
  

Crystallography Reports, Vol. 48, No. 2, 2003, pp. 180–186. Translated from Kristallografiya, Vol. 48, No. 2, 2003, pp. 212–218.
Original Russian Text Copyright © 2003 by Bushuev, Oreshko.

                                            

DIFFRACTION AND SCATTERING
OF IONIZING RADIATIONS

       
X-ray Specular Reflection under Conditions of Extremely 
Asymmetric Noncoplanar Diffraction from a Bicrystal

V. A. Bushuev and A. P. Oreshko
Physics Department, Moscow State University, Vorob’evy gory, Moscow, 119899 Russia

e-mail: oreshko@mail.ru
Received March 21, 2002

Abstract—The angular dependence of the intensities of X-ray specular reflection has been rigorously analyzed
under conditions of noncoplanar grazing Bragg diffraction in a crystal coated with a crystalline film (bicrystal).
It is shown that the anomalous angular dependence of the specular-reflection intensity is extremely sensitive to
the thickness (from fractions of a nanometer up to several nanometers), deformation, and the amorphization
degree of the crystalline films. The optimum conditions for recording intensities are attained at grazing angles
equal to 1.5–4.0 of the critical angle of the total external reflection. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recently, extremely asymmetric X-ray diffraction
has been widely used in the diagnostics of the subsur-
face layers of semiconductor crystals [1–3]. For the first
time, an extremely asymmetric diffraction scheme was
used in the case where the reflecting atomic planes
formed with the crystal surface an angle approximately
equal to the Bragg angle, whereas an incident or a dif-
fracted beam forms with the surface a small angle close
to the angle of the total external reflection [4, 5]. In this
case, X-ray specular reflection starts playing an impor-
tant role, which considerably reduces the penetration
depth of the field in the crystal and allows one to study
ultrathin layers with thicknesses of the order of 10 nm.
The shortcoming of the extremely asymmetric coplanar
system is the requirement that the specimen surface
have a special orientation, which hinders the use of
these schemes in surface diagnostics.

In [6], a new scheme of noncoplanar diffraction
from the reflecting planes normal to the crystal surface
was suggested (the tilt angle with respect to the normal
is ψ = 0). In this case, both incident and diffracted
beams may simultaneously form small angles ϕ0 and ϕh

with the surface and experience strong specular reflec-
tion. Experimentally, this diffraction geometry was
used in [7] for studying 7.5 to 200.0-nm-thick crystal-
line aluminum films grown on a GaAs substrate.

Unlike the conventionally used two-wave approxi-
mation [1–3], the analysis of diffraction in the grazing
geometry requires a rigorous solution of the equations
of the dynamical theory. This theory (in the case ψ = 0,
based on the solution of a biquadratic dispersion equa-
tion) has been constructed for both ideal single crystals
[8, 9] and crystals coated with an amorphous [10] or
crystalline [11] film. It was shown that the diffraction
reflection (rocking) curves are very sensitive to the
1063-7745/03/4802- $24.00 © 20180
degree of perfection of the subsurface layers with the
thicknesses of several nanometers or higher. The results
of the corresponding experiments are considered else-
where [1, 3].

In practice, cutting and the subsequent treatment of
crystals do not allow one to obtain surfaces that are
strictly parallel to the atomic planes. Therefore, the the-
ory of the grazing X-ray diffraction from an ideal crys-
tal whose planes form a small tilt angle ψ ≠ 0 with the
surface normal was developed [12, 13], and it was
shown that even small tilt angles (several angular min-
utes) can considerably change the shape of the diffrac-
tion reflection curves.

In the most general case ψ ≠ 0, one has to solve the
fourth-degree dispersion equation, which can be solved
only numerically. The problem is simplified at the graz-
ing angles ϕ0 or ϕh exceeding the critical angle of total
external reflection, where the effect of the specularly
reflected wave on diffraction drastically decreases. In
this connection, the approximate modified dynamical
theory of diffraction was developed [14–16], which
allows one to solve the problem analytically in the
whole range of the angles ϕ0 and ϕh except for a narrow
interval in the vicinity of the critical angle of the total
external reflection for both ideal crystals [14, 15] and
crystals coated with homogeneous amorphous films
[16], and also for crystals with imperfect crystal struc-
tures in thin subsurface layers [14].

