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Abstract

In this paper we present a solution of the axiomatization problem for the FMLA-FMLA
versions of the Pietz and Rivieccio exactly true logic and the non-falsity logic dual to
it. To prove the completeness of the corresponding binary consequence systems we
introduce a specific proof-theoretic formalism, which allows us to deal simultane-
ously with two consequence relations within one logical system. These relations are
hierarchically organized, so that one of them is treated as the basic for the resulting
logic, and the other is introduced as an extension of this basic relation. The proposed
bi-consequences systems allow for a standard Henkin-style canonical model used in
the completeness proof. The deductive equivalence of these bi-consequence systems
to the corresponding binary consequence systems is proved. We also outline a family
of the bi-consequence systems generated on the basis of the first-degree entailment
logic up to the classic consequence.
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1 Preliminaries: Dunn-Belnap’s Four-Valued Semantics in Different
Logical Settings

Michael Dunn and Nuel Belnap’s four-valued logic rang in its 40th anniversary' as a
well established research area with a vast number of topics on various aspects of its
syntactic and semantic characterizations. Among these topics is also the topic of des-
ignated values, selection of which from the Belnapian set of “true only” (7'), “false
only” (F'), “both true and false” (B) and “neither true nor false” (N) plays a key role
in defining the entailment relation. There seems to be a broad consensus about such
a selection, based normally on Belnap’s guideline that “the inference from A to B is
valid, or that A entails B, if the inference never leads us from told True to the absence
of told True (preserves Truth), and also never leads us from the absence of told False
to told False (preserves non-Falsity)” [4, p. 519]. Here “told True” means that a sen-
tence is either true only or both true and false (is at least true), and analogously for
“told False”.
Consider sentential language £ defined as follows:

pu=plerelovel~e.
Let a generalized valuation v be a map from the set of sentential variables to the

subsets of the set of classical truth-values {z, f}, cf. [9, p. 156]. This valuation is
extended to the whole language by the following conditions:

Definition 1

) tevipAy) s tev(p)andt € v(Y),
feviAny) < fevip)orfev),
2) tevipVvy)stev(p)ort evy),
fevipVvy) e fevip) and [ evy);
(3) tev(vp) & fevp),
fev(~p) &t ev(p).

Belnap’s four truth values (being ascribed to a sentence ¢) are then explicated as
follows:

v(p) =B &t ev(p)and f € v(p),
v)=T &1t €v(p) and f ¢ v(p),
v(p) =F &t ¢ v(p)and f € v(p),
v(ip) =N <1 ¢ v(p)and [ ¢ v(p).

Josep Maria Font in [15, p.5] explicates “Belnap’s logic” semantically by an
entailment relation Fg between arbitrary sets of sentences (I") and single sen-
tences (¢). In terms of generalized valuation v, it can be defined as follows, cf.
also [26, p. 144]:

IThis is an approximate date marked by the appearance in 1976-1977 of the seminal papers [6, 7, 9], see
in particular the special issue of Studia Logica “40 years of FDE” [24].
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Definition 2 I' Fg v =4y Yv: (Vo e T 1t € v(p)) =t € v(¥).

This definition is based on the first half of Belnap’s guideline for entailment cited
above, taking the set of designated truth values to be {7, B }.2

Font presents in [15, p. 10] a proof system g that determines the set of valid
consequences of the form I' - ¢ by the following direct inference rules:

oAy o AY 0,V
Rl R2 R3
(RD) (R2) 7 (R3) oy
(R4) —7 ®s) LY ®R6) 22
VY 10 P
®R7) LW Y0 FOSRAACLY SRS S DL CAD )]
@ V)V @V ) APV X) oV (W AX)
®R10) ®RI1) VY ®Rl12) Z@VD VX
~ VY oV Y (~g A~Y)V
R13) LAV gy Z@ADVI sy eV VX

~eVy)Vx (~oVv~Y) Vv x ~eAY)V X

Font describes -y as a “Hilbert-style presentation” of Belnap’s logic, and proves
its soundness and completeness with respect to Definition 2.

