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It is shown that the multiquark gauge-invariant operators can, in general, be decomposed into
combinations of products of ordinary hadronic operators, exhibiting their cluster reducibility. The latter
property inhibits the formation of completely compact multiquark bound states. Multiquark operators
still play a crucial role in the description of exotic states in regions of configuration space where the
hadronic clusters are close to each other. Our proof gives a foundation for a unified viewpoint, where the
multiquark-type and the molecular-type approaches play complementary roles, at the gauge-invariant
nonlocal operator level.
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I. INTRODUCTION

The possibility of the existence of multiquark states
[1,2], i.e., of states containing more than a pair of valence
quark-antiquark for mesons and more than three valence
quarks for baryons, also called exotic states, raises in QCD
the following question: can QCD produce, by the sole
confining forces, multiquark bound states in the same way
as it produces ordinary hadrons?
An indication that multiquark states are not of the

completely confined type arises from the observation that
interpolating local currents, that might couple to them, can
always, by Fierz rearrangements, be brought into forms
where they appear as combinations of products of color-
singlet quark bilinear and/or trilinear local operators [2,3].
As a consequence, correlation functions of such currents
become dominated by disconnected diagrams, representing
free hadron propagators, while the connected diagrams
depict interactions among hadrons, which are of the non-
confining type.
It might seem that the latter property concerns only some

particular aspects of multiquark states, since their couplings

to local currents involve only a few moments of their wave
functions. Awider view of their structure is provided by the
general gauge-invariant states constructed with the aid of
path-ordered gluon-field phase factors, also called Wilson
lines, which are the color parallel transporters of the theory.
One thus naturally arrives at the “string-junction” or
“Y-shaped-junction” representation of multiquark states
[4,5], also characterized as “compact” states. Here, one
expects to exhibit more easily their confined nature by
means of their bound-state spectrum, which should show
up through a tower of states lying at non-negligible
distances from the multiquark thresholds, in analogy with
the ordinary-hadron cases. A realization of the Y-shaped-
type interactions is provided by the diquark picture [6–8].
The purpose of the present article is to show that even the

general gauge-invariant multiquark operators are cluster
reducible, in the sense that they are decomposable into a
combination of products of gauge-invariant bilinear or
trilinear operators, reminiscent of ordinary hadronic
operators, thus generalizing the phenomenon encountered
with local interpolating currents.1

The cluster reducibility property of multiquark operators
does not leave enough room for the occurrence of a
possible globally confined structure of the corresponding
states, since interactions among hadronic clusters are
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1The cluster reducibility property of multiquark operators
was first emphasized in 1980 by Jan Stern, who called attention,
through seminars, to that aspect. He did not, however, leave any
written article about the subject. The proof presented in this
article is based on the arguments developed by Jan Stern.
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expected to be nonconfining. Possible implications of
this result and connections with other investigations about
multiquark states will be discussed in Sec. IV. Sections II
and III are devoted to the details of the proof of cluster
reducibility in the SUð3Þ and SUðNcÞ cases, respectively.
A summary is presented in Sec. V.

II. MULTIQUARK OPERATORS

General gauge-invariant multiquark operators are con-
structed by use of path-ordered gluon-field phase factors,
also called Wilson lines, which have the form

Ua
bðCyxÞ ¼ ðPe−ig

R
Cyx

dzμTBAB
μðzÞÞab; ð1Þ

where Cyx is an oriented curve going from x to y, AB
μ are

the gluon fields (B ¼ 1;…; 8), TB are the generators of the
color gauge group SUð3Þ in the fundamental representa-
tion, g is the QCD coupling constant, and P represents
the path-ordering operation, meaning that the gluon fields
are ordered according to their position on the line Cyx; the
integration runs along the line Cyx from x to y [9–12]. The
phase factors UðCyxÞ are the color parallel transporters
of the theory along the lines Cyx [13]. Examples of line Cyx

are shown in Fig. 1; straight lines are generally chosen for
their simplicity and also for their adequacy in lattice
calculations [14].
For mesonic and baryonic gauge-invariant operators, one

has the following constructions,

M ¼ q̄aðyÞUa
bðCyxÞqbðxÞ; ð2Þ

B ¼ ϵabcUa
dðCxyÞqdðyÞUb

eðCxtÞqeðtÞUc
fðCxzÞqfðzÞ;

