocardium at the invariable 

Fig. 1. T-cad structural features. (a) Domain 

organization of T-cad preproprotein; (b) schematic 

representation of T-cad structure on the membrane 

surface. SP—Signaling peptide, PP—propeptide, EC1–

EC5—extracellular cadherin domains, GPI—glycosyl 

phosphatidylinositol anchor; (c) X-dimer structure in 

first two domains with bound calcium ions (modified 

from [47]).
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mRNA level, i.e. adiponectin is likely to prevent 

the T-cad propeptide cleavage in the normal state 

[45, 54].

T-cad, like other cadherins, has extracellular 

cadherin domains EC1–EC5, each composed of 

about 110 amino acid residues, which adopt a be-

ta-barrel structure with a Greek key folding topol-

ogy [55] (Fig. 1c). T-cad has 30–58% of identical 

amino acids in the EC1 domain as compared with 

E-, N- and C-cadherin, while EC1–EC5 show 

47% sequence identity with N-cadherin [1, 2, 

55–57]. The T-cad sequence contains amino acid 

groups required for binding Ca2+: Glu-11 (nu-

meration without propeptide), LDRE, DQNDN, 

DADD and others [56]. In all cadherins, the 

conserved Ca2+-binding sites, stabilized by three 

Ca2+ ions, reside in the interdomain position [58]. 

Due to high-affinity Ca2+ binding, five protein 

domains are occupied under physiological condi-

tions with twelve ions. Ca2+ allows coordination 

of the cadherin domain structure in such a way 

that the protein adopts a crescent shape [59]. This 

shape is essential for adhesive binding: EC1 and 

EC5 should be spaced at an angle of ca 90° to each 

other to form trans bonds between the molecules 

on the surface of different cells [60]. The struc-

tures of the first two cadherin domains, obtained 

at atomic resolution, and various experiments 

with mutants allowed identification of how cis-

homodimers and trans-homodimers of classical 

cadherins form, respectively, on the membrane of 

the same cell and different cells [52, 60–62]. By 

simultaneous formation of cis- and trans-bonds, 

classical cadherins generate oligomeric complexes 

in the cell–cell contacts, while the cytoplasmic 

domains indirectly interact with the actin cyto-

skeleton and stabilize them [60, 63]. In the EC1 

domain of type I cadherin, tryptophan in the sec-

ond position (Trp-2) enters the conserved hydro-

phobic pocket EC1 in the partner molecule and 

forms a “strand-swap” dimer [62]. However, in 

T-cad amino acids required for the formation of 

dimers by such a mechanism are replaced in EC1 

(for example, the HAV motif is missing, while Ile 

resides in the second position) [1, 47, 55]. These 

modifications of the first domain lead to stabili-

zation of the monomeric form and reduction in 

T-cad adhesiveness as compared with type I cad-

herins [55]. The studies conducted on cells hyper-

expressing T-cad showed that this protein can be 

involved in homophylic adhesion [64]. The Ca2+-

binding sites EC1–EC2 participate in the forma-

tion of T-cad dimers, resulting in the X-dimer for-

mation (Fig. 1c). The same structure forms from 

type I cadherin monomers, but in contrast to T-

cad, it comes to another stabile complex [62].

Most significant distinction of T-cad amongst 

other cadherins is the lack of the transmembrane 

and cytoplasmic regions [1]. Instead, a 20-residue 

hydrophobic propeptide resides at the C-terminus 

of T-cad (Fig. 1a), being replaced in the ER by the 

GPI-anchor with the involvement of transami-

dase. The mature protein is anchored on the outer 

surface of the plasma membrane by two fatty acid 

residues of the GPI-anchor: after treatment with 

phosphatidylinositol-specific phospholypase C 

the GPI-anchor splits off and T-cad goes to cul-

ture medium [1].

Another T-cad isoform, T-cadherin 2, was iso-

lated from chicken embryonic cDNA; it is distin-

guished by its C-terminus sequence, although its 

mature form also contains the GPI-anchor [65]. 