It is often ignored, however, that—in an important aspect—the notion of “Bel-
nap’s logic” promoted by Font is not genuinely Belnapian. As Font himself remarks
[15, p. 5], his presentation of this logic is in fact an “extension” of Belnap’s original
idea from [6], where entailment has been semantically defined as a relation between
(single) sentences. Dunn in [9] also deals with entailment as a relation that “holds rel-
evantly between truth-functional sentences” (p. 149, emphasis added). By using the
generalized valuation v this relation can be defined as follows:

Definition 3 ¢ Fp, ¥ =47 Yv 1t € v(p) = t € v(V).

Originally, Dunn-Belnap’s four-valued framework was designed to provide a
semantic modeling for Anderson and Belnap’s system of first-degree entailment from
[3, § 15]. Again, in the strict sense, first-degree entailments are implicational expres-
sions of the form ¢ — ¥, where ¢ and ¥ can be “truth functions of any degree but
cannot contain any arrows” [3, p. 150]. Currently it is more common to employ the
binary consequence expressions of the form ¢ - i (to be read as “p has ¥ as a con-
sequence” [10, p.302]), where ¢, ¢ € L. The corresponding proof systems (called
“binary consequence systems” by Dunn [11, p.24], and “symmetric consequence
systems” by Chrysafis Hartonas [17, p.5]) manipulate binary consequences as for-
mal objects. Such systems are of interest in their own right, as an important particular
way of presenting logical structures.

ZBelnap observes: “Dunn 1975 has shown that it suffices to mention truth-preservation, since if some
inference form fails to always preserve non-Falsity, then it can be shown by a technical argument that it
also fails to preserve Truth” [7, p. 43].
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Dunn and Hardegree in [13, p. 185] differentiate between four such presentations:

(1) unary assertional systems, - ¢;

(2) binary implicational systems, ¢ F V;

(3) asymmetric consequence systems, I" - ¢;
(4) symmetric consequence systems, I' - A.

It is observed that (1) can be viewed as a special case of (3), and (3) is a special
case of (4), whereas (2) is a special case of both (3) and (4). They also remark that
“binary implicational systems are perhaps the presentation that most fits the idea of
thinking of logics as ordered algebras” [13, p. 186].

In a similar vein, Lloyd Humberstone [18] elaborated on the idea of logical frame-
works as specific structures for manipulating sequents of various kinds. A particular
logical framework assigns to each language a class of sequents permissible within
this framework, cf. [18, p.103]. For example, the logical framework SET-FMLA,
“takes a sequent . ..to have the form I" > B where I" is a finite (possibly empty) set
of formulas ...and B is a formula” [18, p. 10313

Humberstone’s classification of logical frameworks includes a separate category
for the FMLA-FMLA sequents, considered to be “a suitable setting in which to
concentrate on entailment as a binary relation between formulas” [18, p. 108]. In
full agreement with the above-cited remark by Dunn and Hardegree, Humberstone
[18, p.246] explains how one can naturally design adequate algebraic semantics for
the FMLA-FMLA sequents, based on the relation of pre-order < (which can also be
restricted to a partial order if needed). In terms of consequences, if one defines a
homomorphism /4 from a given language to a set of propositions, then a binary con-
sequence ¢ F 1 is said to hold on this h when h(¢) < h(y), and it is said to be valid
when it holds on every such homomorphism. It is worth noting that the underlying set
of propositions is usually taken to form a lattice, which enables us to have conjunc-
tion and disjunction in our language.* Thus, the FMLA-FMLA consequence systems
may play an important role in determining the corresponding algebraic structures.

Now we return to Anderson and Belnap’s logic of first-degree entailment. It is
axiomatized in [3, p. 158] by the following FMLA-FMLA proof system:

(@) oAy ko
@) ony by
@3) oFoVvy
(@) vEoVvy
@S oA VIFE(@AY)VX
(@6) ¢k ~~¢p
(a7) ~~pkog

rl) obEY. v Ex/okx

3Here > is a special symbol that “combines formulas into sequents”, used by Humberstone as a “sequent
separator”. Because we deal with consequence expressions, we follow Dunn by employing the sign of a
consequence relation - in this place.