ð3Þ

quark flavor and spin indices being omitted and where ϵ is
the three-dimensional Levi-Civita symbol. A correspond-
ing pictorial representation is given in Fig. 2.
The choice of the line types in representations (2) and (3)

is arbitrary, provided they remain continuous with rather
smooth variations. Physical quantities should not depend
on that choice, which would show up only in the corre-
sponding wave function of states. This can be verified in the
case of bound-state energies, which are controlled by the
properties of Wilson loops at large time separations [14].
In QCD, Wilson-loop averages are expected to respect

the area law for large rectangular contours and the minimal
surface property for more general contours [14–16].
Deformations of the phase-factor lines inside the states
are completely projected, when the time interval goes to
infinity, onto the wave functions (cf. the end of Appendix A
of Ref. [16]).
Similar constructions can be done for the multiquark

operators. Pictorial representations of tetraquark, pentaquark,
and hexaquark operators are shown in Fig. 3. (For
simplicity, the case of hexaquark operators with three
quark and three antiquark fields will be omitted in this
article; it can be treated in a similar way as the other cases
considered here.)
The proof of the cluster reducibility property of multi-

quark operators is based on the observation that the path-
ordered phase factors are elements of the color gauge group
SUð3Þ. Therefore, they satisfy the group product law

Ua
bðCzyÞUb

cðCyxÞ ¼ Ua
cðCzyxÞ; ð4Þ

with the determinant of their matrix representation equal to
1 (cf. Appendix C of Ref. [17]):

detðUðCyxÞÞ¼1

¼ 1

3!
ϵa1a2a3ϵ

b1b2b3Ua1
b1ðCyxÞUa2

b2ðCyxÞUa3
b3ðCyxÞ: ð5Þ

A pictorial representation of Eq. (4) is shown in Fig. 4.
We consider here the example of the tetraquark operator

[Fig. 3(a)], which has the expression

T ¼ q̄a1ðu1ÞUa1
c1ðCu1xÞq̄a2ðu2ÞUa2

c2ðCu2xÞ
× ϵc1c2c3Ud3

c3ðCyxÞϵd1d2d3
×Ud2

b2ðCyv2Þqb2ðv2ÞUd1
b1ðCyv1Þqb1ðv1Þ: ð6Þ

One multiplies T with the determinant (5), corresponding to
a phase factor taken along a line Γxy, joining y to x. The
shape of Γ is arbitrary, but for simplifying purposes, it
could be taken of the same form as the line Cyx, with
opposite orientation. Upon using identities of the typeFIG. 1. Examples of line Cyx.

FIG. 2. Pictorial representation of mesonic and baryonic gauge-
invariant operators, with phase factors running along straight
lines; in the baryonic case, ϵ is the Levi-Civita symbol, put here as
a reminder of the completely antisymmetric structure of the
junction vertex of the three phase-factor lines.
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ϵf1f2f3ϵa1a2a3 ¼ δf1a1δ
f2
a2δ

f3
a3 þ

X

ki

ð−1Þpδfk1a1δ
fk2
a2δ

fk3
a3 ; ð7Þ

where the sum runs over all permutations of the indices ki with ð−1Þp representing the parity of the permutations, and
choosing each time one ϵ from the T and another from the determinant, one ends up with the expression

T ¼ trðUðΓxyÞUðCyxÞÞ × ½q̄ðu1ÞUðCu1xÞUðΓxyÞUðCyv1Þqðv1Þ� × ½q̄ðu2ÞUðCu2xÞUðΓxyÞUðCyv2Þqðv2Þ�
− ½q̄ðu1ÞUðCu1xÞUðΓxyÞUðCyxÞUðΓxyÞUðCyv1Þqðv1Þ� × ½q̄ðu2ÞUðCu2xÞUðΓxyÞUðCyv2Þqðv2Þ�
− ½q̄ðu1ÞUðCu1xÞUðΓxyÞUðCyv1Þqðv1Þ� × ½q̄ðu2ÞUðCu2xÞUðΓxyÞUðCyxÞUðΓxyÞUðCyv2Þqðv2Þ�
þ trðUðΓxyÞUðCyxÞÞ × ½q̄ðu1ÞUðCu1xÞUðΓxyÞUðCyv2Þqðv2Þ� × ½q̄ðu2ÞUðCu2xÞUðΓxyÞUðCyv1Þqðv1Þ�
− ½q̄ðu1ÞUðCu1xÞUðΓxyÞUðCyv2Þqðv2Þ� × ½q̄ðu2ÞUðCu2xÞUðΓxyÞUðCyxÞUðΓxyÞUðCyv1Þqðv1Þ�
− ½q̄ðu1ÞUðCu1xÞUðΓxyÞUðCyxÞUðΓxyÞUðCyv2Þqðv2Þ� × ½q̄ðu2ÞUðCu2xÞUðΓxyÞUðCyv1Þqðv1Þ�: ð8Þ