The theory of grazing diffraction was further devel-
oped in [17, 18], where the method for studying the
curves of grazing X-ray diffraction from multilayer
crystal structures and superlattices was considered on
the basis of the solution of the problem of the dynami-
cal diffraction in each layer. It was shown that the
curves of the diffraction reflection are very sensitive to
deformation ∆a/a ~ 10–3 of the 10-nm-thick layer of
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crystalline germanium on the surface of a perfect Ge
crystal [18].

In all the above studies, attention was focused on the
analysis of the diffraction reflection, whereas the angu-
lar dependence of the intensities of specular reflection
was ignored. At the same time, as was first indicated in
[3] and then considered in detail theoretically in [19]
and observed experimentally in [20], the angular
behavior of grazing reflection in the diffraction region
at fixed grazing angles is essentially dependent on the
presence of ultrathin amorphous films on the surface
and their thicknesses.

This study continues the investigation of the specu-
lar reflection of X-rays under the simultaneous fulfill-
ment of the conditions of extremely asymmetric nonco-
planar Bragg diffraction begun in [19]. Based on a rig-
orous solution of the fourth-degree dispersion equation,
we performed a detailed analysis of the angular depen-
dences of the specular and diffraction reflection from a
bicrystal in the whole range of the grazing and tilt
angles of the reflecting planes. It is shown that the spec-
ular-reflection curves are extremely sensitive to the
parameters of homogeneous crystalline films on the
crystal surface.

THEORY OF SPECULAR REFLECTION 
FROM A BICRYSTAL

Consider the formation of the curves of diffraction
and specular reflection from a homogeneous plane-par-
allel film of arbitrary thickness d with interplanar spac-
ings a = a0 + ∆a, the Fourier components of polarizabil-
ity χ01 and χh1, and the reciprocal-lattice vector h1. The
substrate is a single crystal with the reflecting planes
forming an angle ψ ! 1 with the surface normal n
directed into the crystal along the z axis and character-
ized by the Fourier components of polarizability χ0 and
χh, the reciprocal-lattice vector h, and the interplanar
spacings a0. The rigorous solution of the problem of
dynamical diffraction can be obtained under the condi-
tion of equality of the tangential (along the crystal sur-
face) components of the reciprocal-lattice vector, h1t =
ht. In this case, the tilt angles of the film ψ1 are deter-
mined from the condition cosψ1 = (1 + δ)cosψ, where
δ = ∆a/a0 is deformation. In the opposite case, one has
to analyze the interference of the multiply scattered
radiation which, in the film, consists of an infinite set of
plane waves [21].

A plane monochromatic X-ray wave E0exp(ik0r) is
incident from vacuum onto a bicrystal at a grazing
angle ϕ0 to the surface, so that, simultaneously, the dif-
fraction reflection from the atomic planes of the sub-
strate takes place. The fields in vacuum above the bic-
rystal surface and in the substrate have the form

(1)
Evac r( ) E0 ik0r( )exp Es iksr( )exp+=

+ Eh ikhr( ),exp
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
(2)

where E0, Es, and Eh are the amplitudes of the incident,
specularly reflected, and diffracted waves, respectively;
|k0 | = |ks | = |kh | = k0 = 2π/λ is the length of the wave
vector in vacuum and λ is the wavelength; ksz = –k0z;
q0j = k0 + k0εcrjn and qhj = q0j + h are the wave vectors;
and D0j  and Dhj are the amplitudes of the transmitted
and diffracted waves in the substrate (j = 1, 2). The val-
ues of εcrj are determined from the solution of the gen-
eral dispersion equation of the dynamical theory [1, 3]

(3)

where γ0 = cos(k0, n) and γh0 = cos(k0 + h, n) are the
directional cosines of the incident and diffracted waves,
respectively; C = 1 and C = cos2θ for the σ- and π-states
of the radiation polarization and θ is the angle formed
by the incident radiation and the reflecting planes of the
substrate; and the parameter α = 2(θ – θB)sin2θB char-
acterizes the deviation of the diffraction angle ∆θ = θ –
θB from the exact Bragg angle of the substrate θB,
which is determined by the relationship h = 2k0sinθB. If
ϕ0 is the grazing incidence angle, then

(4)

where ψB = 2sinψsinθB is the effective parameter of
the tilt angle of the reflecting planes in the substrate.
The diffraction reflection into the region z < 0 (Bragg
geometry) is observed at such grazing angles ϕ0 that
γ0 < ψB, i.e., γh0 < 0 in (4).