40n two ways of semantic presentation of various many-valued logics (the four-valued Dunn-Belnap logic
among them) see in [38] for more detail.
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r2) oFYv, obx/oEY AKX
r3) obx, ¥vEx/oVviky
rd) oY/ ~YE~p

In [3] this system is called Efqe, reflecting the fact that it constitutes the first-
degree entailment fragment of the calculus E. Another (deductively equivalent)
axiomatization of Dunn-Belnap’s semantics is presented in [12, p. 12] under the label
R¢ge. stressing thus the point that the first-degree entailment fragments of the sys-
tems E and R are the same.> System Rgg, is obtained from Egy. by excluding (r4)
from the inference rules and accepting instead the four De Morgan laws as axioms:

(dmy) ~(@V ) =~pA~y
(dma) ~p A~y =~ Vi)
(dm3) ~(@AY) =~V ~y
(dmg) ~@ NV ~Y = ~(p AY).

Whereas (dm1)—(dma) are derivable in E¢g4e, the rule (r4) is not derivable in Rgge,
although it remains admissible in it, see [12, Proposition 11]. Both E¢4. and Rgqe are
sound and complete with respect to Definition 3, see [12, Theorem 7].

The relationship between the SET-FMLA and FMLA-FMLA presentations of Bel-
nap’s logic is rather straightforward, in that I' g i if and only if there is a finite set
{¢1,...,0n) €T, suchthat 1 A ... A @, Fp, ¥. Nevertheless, system -y is much
more “flexible” than Egg. and Rgqe in terms of receptivity to possible extensions.
Some of such extensions, connected to a new choice of designated truth values will
be considered in the next section.

2 Nothing But the Truth, Anything but Falsehood and Consequences
of the FMLA-FMLA Type

Observe once again that both =5 and g, defined by Definitions 2 and 3 respec-
tively, imply acceptance of {7, B} as the set of designated truth values. However,
there may well be some other options for picking out designated elements from
the Belnapian set. Arnon Avron in [5, p. 142—-143] mentions two possible classes
of four-valued logics with the sets of designated truth values {T'}, and {7, B, N}.
He observes a duality between these classes, and hints at a method of constructing
the corresponding Gentzen-type systems. Jodo Marcos in [22] develops a uniform
semantic approach to entailment relations based on different subsets of designated
truth values from {N, F, T, B} the subsets {7} and {N, T, B} among them. He for-
mulates semantic constructions in terms of only two classical-like truth values, and
naturally extracts from them the two-signed tableau systems for characterizing the
corresponding entailment relations.

S A first-degree entailment interpretation of the binary consequence systems reveals their important logical
role as possible bases for more extended logical systems possessing a nested implication with certain
properties.
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792 Y. Shramko et al.

More recently, Andreas Pietz® and Umberto Rivieccio investigate in [25] a
logic based on the four Belnapian truth values, but with 7" as the only designated
element. They strengthen Belnap’s conditions of truth-preservation and non-falsity-
preservation by gluing them together, and demand that a consequence relation must
preserve “truth-and-non-falsity” en bloc, arriving thus at what they call exactly true
logic—ETL.

Pietz and Rivieccio conceive their exactly true logic as an extension of “Belnap’s
logic” as presented by Font in [15], that is, dealing with an entailment relation of the
SET-FMLA type F7 (symbolics adjusted) defined as follows:

Definitiond4 I' B =4y Vv : Vo e T :v(@p) =T) = v(y) =T.

Pietz and Rivieccio show how one can obtain a proof-theoretic characterization of this

relation by extending Font’s system -z with Ackermann’s rule y, see [2, p. 119]:”
pnovY)
v

The resulting system is called ETL, and it has been shown to be sound and
complete with respect to Definition 4, see [25, Theorem 3.4].

In [35] we consider an entailment relation =z, which dually to F7 is based on the
set of designated truth values {N, T, B} (cf. the above observation by Avron). The
mentioned duality concerns also the structure of the resulting relation, defined as a
relation between single formulas and some sets of formulas:

Definition 5 ¢ Fr A =47 Vv : (VY € At v(¥) = F) = v(p) = F.