The tetraquark operator is thus reexpressed in the form of a
combination of six terms, each of which is a product of
mesonic clusters. The term with the trace operation, which
appears twice, represents a Wilson loop along the closed

contour ΓxyCyx, which is an independent gauge-invariant
operator. In case the line Γxy is chosen of the same shape as
Cyx, using the generally admitted backtracking relation [18]

Ua
bðCyxÞUb

cðCxyÞ ¼ δac; ð9Þ

the Wilson loop reduces to its normalization constant
(which here assumes the value 3). Equation (8) is displayed
in pictorial form in Fig. 5, where the line Γxy has been taken
of the same shape as the line Cyx (a straight line). It is also
worthwhile to notice that, if the various internal lines of the
mesonic operators are approximated by a common line of
the same shape, the decomposition will contain only two
terms, corresponding to the two different possibilities of
producing the mesonic clusters.

(a) (b)

(c)

FIG. 3. Pictorial representation of (a) tetraquark, (b) pentaquark, and (c) hexaquark operators. Hexaquark operators with three quark
and three antiquark fields are omitted.

FIG. 4. Group product law of phase factors: the product of the
two phase factors along the lines Cyx and Czy, respectively, is
equal to the phase factor along the composite line Czyx.
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The above procedure can also be applied to the penta-
quark and hexaquark operators. For the pentaquark case,
one may multiply the operator with the determinant of
the phase factor considered along the line yz of Fig. 3(b).
One obtains decompositions into products of mesonic and
baryonic operators of the type of Fig. 6, with other terms
similar to those in Fig. 5.
For the hexaquark case, one may multiply the operator

with the determinant of the phase factor considered along
the line yz of Fig. 3(c). One obtains decompositions into
products of baryonic operators of the type of Fig. 7, with
other terms similar to those in Fig. 5.
As a general rule, the procedure of the insertion of the

determinant along certain lines leads to cluster reducibility
whenever there are two Y-shaped junctions linked by a
phase-factor line. In this connection, one observes that the
usual hybrid operators, which are obtained by insertions
inside conventional mesonic and baryonic operators of the
gluon field strength GB

μνTB, are not cluster reducible, since

they do not contain two Y-shaped junctions. Typical hybrid
operators are

Mhb;μν ¼ q̄aðyÞUa
bðCyzÞðGB

μνðzÞTBÞbcUc
dðCzxÞqdðxÞ;

ð10Þ

Bhb;μν ¼ ϵabcUa
dðCxyÞqdðyÞUb

eðCxzÞqeðzÞUc
fðCxuÞ

× ðGB
μνðuÞTBÞfgUg

hðCutÞqhðtÞ: ð11Þ

They are pictorially represented in Fig. 8.

III. SUðNcÞ
The color gauge group SUð3Þ is often extended to the

group SUðNcÞ, where Nc is the dimension of the defining
fundamental representation and is treated as a free param-
eter. It turns out that, for large values of Nc, the properties
of the theory become simplified and the theory can be
studied through an expansion in powers of the parameter
1=Nc [3,19,20]; in particular, inelasticity and screening
effects become nondominant, and the leading terms display
more clearly the confining properties of the theory. It is
therefore useful to also have representations of multiquark
operators in the SUðNcÞ case.
While at the level of ordinary mesonic operators no

changes occur, baryonic operators undergo modifications
due the necessity of constructing completely color-
antisymmetric representations. The Levi-Civita symbol is
now replaced by its Nc-dimensional version, and this
requires the junction of Nc phase-factor lines. A pictorial
representation of the two operators is shown in Fig. 9.