Current data, accumulated due to isolation of hu-

man cDNA, predict the existence of several other 

T-cad isoforms in addition to the main human T-

cad isoform (P55290 according to UniProtKB/

Swiss-Prot, 713 amino acid residues, calculated 

mass of 78287 Da) discussed herein. The prima-

ry sequence of this protein, predicted using the 

NCBI RefSeq and UniProtKB/Swiss-Prot data 

bases, consists of 175 to 760 amino acid residues, 

although it is not proved experimentally as yet.

T-cad undergoes a number of post-translational 

modifications during which its molecular weight 

increases up to 130 kDa (with N-terminal propep-

tide) and 105 kDa (mature form) in endothelial and 

smooth muscle cells (SMC) as well as in myocar-

dium [49, 66]. Interestingly, the molecular weight 

of classical cadherins with transmembrane and 

cytoplasmic domains is ca 120 kDa, and normally 

a single mature propeptide-free form is detectable 

[2, 51, 67]. Treatment of cell lysates, hyperexpress-

ing T-cad, with a deglycosylase mixture decreases 

the T-cad molecular weight by 20–40 kDa, indic-

ative of a high degree of its glycosylation (our un-

published data). Inhibition of N-glycosylation by 

tunicamycin leads to the accumulation of imma-

ture 75-kDa form, which is not translocated to the 
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cell surface [68]. This evidences an importance of 

glycosylation for the maturation of T-cad. Based 

on the sequence analysis, it was ascertained that 

T-cad has eight N-glycosylation sites of which 

four were confirmed experimentally using mass 

spectrometry: one resides in the propeptide, two in 

the EC4 domain, one in the EC5 domain [69, 70]. 

Recently, unusual O-glycosylation of T-cad by a 

single mannose residue was found in the skeletal 

muscle [71]. ADP-ribosylation was also demon-

strated experimentally in the cardiac muscle sar-

colemma [72]. During induction of neuronal dif-

ferentiation in the pheochromocytoma PC12 cell 

line by the nerve growth factor (NGF) there oc-

curs tyrosine-327 phosphorylation in the EC2 do-

main, leading to proteasomal protein degradation 

[73]. The T-cad isoforms and post-translational 

modifications are poorly studied so far: there are 

no data on the tissue-specific forms and modifica-

tions. The 45 to 139 kDa data spread in assessing 

T-cad molecular weight by immunoblotting [68] 

also remains unexplained.

Thus, the T-cad domain structure is similar in 

many respects to that of classical cadherins, al-

though some peculiarities, as well as the GPI-an-

chor, impart to this protein the unique properties 

which distinguish them from cadherins respon-

sible for cell–cell adhesion.

T-CADHERIN EXPRESSION 

IN THE ORGANISM

T-cad was first discovered in the nervous sys-

tem of chicken embryo and named because of its 

truncated structure [1]. During embryogenesis T-

cad is expressed at strictly determined time and 

in the limited number of cells, promoting axon 

guidance [74–77]. The human homolog with 82% 

sequence identity to chicken T-cad, called by 

Tanihara et al. cadherin-13, was also derived from 

the brain [2]. The T-cad amino acid sequence is 

highly conserved (interspecies degree of identity is 

higher than in E-cadherin) in the evolution of ver-

tebrates, but, in contrast to other cadherins, has 

no homologs amongst invertebrates [78, 79]. This 

indirectly indicates the importance of T-cad func-

tions for vertebrates.

In the adult organism, T-cad is also expressed 

in the nervous system with the level of expression 

higher than in embryos [80]. The highest level of 

the protein was found in the heart, aorta and ar-

teries [66, 81]. In our laboratory it was shown that 

T-cad is expressed in the vascular intima and me-

dia: in endothelial cells, SMC and pericytes [66]. 

In the adventitia, T-cad occurs in the vasa vaso-

rum walls. During the development of atheroscle-

rotic injury of the vascular wall T-cad expression 

in SMC increases [66]. During the vascular wall 

injury caused by angioplasty, a rise in the SMC T-

cad level temporally coincides with the phase of 

active migration and proliferation of the vascular 

cells [82]. In vitro experiments confirm that T-cad 

synthesis in SMC depends on the cell spacing den-

sity and their proliferative status [83]. In endothe-

lial cells, like in SMC, the T-cad level depends on 

the cell cycle phase (more in G2/M), while T-cad 

hyperexpression leads to an increase in the num-

ber of cells [84].