The characteristic inference rule for E r is the dual y:3

R
YV (YA
This rule is added to a certain dualization of Font’s system 45:
% 4 VY
R1 R2, R3
( d)ﬁﬂ\/lﬂ ( Z)go\/lb ( d)(p,w
R4 20V ®R5) LY R6y) —2
VAP QAP
R7) (eAY)AX (RS,) @AYV I(pAX) (R9,) oAV X)
oA AX) N (VX @AY VipAXx)
~~O A Y oAy (~o Vv ~Y)Ax
R10;) —— R11;)) ——— R12;,) —MMM—
(R104) U ( d)~~<p/\w (R12y) ~@ A9 A x
(~oVvV~Y) A X ~(eVY)Ax (e A~Y) A X

6 After the name change—Andreas Kapsner.
7In [25] this rule is called “disjunctive syllogism”, which is not quite accurate.

8 ¢ i - [
In [35] we used the rule of dual disjunctive syllogism in the form STV TR
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producing thus what can be called the “non-falsity logic’—NFL, which is sound and
complete with respect to Definition 5, see [31].°

It should be stressed that both F7 and F r are defined as asymmetric entailment
relations (just like F and Fppg). In particular, Pietz and Rivieccio do not consider the
logic of first-degree entailment constructed through the binary implicational systems.
Such systems, however, may prove useful for certain logic and algebraic purposes.
For example, they might serve as the basis for systems with nested exactly true and
non-false implications, and moreover, they could contribute to elucidation of the
nature of the underlying ordered structures. Thus, the FMLA-FMLA versions of F
and F r deserve special attention.

In [35, p. 1314] we set up the problem of deductive formalizations of the exactly
true logic of the FMLA-FMLA type and its dual by means of the binary (symmet-
ric) consequence systems. Namely, consider the following straightforward definitions
(for any ¢, ¥ € L):

Definition 7 ¢ B ¥ =4r Yv:v(@) =T = v(y) =T.
Definition 8 ¢ Fr, ¢ =4 Yv:v(¥) = F = v(p) = F.

What kinds of systems can be employed to axiomatize the entailment relations
determined by these definitions? Answering this question is not as easy as it might
seem.

One can try to reorganize systems g and F4p so that only rules of the FMLA-
FMLA type are left intact. Consider g. The only rule of this system that is
responsible for the multiplication of premises is (R3). However, its direct single-
premise counterpart in accordance with the relationship between SET-FMLA and
FMLA-FMLA entailments established at the end of the previous section, turns out to
be a trivial identity statement:

pAY

PAY
This rule is easily derivable from the rest of the rules of g, and is thus redun-
dant. The situation with ;5 and its multiple-conclusions rule (R3,) is analogous.
Thus, a direct “singularization” of g and ;g will not work (being incomplete),

because the resulting systems will lack the principle of conjunction elimination and
disjunction introduction respectively.

9The dual Belnap logic is studied in detail in [31]. The FMLA-SET entailment relation for this logic can
be defined as follows:

Definition 6 ¢ Fps A =45 Yv: (Y € A: f € v(¥) = f € v(p).

This definition is explicitly based on {7, N} as the set of designated truth values, implementing thus the
second half of Belnap’s regulation for a valid inference. System ;g is sound and complete with respect
to Definition 6.
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794 Y. Shramko et al.

Let us take a closer look at the entailment relations determined by Defini-
tions 7 and 8. Both these relations are proper extensions of the relation defined by
Definition 3, as the following lemma shows:

Lemma 1 Forany ¢, ¥ € L :

l. oFp v =eF1 ¥
2. oFp v =>0Fr Y.

Proof 1. Consider arbitrary ¢, ¥ € £, and let Vv : (t € v(¢)) = t € v(¥). For
every valuation v define its dual v*, such that t € v*(p) & f ¢ v(p),and f € v*(p)
&t ¢ v(p). A direct induction extends this valuation to any formula of the language.
Moreover, it is not difficult to show that v**(¢) = v(¢p), for any ¢. Now, consider an
arbitrary valuation v’, such that € v'(¢), and f ¢ v'(¢). First, we have t € v/ ().
Assume f € v/ (). Then, by definition of dual valuation, ¢ ¢ v"*(3). Hence, by the
lemma condition, ¢ ¢ v"*(¢). Thus, f € v"**(p), whence f € v'(¢), a contradiction.

Moreover, =7, is a proper extension of Fp, . In particular, ~¢ A (¢ V ¥) Fp ¥,
but ~p A (p V) 75, ¥.