FIG. 5. Decomposition of the tetraquark operator into a combination of products of mesonic operators.

FIG. 6. Decomposition of the pentaquark operator into a
combination of products of mesonic and baryonic operators;
the ellipsis indicates other types of the link, as in Fig. 5.

FIG. 7. Decomposition of the hexaquark operator into a
combination of products of baryonic operators; the ellipsis
designates other types of the link, as in Fig. 5.

FIG. 8. Mesonic and baryonic hybrid operators; G is the gluon
field strength.
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For large values of Nc, mesons become free noninter-
acting particles, with masses that are independent of Nc at
leading order [20]. The masses of baryons, due to the
increasing number of associated quarks, increase like Nc;
however, the shapes, determined by electric charge density,
and sizes of baryons remain almost unchanged [20].
In a similar way, the Y-shaped junctions of the SUð3Þ

case are replaced by junctions of Nc phase-factor lines.
This feature leads, however, to multiple choices for the
construction of multiquark operators. Considering, for
instance, the tetraquark case, Fig. 3(a), one may replace
the two external quarks and their accompanying lines by
ðNc − 1Þ quarks and lines and similarly for the antiquarks,
the two junction points being linked together by a single
phase-factor line. However, one may also choose 2ðNc − 2Þ
external quarks and antiquarks, with their junction points
being now linked together by two phase-factor lines,
and so forth. The extreme case corresponds to a repre-
sentation where one has two pairs of external quarks
and antiquarks, with junction points linked together
by ðNc − 2Þ phase-factor lines. Thus, one obtains a
sequence of tetraquark-generalizing ½2ðNc − 1Þ�-quark,

½2ðNc − 2Þ�-quark, …, and ½2ðNc − ðNc − 2ÞÞ ¼ 4�-quark
operators. Pictorial representations of the two extremal
cases are shown in Fig. 10.
Each of the operators obtained above corresponds to a

different state. As is the case with ordinary baryons, it is
expected that states with increasing numbers of quarks and
antiquarks will have increasing values of masses with Nc.
The state corresponding to the extreme case with two
quarks and two antiquarks would have the smallest mass
among the many possibilities that are encountered.
The pentaquark operator, like in the tetraquark case,

also has multiple extensions, as shown in Fig. 11. In one
extreme case, one has 2ðNc − 1Þ external quarks and
ðNc − 2Þ external antiquarks, while in the other extreme
case, one has ðNc − 1Þ þ 2 quarks and one antiquark.
Hexaquark operators are constructed for generalNc (≥3)

as in the previous cases. Their pictorial representations
are shown in Fig. 12.
Properties of possibly existing tetraquarks have been

studied for large values of Nc in Refs. [21–29]. General
cases of multiquarks have been considered in Ref. [30].
The cluster reducibility property of multiquark operators

shown in the SUð3Þ case can also be extended to the
general SUðNcÞ case. The main ingredients of the proof,
Eqs. (4), (5), and (7), are naturally extended to that case
[17]. For tetraquarks, the first operator in Fig. 10 decom-
poses into a combination of products of ðNc − 1Þ mesonic
operators; the last operator of that figure decomposes into a
combination of products of two mesonic operators and
eventually of Wilson loops, according to the choices of the
types of the internal phase-factor lines. Similar decom-
positions occur for the intermediate cases of Fig. 10.

FIG. 9. Mesonic and baryonic operators in the SUðNcÞ case;
ϵ is the Levi-Civita symbol in Nc dimensions.

FIG. 10. Tetraquark operators in the SUðNcÞ case, where two extreme cases are shown. The first diagram contains ðNc − 1Þ quarks
and ðNc − 1Þ antiquarks, with a single link between the two subsystems. The last diagram contains two quarks and two antiquarks, with
ðNc − 2Þ links between the subsystems.

FIG. 11. Pentaquark operators in the SUðNcÞ case, with two extreme cases shown. The first diagram contains 2ðNc − 1Þ quarks and
ðNc − 2Þ antiquarks. The last diagram contains ðNc − 1Þ þ 2 quarks and one antiquark.
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For pentaquarks, the first operator in Fig. 11 decomposes
into a combination of products of ðNc − 2Þ mesonic
operators and one baryonic operator. The last operator of
that figure decomposes into a combination of products of
one mesonic operator and one baryonic operator and
eventually of Wilson loops.
In the case of hexaquarks, the first operator in Fig. 12

decomposes into a combination of products of ðNc − 1Þ
baryonic operators. The last operator of that figure decom-
poses into a combination of products of two baryonic
operators and eventually of Wilson loops.