In the general case, Eq. (3) is a fourth-degree equa-
tion with respect to ε and, therefore, has four roots εj. If
the substrate is thick, the solutions should be chosen
based on the condition Imεj > 0. In the Bragg geometry,
this condition is met only by two roots (see [12])
denoted here as εcr1 and εcr2.

In the case of a crystalline film of a finite thickness,
one has to take into account four roots in dispersion
equation (3); therefore, the field in the film consists of
four transmitted and four diffracted waves,

(5)

where A0j and Ahj are the amplitudes and a0j = k0 + k0εfjn
and ahj = a0j + h1 are the wave vectors of the transmitted
and diffracted waves in the crystal film (j = 1, 2, 3, 4).
The εfj values are determined from the solution of dis-
persion equations (3) in which the following replace-
ments are made:

χ0  χ01, χh  χh1,   ,

α  α1 = 2(θ – θB – ∆θf )sin2θB,

γh0  γh01 = γ0 – ψB1,

Ecr r( ) D0 j iq0 jr( )exp
j

∑ Dhj iqhjr( ),exp
j

∑+=

ε2
2γ0ε χ0–+( ) ε2

2γh0ε χ0– α–+( ) C
2χhχh–  = 0,

γ0 ϕ0, γh0sin γ0 ψB,–= =

E f r( ) A0 j ia0 jr( )exp
j

∑ Ahj iahjr( ),exp
j

∑+=

χh χh1
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where ∆θf = –  + δsinϕ0/(sinψcosθB) is the
displacement of the maximum of the diffraction reflec-
tion curve of the film from the maximum of the diffrac-
tion reflection curve of the substrate, ψB1 =
2sinψ1sinθB1 is the effective parameter of the tilt angle
of the reflecting planes of the film, and θB1 is the Bragg
angle of the film.

It follows from the basic system of dynamical equa-
tions [1] that the amplitudes of the diffracted and trans-
mitted waves in the film and the substrate are related as
Ahj = RajA0j , Dhl = R0lD0l ( j = 1–4, l = 1, 2) where

(6)

In order to determine the field amplitudes in
Eqs. (1), (2), and (5), we write the continuity condition
for the tangential components of the electric and mag-
netic fields at the upper and lower boundaries of the
film. We also have to take into account that at grazing
angles, the continuity of the magnetic field is equivalent
to the continuity of the first derivative of the electric
field with respect to the coordinate z. As a result, we
arrive at the following system of eight equations. At the
vacuum–film boundary, we have

(7.1)

At the film–substrate boundary, we have

(7.2)

where j = 1–4, l = 1, 2, γh = sinϕh (ϕh > 0), and ϕh is
the angle of the diffracted-radiation exit into vacuum
with respect to the surface; at the given angles ϕ0 and ψ,

the exit angle ϕh is determined by equation γh = (  +

α)1/2 [12] and the condition α > –  sets the admissi-
ble deviations ∆θ from the Bragg angles; and gfj =
exp(ik0εfjd), gcrl = exp(ik0εcrld), τf = exp(–ik0ψB1d), and
τcr = exp(–ik0ψBd) are the coefficients that take into
account the change in the phases of the waves and their
absorption during their propagation in the film. We
used the following notation:

(8)