2. The proof is analogous. O

This lemma suggests a construction of the proof systems for the FMLA-FMLA
exactly true and non-falsity logics as extensions of a suitably formulated consequence
system for the first-degree entailment logic, in the way that Pietz and Rivieccio do
with SET-FMLA Belnap’s logic, by adding the rule y (or disjunctive syllogism) to it.
However, the analogous manipulations with Eg4. or Rgqe do not produce the desired
effect, cf. [35, p. 1304].

Indeed, it is very well known that adding to Egg. the principle of disjunctive
syllogism

~p ANV Y=Y

as an axiom, leads to a system of classical consequence, whereas adding the above
principle to Rgqe produces the first-degree fragment of Kleene’s logic. Similarly,
adding to Egq. the principle of dual disjunctive syllogism

pE~Y V(YA

as an axiom, again leads to a system of classical consequence, whereas adding
the above principle to Rgge produces the first-degree fragment of Priest’s logic of
paradox.!”

0By using disjunctive syllogism (or Ackermann’s rule y) one can easily derive the principle ex falso
quodlibet: ¢ A ~¢ = ¥, whereas by using dual disjunctive syllogism (dual y) one can easily derive the
principle verum ex quodlibet: ¢ = ¢ v ~y. In Egq. (unlike in Rgqq) these principles are interderivable,
due to contraposition. For further details consult, e.g., [12, p. 15].
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In [30] the following two binary consequence systems are proposed for the exactly

true logic and the non-falsity logic:

System ETL;

Merny o

Qeny vy

BekFovy

@Dovytyve

Grovele

G oV V) E(@Vy)Vx
MDev W@ AX)E@VE)A@YVX)
@ @evi)n(eVvX)EeV W AXx)
DeVvytE~~pVvy

(10) ~~p VY EoVvy

(A ~(@eVY) VvV x E(~oA~P) Vv x
(12) (v A~Y)V x E~(p V)V x
(A3) ~e APV x E(~p VvV ~Y) VvV x
(14) (~p vV ~P) vV x =~ AY) VX
(A5 ~p N (VY)Y
rDebEy ., ¥vEx/eobx
et v, obx/e-Yy A

System NFL;

MNekFevy

Yy Fovy

BoAvy ko

G R A R VN

ShekFoene

O (@AVIAXE QAW AX)

M) (@AYIVIPAX)FoA{ VY X)
@Yo AWV E(@AY)VI(PAX)
O ~~p AV FoAY

A0) e Ay = ~~p A Y

A1) (Mo vV~ A x E~(@ AY) A x
12) ~(@AY) A x F (~e vV ~Y) A x
(A3) (o A~ A X E~(o V) A x
(14) ~(@ VYY) A x F (~o A~Y) A x
(15 o=~y v (¥ Ag)
rDebEy ., ¥vEx/eobx
obEx, vEx/ovykx

These systems result from the certain binary restructuring systems g and F4p,
mainly by means of introducing the indirect inference rules for binary consequence
expressions, instead of the corresponding two-premises(-conclusions) direct rules.

It is easy to see that these systems are sound with respect to Definitions 7 and 8
respectively. Moreover, in [30] it is shown that the systems determined by (1)—-(14) +
(r1), (r2) and (1")—(14")+(r1), (r3) are deductively equivalent to each other, as well
as to both E¢4e and Rgqe. It means that both ETL; and NFL; are indeed the proper
extensions of the first-degree entailment logic.

However, the problem of establishing completeness for these systems was left
open in [30]. In what follows we will address this problem and elaborate on a certain
new method of its resolving.

3 ABi-consequence System for Exactly True Logic

It is worth observing that the logic of first-degree entailment admits a very elegant
completeness proof by a canonical model construction in terms of prime theories. The
properties of logical connectives secured by E¢4. (and any proof system deductively
equivalent to it) not only allow for a very natural definition of a canonical valuation
through a membership of a propositional variable or its negation in a prime theory, but
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ensure also a straightforward extension of such canonical valuation to any compound
formula, enabling thus the completion of the canonical model for the whole language.
Dunnin [11, pp. 40-42] presents “a ‘sanitized’ version of that proof that does not rely
on a reading knowledge of ‘algebraese’.” This proof is directly applicable to Belnap’s
logic in any logical framework. This is a Henkin-style “pure logical” completeness
proof, and we believe that it is not an exaggeration to say that possessing such a proof
is an evidence of perfection for a proof system.