Analysis of blood vessels in different tissues 

showed that normally T-cad is expressed not in 

all endothelial cells in the lungs, heart, spleen and 

kidneys [85]. T-cad synthesis increases in tumor 

endothelial cells [85], while in most cancer cells 

its expression decreases as compared with healthy 

cells [81] (for more details on the role of T-cad in 

tumorigenesis see review [86]).

T-cad is expressed copiously in the heart and is 

detected in skeletal muscles, but the studies of its 

role in muscle cells are still few [45, 54, 72]. T-cad 

is detected in endothelial cells of the mammary 

gland, intestine and in keratinocytes [81, 87, 88]. 

However, in most organs (liver, spleen, stomach, 

adrenal and thyroid glands, lymph nodes) T-cad is 

not detected [66, 81, 82, 89, 90].

Thus, in the healthy organism T-cad is expressed 

to the highest degree in the cerebrovascular sys-

tem: in SMC, endothelium and cardiomyocytes.

CELLULAR LOCALIZATION, HOMO- 

AND HETEROPHYLIC INTERACTIONS

In contrast to classical cadherins, localized at 

intercellular contacts, T-cad occurs in endothelial 

cells and SMC both on the plasma membrane and 

in the intracellular structures [67, 91–93]. Dur-

ing migration of these cells, T-cad is relocated to 

the leading edge [91]. In the polarized intestinal 

epithelial cells T-cad resides on the apical, but 
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not basolateral (as N-cadherin), part [87]. In the 

experiments on the MDCK-line epithelial cells, 

the chimera with five N-cadherin ectodomains 

and the 76-residue C-terminal part of T-cad is 

localized to the apical part (like native T-cad), 

while the chimera of ЕС1–ЕС5 T-cad domains 

and transmembrane domains with the part of cy-

toplasmic N-cadherin resides on the basolateral 

pole [87]. From this, it follows that T-cad local-

ization is determined not by ectodomains, but by 

the GPI-anchor which promotes apical distribu-

tion of this protein on the plasma membrane. The 

GPI-anchor composition influences the ability of 

the protein to oligomerization and apical sorting 

[94]. Meanwhile, an indispensable requirement is 

the location of the GPI-anchored proteins in the 

lipid rafts, detergent-resistant domains [95]. For 

example, T-cad is located in the Triton X-100 in-

soluble rafts in rat atrial myocytes, human vascu-

lar SMC and endothelial cells [72, 96].

Although hyperexpressed T-cad in the line cells 

can be involved in Ca2+-dependent adhesion, the 

above-mentioned data obtained in vivo and on 

primary cells argue in favor of trans-homophylic 

interaction being not a basic T-cad property, as 

shown for other cadherins [64]. Membrane local-

ization of T-cad appears to be prevalent only in 

cardiomyocytes and skeletal muscles, but this is-

sue is not studied in detail [45, 46]. Nevertheless, 

it is known that homophylic interaction may occur 

during the growth of nerves and blood vessels [47, 

97]. In the embryonic state, there occurs a contact 

inhibition of axon growth due to homophylic in-

teraction between T-cad at the end of the growing 

axon and the surface of surrounding cells [75]. It 

appears that the same repulsion occurs during an-

giogenesis as well: less blood vessels, compared to 

control, ingrow into Matrigel implant containing 

cells which hyperexpress T-cad [97]. Formation 

of capillary-like structures by HUVEC endothe-

lial cells in vitro is significantly reduced if the sur-

face is covered with EC1, but not EC5, domain. 

The same effect can be observed during vascular 

growth from the aorta ex vivo [97]. Endothelial 

cells migrate across the Boyden chamber mem-

brane twice worse when covered by the EC1, not 

EC5, domain. At the same time, no effect of T-

cad on apoptosis was revealed [29]. Adhesion and 

spreading of endothelial cells and SMC decrease if 

the surface is covered by EC1 or the anti-EC1 an-

tibody [98]. Inclusion of full-length recombinant 

T-cad to the gel promotes the VEGF-stimulated 

growth of processes in the spheroid model and 

Nicosia tissue assay [99]. If the T-cad endogenous 

level in cells is increased or decreased by adenovi-

ral constructs, it leads, respectively, to an increase 

or decrease in sprouting from spheroids. These 

findings suggest that in vivo T-cad–T-cad interac-

tion is involved in angiogenesis through its effect 

on adhesion and migration of endothelial cells. 