2δ θBtan

Raj ε fj
2

2γ0ε fj χ01–+( )/Cχh1,=

R0l εcrl
2

2γ0εcrl χ0–+( )/Cχh.=

E0 Es+ A0 j, γ0 E0 Es–( )
j

∑ Γ f 0 j A0 j,
j

∑= =

Eh Raj A0 j, –γhEh

j

∑ Γ fhjRaj A0 j.
j

∑= =

Γ f 0 j A0 jg fj

j

∑ Γ cr0lD0lgcrl,
l

∑=

Raj A0 jg fjτ f

j

∑ R0lD0lgcrlτcr,
l

∑=

Γ fhjRaj A0 jg fjτ f

j

∑ Γ crhlR0lD0lgcrlτcr,
l

∑=

γh0
2

γh0
2

Γ f 0 j γ0 ε fj, Γ fhj+ Γ f 0 j ψB1,–= =

Γ cr0l γ0 εcrl, Γ cr0l ψB.–+=
C

The solution of system (7) for the amplitude coeffi-
cients RS = Es/E0 of the specular reflection and Rh =
Eh/E0 of the Bragg reflection have the following form:

(9)

Here, Qj are the coefficients relating the amplitudes of
the transmitted waves in the field: A0j = QjA01. For a
crystalline film, the coefficients take the form

(10)

where the following notation was used

(11)

Relationships (9)–(11) are the rigorous solution of
the problem of the specular and diffraction reflection of
X-rays from single crystals coated with homogeneous
crystalline films. These relationships are valid for all
the grazing angles ϕ0 and the exit angles ϕh at γ0 < ψB
and any admissible deviations ∆θ from the exact Bragg
angle.

Consider some limiting cases. If d = 0 (there is no
film), then gfj = gcrl = τf = τcr = 1 (j = 1–4, l = 1, 2), and
general formulas (9) are reduced to the formulas that
describe the specular and diffraction reflection from an
ideal single crystal [19]. For a thick film, one has to
select the solutions of the diffraction equation in the
film proceeding from the condition Imεfj > 0. The
absorption factor gfj  0 and gcrj  0 and formulas
(9) coincide with the corresponding formulas for a
medium that has film parameters.

Now, consider a homogeneous amorphous film on
the surface of a single crystal. Two waves (transmitted
and specularly reflected) excited by the incident radia-
tion, A01 and A02, and two waves excited by the Bragg
wave that enter the film from the crystal, Ah2 and Ah1,

propagate in the film. In this case, Γf 01 = –Γf 02 = (  +

χ01)1/2 and Γfh1 = –Γfh2 = (  + χ01)1/2, Q3, 4 = 0, Ra3, 4 =
0, and Ra1, 2 are the coefficients relating the amplitudes
of the waves in the film; i.e., Ah1, 2 = Ra1, 2A01, 2. The
coefficients Ra1, 2 are not determined by Eqs. (6) but
from the solution of the system of the boundary equa-
tions. Thus, formulas (9) are reduced to the expressions

RS γ0 Γ f 0 j–( )Q j/ γ0 Γ f 0 j+( )Q j,
j

∑
j

∑=

Rh γ0/γh( ) Raj γh Γ fhj–( )Q j/ γ0 Γ f 0 j+( )Q j.
j

∑
j

∑=

Q1 1,=

Q2 = Raj γh Γ fhj+( )U1 j/ Raj γh Γ fhj+( )U2 j,
j

∑
j

∑–

Qk 1–( )k 1+
U1k U2kQ2+( ) k = 3 4,( ),=

U j3 j4, g fj/g f 3 f 4,( ) T1 jT24 23,(=

– T2 jT14 13, )/ T14T23 T24T13–( ),

T1 j 2 j, R02 01, Γ cr01 2, Γ f 0 j–( )τcr=

– Raj Γ crh1 2, Γ fhj–( )τ f .

γ0
2

γh
2
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that describe the specular and diffraction reflection
from a single crystal coated with an amorphous film
[19].

In the range where the grazing angle ϕ0 is much
larger than the critical angle of the total external reflec-

tion ϕc = , the roots of the dispersion
equation (3) have considerably different values. With
due regard for the smallness of polarizabilities χh and

χh1, one can show that εf1, f 2 ≈ –γ0 ± (  + χ01)1/2 and

εf 3, f 4 ≈ |γh0 | ± (  + α1 + χ01)1/2, and εcr1 ≈ χ0/2γ0,
εcr2 ≈ 2|γh0 | + (α + χ0)/2|γh0 |. A rigorous numerical solu-
tion of Eq. (3) gives the same results, whence it follows
that Ra1, 2 ! Ra3, 4 and R01 ! R02, i.e.,

U13 ≈ 0, Q2 ≈ 0, Q3 ≈ 0,

Q4 ≈ –U14 ≈ –(Ra1τf – R01τcr)gf 1/(Ra4τf – R01τcr)gf 4.