By contrast, the situation with exactly true logic is not so perfect. Certain specific
features of =7, make the construction of a suitable canonical model problematic. One
such feature, characterized by Pietz and Rivieccio as “most unusual” [25, p. 129], is
that (¢ A ~@) V (f A ~Y) Bg; x is not valid even though both ¢ A ~¢ F7; x and
¥ A~y E7; x are.!! To check this, take v(¢) = B, v(¥) = N and v(x) = F. This
property, called “anti-primeness” by Pietz and Rivieccio, indicates the fact that the
principle of disjunction elimination is not admissible in ETL. This fact greatly com-
plicates finding a suitable canonical valuation for the exactly true logic, extendable
to disjunctive formulas. Moreover, Pietz and Rivieccio presume, that failure of the
disjunction elimination (as a general principle) “will not make it easy to find a nice
sequent calculus for this logic” [25, p. 129].1?

Thus, Pietz and Rivieccio provide a completeness proof for ETL by using methods
from abstract algebraic logic, most crucially, by formulating a reduced matrix for
ETL, and employing the well-known fact that any logic is complete with respect to
the class of its reduced matrix models, see [25, p. 131-133]. Still, following Dunn,
one might wish to see a “purely logical” (Henkin-style) completeness proof for the
exactly true logic (and its dual) as well.

To approach this task, we will effectively make use of a specific proof-theoretic
formalism falling under the category of a bi-consequence system. Generally sys-
tems of this kind enable simultaneous manipulations with rwo consequence relations
within one deductive framework. The mainstream of logical development is to con-
sider logical systems as codifying valid consequence relations—one relation for each
such system. However, as observed in [33, p. 144]: “characterization of logic as the
theory of valid inferences .. .does not preclude that there may be more than just one
kind of valid inferences”.

Indeed, the idea of a “peaceful co-existence of two entailment and two deducibility
relations in one and the same logic” [33, p. 144] has been advanced in the litera-
ture by some authors. For example, Dimiter Vakarelov in [36, p. 206] introduces the
notion of a bi-consequence system ““as an abstract system in the form (Sen, -, ),
where Sen is a nonempty set, whose elements are called sentences and - and
are two relations between finite set of sentences, called respectively strong and weak
consequence relations and satisfying some axioms like structural rules in Gentzen

11 Observe that the exactly true logic is not paraconsistent, because Definition 7 validates the principle of
explosion: ¢ A ~¢ =1, 1 (by no valuation a contradiction takes the value 7). Still it is paracomplete,
since ¢ F7; ¥ V ~ is not valid (let ¢ take the value 7', and v value B or N).

12However, see a formulation of a “four-sided sequents calculus” by Stefan Wintein and Reinhard Muskens
in [39]. Their proof system belongs to the SET-FMLA framework, and provides another proof-theoretic
formalism for grasping the entailment relation determined by Definition 4.
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systems”. This formalism is used for representing information systems of a certain
kind, which turn out to be dual to some knowledge representation systems.

Stéphane Demri and Ewa Ortowska in [8] also consider bi-consequence systems
as part of the analysis of various structures dealing with incomplete information.
They observe a close relationship between information systems and bi-consequence
systems, which is similar to the relationship between so-called “property systems”
and (unary) consequence systems.

A bi-consequence approach to deductive frameworks has also been put forward
in [33] in the context of some far-reaching generalizations of the four-valued logics
by the notion of a trilattice. In particular, the trilattice of generalized truth val-
ues SIXT EE N3 investigated in [33] is equipped with two “logical orderings”—a
truth order and a falsity order—that separately determine the properties of log-
ical connectives as well as the corresponding entailment relations. The unified
logic of SIXT EEN; has been conceived as a bi-consequence system compris-
ing two kinds of deducibility relations: F; and ¢, for “truth-consequence” and
“falsity-consequence”, respectively. A complete axiomatization of this logic has been
provided in [23] in the form of a bi-calculus.