Angio- and neurogenesis are most active during 

embryogenesis and regeneration after tissue in-

jury. What is the normal role of T-cad in the adult 

organism?

T-cad is expressed predominantly in cells of the 

cardiovascular system and interacts with two mol-

ecules, permanently circulating in the blood: low-

density lipoproteins (LDL) and HMW adiponec-

tin form (Fig. 2). In our laboratory, the signaling 

effects of high-density lipoproteins (HDL) and 

LDL were detected: activation of phosphoinosit-

ide metabolism, elevation of the intracellular 

Ca2+ level, protein phosphorylation in platelets 

and vascular SMC [3, 4, 100–105]. We isolated 

from the human aorta the LDL-binding protein 

identified by mass spectrometry as T-cad [6]. Hy-

perexpression of T-cad in the line cells enhances 

their specific LDL binding [106, 107].

Fig. 2. Diagram of T-cad extracellular molecular 

partners. (1) T-cad, (2) LDL, (3) high-molecular-

weight adiponectin.
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To elucidate the mechanisms of lipoprotein 

binding to T-cad, the agents were used that inhib-

ited LDL binding to apolipoprotein B/E (apoB/E) 

receptor, scavenger receptor, extra LDL receptor 

and protein related to LDL receptor; however, 

specific LDL binding to T-cad was managed to 

be decreased only upon addition of the anti-apoB 

antibody [104]. LDL modifications (acetylation, 

carbamylation, modification of lysine residues) 

practically did not change the ligand-binding 

properties of T-cad, but not apoB/E receptor 

[103, 105]. LDL binding to T-cad during ligand 

blotting considerably decreases in the presence of 

the divalent ion chelator, EDTA, and the reduc-

ing agent, β-mercaptoethanol; this indicates that 

calcium ions and disulfide bonds are required for 

the maintenance of the T-cad structure [105]. In 

the Resnik’s laboratory it was demonstrated that 

after treatment with phosphatidylinositol-specific 

phospholypase C the supernatant specimen, con-

taining T-cad, does not bind LDL [108]. Eukary-

otic T-cad deprived of propeptide (replaced by 

GPI-anchor during processing), as well as T-cad 

synthesized in E. coli without the GPI-anchor, 

also do not bind LDL, suggesting that the GPI-

anchor is essential for LDL binding. It might be 

assumed that GPI, containing the fatty acid resi-

dues, dissolves in LDL. However, neither the 

mass spectrometry data [109] nor immunoblotting 

analysis (our unpublished data) revealed T-cad in 

native LDL. Thus, the issue of LDL–T-cad inter-

action sites remains open.

Hug et al. found that T-cad is a receptor of the 

hexameric and HMW forms of adiponectin, the 

adipose tissue hormone [7]. Having revealed the 

specific adiponectin binding to the undifferenti-

ated myoblast C2C12 line, the authors transfected 

by cDNA library the C2C12 cell line that originally 

did not bind adiponectin. It turned out that clones, 

binding adiponectin after transfection, contain T-

cad. The selective T-cad interaction with hexa-

meric and HMW adiponectin forms, but not with 

trimeric or globular forms, was shown. Only adi-

ponectin derived from eukaryotic cells binds to 

T-cad, indicative of the importance of post-trans-

lational modifications for this interaction. The ad-

iponectin mutant lacking the N-terminal cysteine 

residue, required for the formation of hexamers 

and larger oligomers, demonstrates during im-

munoprecipitation a significant decrease in T-cad 

binding as compared with wild-type adiponectin. 

In in vivo experiments on mice, T-cad was shown 

to co-localize with adiponectin in the cardiac 

muscle (both by microscopy and immunoprecipi-

tation) [45]. Cardiomyocytes and skeletal muscles 

in T-cad knockout mice do not bind adiponectin, 

and because of this its blood level increases [45]. 