Since εf 1, εf 4, εcr1 ! γ0, then RS ! 1; therefore, one can
ignore the effect of specular reflection on the diffraction
process. At the same time, the specific behavior of the
total wave field in a crystal in the region of strong dif-
fraction reflection from the substrate dramatically
affects the angular dependence of the specular reflec-
tion. As a result, Eqs. (9) for the amplitude coefficients
of the diffraction and specular reflection yield the fol-
lowing expressions:

(12)

which coincide with the corresponding expression
obtained for a bicrystal in the two-wave approximation
of large grazing angles in [22].

RESULTS AND DISCUSSION

Figure 1 and 2 show the curves of the diffraction
Ph = (γh/γ0)|Rh |2 and specular IS = |RS |2I0 reflection,
where I0 is the intensity of the X-ray beam incident onto
a silicon single crystal coated with a film of crystalline
silicon at different film thicknesses and grazing angles.
As is seen from Fig. 1, the diffraction reflection curves
are sensitive to the thicknesses of coating crystalline
films, which is seen from the thickness oscillations. At
large grazing angles and deviations from the exact
Bragg condition, it follows from Eq. (12) that the oscil-
lation period is determined by the expression ∆θ =
−4πγh01/(k0dsin2ϑB); for the parameters that were used
in the calculation of curve 5 in Fig. 2c, ∆θ ≈ 600′′ . With
an increase in the grazing angle, the oscillation period
and the intensity of the reflected signal drastically
decrease (cf. Figs. 1a, 1c). At the same time, the situa-
tion for the specular reflection curves (Fig. 2) is quite
different. The angular dependences of specular reflec-
tion have extremely high sensitivity to the presence and

χ0
1/2( )arcsin

γ0
2

γh0
2

Rh

Ra1 Q4Ra4+
1 Q4+

-----------------------------,=

RS

γ0 Γ f 01–( ) Q4 γ0 Γ f 04–( )+
γ0 Γ f 01+( ) Q4 γ0 Γ f 04+( )+

-----------------------------------------------------------------,=
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the thicknesses of the crystalline films: with an increase
in the grazing angle, the sensitivity increases (cf.
Figs. 2a, 2c), whereas the intensity of the useful signal
increases by two to three orders of magnitude.

The most interesting situation is observed at the
grazing angles ϕ0, h > ϕc for silicon ϕc = 13.38′. In this
case, the specular reflection curves show very high sen-
sitivity to the presence of a very thin disturbed layer on
the surface, whose thickness can be of several nanome-
ters (Figs. 2b, 2c).

As was first noted in [3] and then considered in
detail for an ideal crystal and a crystal coated with an
amorphous film in [19], the characteristic feature of
specular reflection under the diffraction conditions is a
pronounced anomaly in the angular dependence IS(∆θ),
which is of the dispersion type with the minimum and
maximum in the vicinity of the diffraction angles
∆θ1, 2 = ∆θ0  ∆θB corresponding to the boundaries of
the region of the total diffraction reflection:

where b = –γ0/γh0 is the asymmetry coefficient of the
Bragg reflection (b > 0).

It should be noted that the curves of the secondary-
radiation yield ISP ~ 1 + |Rh |2 + 2σReRh with a yield
depth that is small in comparison with the extinction
length Lex = λ(γ0 |γh0 |)1/2/πC |χh |, where σ = C |χhi |/χ0i ,
χgi = Imχg [1, 3, 23], have approximately the same
shape. The analogy becomes more obvious if the quan-
tity Q4 in (12) is expressed in terms of the amplitude
coefficient of the diffraction reflection Rh. Then the
amplitude of the specular reflection is

(13)

where σs = (χh1 )1/2/χ01. Similar to the method
of X-ray standing waves (XRSW) [1, 23], the second
factor in (13) characterizes the amplitude of the total
field on the bicrystal surface. However, the value of σs

in (13) is not determined by the relative ratio of the
imaginary parts of the Fourier components of the polar-
izabilities χh and χ0 any more. Despite the fact that, at
the grazing angles ϕ0 > ϕc, the coefficient of specular
reflections is very small, the intensity of this reflection
can considerably (by several orders of magnitude, all
other conditions being the same [20]) exceed the pho-
toelectron or fluorescent quantum yield in the XRSW
method.