IV. DISCUSSION

Since hadronic clusters do not mutually have confining-
type interactions, one would be tempted to conclude that
the global effective interactions that govern the emergence
of multiquark bound states or resonances should be of the
molecular type [31–36]. However, this issue requires a
more refined analysis.
Molecular-type descriptions of exotic states are generally

based on effective field theories, using hadronic degrees
of freedom. These theories are essentially low-energy
theories, which become less convergent at short distances,
necessitating the inclusion of higher-order contributions
with an increasing number of low-energy constants
[35–39]. The multiquark scheme uses, in essence, quark
degrees of freedom and therefore is more adapted to
describe short-distance regimes of hadronic clusters. The
main practical question that emerges is therefore that of
the determination of the domains of dominance, inside an
exotic state, of each of the preceding pictures.
In order to study the internal dynamics that are at work

inside exotic states, calculations have been undertaken in
the past in lattice theory by displaying the gauge-field
configurations that are dominant in correlation functions of
multiquark operators [40–44]. It turns out that, when the
distance between two hadronic clusters is smaller than the
mean size of each hadron, it is the connected Y-shaped-type

configuration that dominates, while in the opposite case, it
is the two disconnected hadronic cluster-type configura-
tions that are dominant. The static interquark confining
potential is then determined by the minimal value of the
total lengths of the strings of each case. These results
confirm the fact that the multiquark scheme, based essen-
tially on the string-junction or diquark picture, even though
globally nonconfining because of the presence or emer-
gence of hadronic clusters, remains a basic ingredient for a
precise description of the multiquark state.
The above results have led to the adoption of similar

potential models in nonrelativistic and semirelativistic
approaches, based on the idea of the partitioning of
configuration space, according to the dominance region
of each type of potential [45–56]. One of the advantages of
these models is the absence of unphysical long-range van
der Waals forces, which unavoidably occur in additive
quark models with confining potentials.
The concept of partitioning the configuration space, at

least in a schematic sense, according to the dominance of
the various geometrical configurations of the multiquark
systems, appears as providing the most optimal framework
which is compatible with the general cluster reducibility
property of multiquark operators.
One therefore naturally arrives at the following picture

of exotic states. The latter should be described by two
complementary schemes, each valid in a separate region of
configuration space: the multiquark or diquark scheme, valid
in regions where the hadronic clusters are close to each other,
and the molecular-type scheme, valid in regions where the
hadronic clusters are well separated from each other; a
crossover should prevail at the frontier region; the weight of
each configuration would depend on the quark masses and
flavors, as well as on the sectors of quantum numbers.
According to the weight of each scheme, approximate

descriptions might be considered at a starting stage, in
particular, when one of the schemes is overdominant. In
case of comparable weights, mixtures of the two schemes
offer other possibilities [57].

FIG. 12. Hexaquark operators in the SUðNcÞ case, with two extreme cases shown. The first diagram contains NcðNc − 1Þ quarks; at
the central junction point, apart from the bifurcation into the two horizontal lines, there are bifurcations into ðNc − 2Þ lines, which in turn
bifurcate each into ðNc − 1Þ lines. The last diagram contains 2ðNc − 1Þ þ 2 quarks.
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Recent review articles on exotic states can be found in
Refs. [36,58–63].

V. SUMMARY

The cluster reducibility property of multiquark operators
provides a general proof of the nonexistence of completely
confined or compact multiquark states. Rather than elimi-
nating the multiquark scheme from the description of
multiquark states, taking into account analyses based on
lattice and numerical calculations, it streamlines the role
played by the various participating operators, according to
a qualitative partitioning of configuration space. Existing
multiquark states, whether bound states or resonances,
would be schematically composed of two layers: an
inner core, having a structure governed by a connected

string-junction-type interaction, and an outer shell, having a
hadronic molecular-type structure. The weight of each layer
depends on the masses and flavors of the quarks and on the
sectors of quantum numbers that are considered. This
unified scheme might provide a better understanding of
the structure of multiquark states.
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