For binding adiponectin by the HEK293 cells, it 

is enough to transfect them with the T-cad cDNA 

construct, but not with constructs of other adipo-

nectin receptors (AdipoR1 and AdipoR2) [45]. All 

these data prove that T-cad is a specific adiponec-

tin-binding protein.

Thus, T-cad can interact homophylically with 

T-cad and heterophylically with LDL and adipo-

nectin.

POSSIBLE MECHANISMS 

OF METABOLISM REGULATION 

INVOLVING T-CADHERIN

LDL not only transfer lipids into cells, but also 

regulate various processes: in SMC they stimulate 

an increase in the intracellular Ca2+ level, DNA 

and protein synthesis, and as a result—cell prolif-

eration [110, 111]. The LDL binding parameters 

(concentration dependencies, association/disso-

ciation kinetics, sensitivity to inhibitors) in SMC 

coincide with those for T-cad, while T-cad hy-

perexpression in the HEK293 and L929 line cells 

significantly increases LDL-induced elevation of 

intracellular Ca2+ [106]. T-cad promotes cell mi-

gration towards a LDL gradient [106]. LDL–T-

cad interaction leads to mitogenic cell response in 

cells with endothelial and epithelial morphology, 

triggering intracellular signaling via Ca2+ mobili-

zation, Erk1/2 phosphorylation and NFkB trans-

location to the nucleus [107]. The T-cad-medi-

ated influence of LDL on SMC and endothelial 

cells is shown schematically in Fig. 3a.

The necessity for T-cad for the realization of ad-

iponectin cardioprotective functions was reported 

[45]. In wild-type mice, the myocardial infarc-

tion area under acute injury caused by ischemia-

reperfusion, as well as the number of apoptotic 

cardiomyocytes, are smaller compared with T-cad 

or adiponectin null mice. Under chronic stress in-

duced by pressure overload, T-cad–adiponectin 
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interaction allows avoiding excess hypertrophy. 

T-cad-mediated adiponectin signaling pathway 

is not investigated in detail, but their interaction 

was shown to an increase in AMPK (adenosine 

monophosphate-activated protein kinase) and 

ACC (acetyl-CoA carboxylase) phosphorylation 

(Fig. 3b) [45]. A key role of T-cad in adiponec-

tin-mediated revascularization was proved: T-cad 

is implicated in adiponectin-mediated migration 

and proliferation of endothelial cells because the 

suppression of its expression mitigates these ef-

fects [54].

Of particular notice is the fact that LDL and 

HMW adiponectin represent large molecular 

complexes. Diameter of LDL particles is 18–25 

nm [112]. Adiponectin is present in blood as ho-

mo-oligomeric complexes. Adiponectin mono-

mers in adipocytes, due to their collagen and glob-

ular domains, assemble into trimers and then into 

hexamers and 12–18-meric complexes (HMW 

form) [113, 114]. HMW adiponectin can form a 

fan-shaped or more compact bunch-shaped com-

plex (Fig. 2) [115]. The collagen base of such a 

“bunch” circumscribes a 6 × 4.5 × 4.5 nm ellipsoid, 

while the globular domains may occupy from 25 to 

32 nm [115, 116]. Thus, both LDL and HMW adi-

ponectin represent complexes sized about 25 nm, 

suggesting a competition between these two pro-

tein complexes during interaction with T-cad. In 

blood of healthy humans, the LDL concentration 

is 0.6 mg/ml (by protein), while the adiponectin 

concentration is also exceedingly high for a hor-

mone (about 10 μg/ml) [38, 117]. Under meta-

bolic syndrome the LDL blood level increases to 

exceed 2 mg/ml, while the adiponectin level may 

decrease below 1 μg/ml [38, 118], i.e. the T-cad 

ligand ratio changes more than tenfold. The dis-

sociation constant of T-cad with LDL is about 

40 μg/ml (as assayed by protein), while half-maxi-

mal binding with adiponectin is attained at 2.2 μg/

ml (25 nM in trimer equivalent) [4, 7]. However, 

it is worth remembering about other LDL and 

adiponectin receptors which may locally reduce 

the concentration of these ligands. Thus, one may 

suggest that LDL prevents T-cad binding to adi-

ponectin, which is essential for cardioprotection 

from acute and chronic stress (Fig. 3c) [45]. Our 

tentative results argue in favor of this suggestion: 