The presence of the minimum and maximum on the
specular-reflection curve IS(∆θ) (13) is explained by the
fact that, in the region of diffraction reflection, Ph ≈ 1,
and the phase Rh changes almost linearly from π at ∆θ =

∆θ1 to zero at ∆θ = ∆θ2. In this case, Rh(∆θ1, 2) ≈ ,
i.e., has different signs, which results in the formation

+−

∆θ0 χ0 1 b+( )/ 2b 2θBsin( ),–=

∆θB C χh / b
1/2

2θBsin( ),=

RS χ0/4γ0
2( ) 1 σsRh+( ),–≈

Cb f
1/2 χh1

b f
1/2

+−
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of the minimum and maximum on the specular-reflec-
tion curve IS. At small grazing angles (γ0 ! ψB), the
asymmetry coefficient of reflection bf ! 1. With an
increase in the angle ϕ0, at γ0 ≈ ψB, we have bf @ 1, and
the contrast of the specular-reflection curve IS

increases.

The penetration depth of the field under conditions
of specular reflection and large grazing angles obeys
the inequality Ls @ Lex, where Ls = λ/(2πImγs), and γs =

(  + χ0)1/2. Therefore, the formation of the refracted
wave is determined by the coherent superposition of the
transmitted and diffracted waves. Unlike this situation,
in the region of small angles ϕ0 ≤ ϕc, the penetration
depth of the field Ls ≤ Lex; i.e., it is determined mainly
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2
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Fig. 1. Effect of the thickness of the surface crystalline sili-
con film on the shape of the diffraction-reflection curves
depending on the angular deviation ∆θ from the Bragg
angle of the substrate (Si) at the grazing angles ϕ0 = (a) 13′,
(b) 25′, and (c) 45′. The film thickness d (nm) is (1) 0 (ideal
crystal), (2) 1, (3) 2, (4) 3, (5) 5. CuKα radiation, Si(220)
reflection, ψ = 3°, the amorphization factor Fam = 1, defor-

mation δ = –4 × 10–4.
C

by the total external reflection. Diffraction reflection
occurs in a thinner layer, which results in a decrease in
the amplitude of the maximum of the diffraction-reflec-
tion curve and, simultaneously, in its broadening
(Fig. 1a). The specular-reflection curve in this case is
pronouncedly smoothened and acquires the shape of a
shallow minimum (Fig. 2a). For the parameters used in
the calculation of the curves in Figs. 1 and 2, the pene-
tration depths Ls = 1.9 µm, Lex = 0.5 µm, and bf = 0.69;
Ls = 0.6 µm, Lex = 0.2 µm, and bf  = 0.19; and Ls =
0.03 µm, Lex = 0.13 µm, and bf = 0.12 at the grazing
angles ϕ0 = 50′′ , 20′′ , and 13′′ , respectively.

At large grazing angles and pronounced angular
deviation from the exact Bragg condition for the crys-
talline film, the amplitude coefficient of specular reflec-
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Fig. 2. Effect of the thickness of the surface crystalline sili-
con film on the shape of the angular curves of the specular-
reflection intensities depending on the angular deviation ∆θ
from the Bragg angle at the grazing angles ϕ0 = (a) 13′,
(b) 25′, and (c) 45′. The film thickness d (nm): (1) 0 (ideal
crystal), (2) 1, (3) 2, (4) 3, (5) 5, amorphization factor Fam = 1,

deformation δ = –4 × 10–4. The intensity of incident radia-

tion  pulse/s.I0
5
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tion given by Eqs. (12) can be written in the convenient
form