Fig. 3. Ligand-dependent signaling and physiological responses of T-cad receptor during interaction with LDL (a) 

and adiponectin (b). Competitive effects of LDL and adiponectin on T-cad-expressing cells (c). ACC—Acetyl-CoA 

carboxylase, AMPK—adenosine monophosphate-activated protein kinase, APN—adiponectin, DAG—diacylglycerol, 

IP3—inositol triphosphate, LDL—low-density lipoproteins, PIP2—phosphatidylinositol 4,5-diphosphate, PLC—

phospholypase C.
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in the HEK293 line cells with T-cad hyperexpres-

sion we found that adiponectin can inhibit LDL-

stimulated Ca2+ signaling.

Changes in T-cad expression in the cardiovas-

cular system also affect metabolism. Firstly, the 

lack of T-cad synthesis deprives skeletal and car-

diac muscles of the ability to bind adiponectin, 

resulting in a considerable increase in the adi-

ponectin blood level [46]. Thus, by changing the 

adiponectin blood level T-cad may change its ac-

cessibility for muscle (AdipoR1) and liver (Adipo 

R2) receptors, which are basically responsible for 

metabolic effects [119, 120]. Secondly, T-cad may 

be involved in regulation of the same PI3K/Akt/

mTOR cascade as is regulated by insulin [121]. On 

endothelial cells it was shown that T-cad hyperex-

pression leads to chronic activation of PI3K/Akt 

pathway and degradation of the insulin receptor 

substrate (IRS-1), resulting in a decreased insulin 

sensitivity of cells. Suppression of T-cad expres-

sion brings about an increased insulin sensitiv-

ity [122]. T-cad immunoprecipitation revealed its 

binding to insulin receptor. Filipin, which wrecks 

lipid rafts, abolishes the inhibitory effect of T-cad 

on insulin signaling, indicative thereby of the im-

portance of rafts for signal transmission. Hyperin-

sulinemia, it turn, increases T-cad expression at 

the level both of mRNA and protein. Thus, there 

is a tight relationship between T-cad and insulin 

signaling. In this connection, it is worth noticing 

that T-cad occurs in pancreatic β-cells, specifi-

cally within insulin granules [123]. A comparison 

between wild-type and T-cad null mice revealed 

that T-cad affects the second phase of insulin se-

cretion [123].

Obesity is known to cause ER stress by disturb-

ing protein maturation therein [124]. This process 

involves activation of the unfolded protein re-

sponse, which is regulated chiefly by BiP/Grp78 

chaperone. There is evidence that T-cad interacts 

with Grp78 in endothelial cells, leading to pro-

tection from stress-induced apoptosis [125, 126]. 

Moderate ER stress stimulates neovascularization 

as a result of the T-cad/Grp78 complex formation 

[127]. Thus, T-cad can be involved in metabolism 

regulation through binding adiponectin in tissues 

and changing thereby its blood level. This binding 

may also be influenced by another T-cad ligand, 

LDL. The possible mechanism of how T-cad may 

affect insulin signaling in endothelial cells was 

demonstrated in vitro. T-cad was found to affect 

insulin secretion, which, in its turn, regulates the 

key metabolic pathways. Under ER stress, the T-

cad/Grp78 complex forms regulating vasculaiza-

tion.

CONCLUSION

T-cadherin is a receptor of the key participants 

of metabolic processes: low-density lipoproteins 

and high-molecular-weight adiponectin. Its ex-

pression in the cardiovascular system is necessary 

for the provision of such adiponectin effects as 

cardioprotection under myocardial infarction and 

stimulation of limb revascularization. Molecu-

lar mechanisms of T-cad–LDL interaction are 

not identified as yet, but further investigation of 

the competition between these ligands for T-cad 

binding, as well as of the downstream processes of 

intracellular signaling, may disclose how obesity 

and metabolic syndrome affect the cardiovascular 

system. Understanding these effects is definitely of 

prime importance.
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