(14)

where, in accordance to [23], the following notation is

RS χ01/4γ0
2( ) 1 R01C f τcr/τ f( ) iω( )/χ01exp–{ } ,–≈

–10 0

2

3

1

IS × 10–3, pulse/s

10 20 30 40
∆θ, arcsec

3
4

1
2

Fig. 3. Effect of deformation of the crystal film on the shape
of the angular dependences of the intensities of specular
reflection. Deformation δ × 10–4; (1) 0 (ideal crystal), (2) 2,
(3) 4, (4) 6. Grazing angle ϕ0 = 20′. Thickness of the Si film
d = 5 nm. Amorphization factor Fam = 1.
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IS, pulse/s
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Fig. 4. Effect of the amorphization factor of the crystalline
film on the shape of the angular dependences of the specu-
lar-reflection intensity. Amorphization factor Fam: (1) 1
(ideal crystal, (2) 0.8, (3) 0.6, (4) 0.2, (5) 0 (amorphous
film). Grazing angle ϕ0 = 50′. Thickness of the Si film
d = 2 nm. Deformation δ = 0.
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introduced:

The quantity y1 characterizes the deviation from the
exact Bragg condition for the crystalline film.

The first term in (14) describes the behavior of the
specular-reflection curve from the film far from the dif-
fraction condition. The second term describes the dis-
persion behavior and the thickness oscillations (caused
by the presence of the film) on the angular dependence
of the specular reflection. A further increase in the film
thickness results in a lower contrast of the specular-
reflection curve in the region of diffraction reflection
from the substrate and an increase in the contrast in the
region of diffraction reflection from the film.

Figures 3 and 4 show the angular dependences of
specular reflection from a bicrystal with various defor-
mations δ and amorphization factors Fam of the film
(χh1 = Famχh), respectively. As was indicated above, the
diffraction-reflection curves of thin films are almost the
same as those of the substrate. At the same time, even
insignificant changes in the deformation and amor-
phization factor of the film lead to considerable
changes in the shape of the specular-reflection curves in
the region of diffraction reflection from the substrate.

Figure 5 shows the specular-reflection curves from a
bicrystal at various tilt angles ψ of the reflecting planes
of the substrate. It is seen that the sensitivity of the

y1 α1b f χ01 1 b f+( )+[ ] /2C f ,= y12 y1
2

1–( )
1/2

,=

C f Cb f
1/2 χh1χh1( )1/2

, ω k0C f dy12/γ0.= =

–10 0
1

IS × 10–3, pulse/s
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10 20 30 40 50
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2

Fig. 5. Effect of the tilt angle of the atomic planes ψ on the
angular dependence of the specular-reflection intensity
from a bicrystal (dash lines) and an ideal crystal (solid
lines). The tilt angle (1) ψ = 3° and (2) ψ = 5°. Grazing
angles ϕ0 = 20′. Thickness of the Si film d = 4 nm. Amor-

phization factor Fam = 1, deformation δ = 4 × 10–4.
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angular dependence of specular reflection increases
with a decrease in the tilt angle.

CONCLUSIONS

The rigorous dynamical theory of specular reflec-
tion of X-rays from a bicrystal under conditions of
extremely asymmetric diffraction and specular reflec-
tion are solved in the general form so that the results
obtained are valid in the whole range of grazing angles
of an incident beam and exit angles of diffracted radia-
tion.

It is shown that the angular dependence of the spec-
ular-reflection intensity is very sensitive to the pres-
ence, thickness, deformation, and degree of amorphiza-
tion of a thin (from fractions of a nanometer to several
nanometers) crystalline film in the crystal surface. The
problem can readily be generalized to the case of graz-
ing and diffraction reflection from an arbitrary multi-
layer structure with any profiles of the variations in
polarizability, deformation, and the amorphization fac-
tor.

The intensity of the specular reflection is sufficiently
high and allows one to perform rapid analysis of thin
subsurface and transient layers. The sensitivity of the
method to the film thickness is about 0.5 nm and
increases with an increase in the grazing angle; how-
ever, the intensity of the reflected signal simultaneously
decreases. The optimum grazing angles range from one
and a half to three to four critical angles of the total
external reflection. At smaller grazing angles, the inten-
sity of specular reflection increases; however, the sensi-
tivity considerably decreases.

Thus, the results obtained show that it is possible to
perform rapid nondestructive analysis of the structure
of superthin subsurface layers and the interfaces using
the specular-reflection data obtained under conditions
of grazing Bragg diffraction.
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