This approach has been further generalized in [29] by the notion of a multi-
consequence system, where any such system can be furnished with as many
consequence relations as is needed for the purposes of a logical analysis. The multi-
consequence logics (and corresponding truth value multilattices) that may comprise
several entailment relations are motivated there by an observation that “by a logical
reasoning we can be interested not only in informational content, truth content, or
falsity content, but also in some other possible characterizations of the given truth-
values, such as constructivity, cf. [32], (un)certainty, cf. [40], modality, cf. [27], or
other kinds of ‘adverbial qualifications’, cf. [20], by which truth values can naturally
be ordered” [29, p. 205].

In what follows we will develop a specific version of a bi-consequence formalism,
which can be described as a two-level bi-consequence system. Two consequence rela-
tions comprised by such a framework are related subordinately, so that one of these
relations (on level 1) is treated as the basic for the resulting logic, and the other is
introduced (on level 2) as an extension of this basic relation. As a result one obtains
an exact deductive characterization of the entailment relation that corresponds to the
second-level consequence.

In the case of the FMLA-FMLA exactly true logic the characteristic deductive prin-
ciples of this logic will be directly built over the basic system of the first-degree
entailment, which is coincident with Egq.. The resulting bi-consequence system
allows the desired Henkin-style completeness proof with respect to Definition 7. By
showing that this system is deductively equivalent to ETL; the completeness of the
latter will be secured as well.

Thus, the bi-consequence system ETL% is determined by the following axiom
schemata and rules of inference:

(al) oAy trg
@) orny kv
@3 oFroviy
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(@) vEiroVvy

@S oA VIF1L(@AY)VX
(@6) @bk ~~¢p

@l) ~~pkro

@8) oA(~oVvY)2 Y

) oY, v x/ ok X
(r2) o1 v, o1 x/ o1 ¥ AX
(r3) o1 x, vk x/oVviybrx
rd) oY/~ ~e

r5) o2 v, Y2 x/ o2 x
(r6) oY, o2 x /o2 ¥ Ax
T e v /o2y

Some remarks on ETL% are given as follows.

ETL% is generally defined as a triple (L, -, F3), where - and F; are distinct
consequence relations, each characterized by the corresponding axioms and rules
of inference.

In label ETL% the superscript stands for the number of consequence relations
used in a formulation of a system, and the subscript marks the singularity
restriction on the consequence expressions involved.

The main task of ETL% is an axiomatization of the relation 3, i.e., this system
is designed to obtain the set of all valid consequences of the form ¢ > . The
role of 1 is basically a supporting one. An inference (proof) in ETL% of the
consequence ¢ o 1 is a finite list of consequence expressions, where every
list item is either an axiom or results from preceding elements of the list by an
inference rule application, and the last item in the list is ¢ o . If there is an
inference of ¢ -, ¥ in ETL3, then we say that ¢ -,  is provable in ETL? (or
ETL-provable), labeling it with ¢ o V.

The F1-part of ETL% determined by (al)—(a7), (r1)—(r4) is exactly Ef4.. To
highlight this point we preserve the same numbering for the analogous axioms
and rules in both systems. If there is a proof of a consequence ¢ F; ¥ purely
within the -part of ETL?, we say that it is FDE-provable and mark it with
¢ Fide V-

The properties of disjunction elimination and contraposition do not hold for 3
in full generality, since -»-versions of (r3) and (r4) are not admissible. However,
restricted versions of these rules hold, as it is not difficult to see: ¢ F1 x, ¥
x/ vyt xsobr /) ~y o ~e.

Generally speaking, ¢ Ff4ge ¥ = ¢ ey Y. Moreover, the set of valid F»-
consequences is a proper extension of the set of valid 1-consequences, due to
axiom (a8) and rule (r7). The latter rule reflects a hierarchic interconnection
between the consequences, revealing - as a relation of the first level, and -; as
a relation of the second level.

For the sake of illustration consider inferences in ETL% of the consequences ¢ A
~payand o V(MY Vg 2o V(A XD,
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I. pA~pl1¢ (al)

2. oA~pb~p (a2)

3. ~pk1~pVY (a3)

4, o A~p b1~V Y 2,3:(r1)

5. oA~ 1A (~p VYY) 1,4: (r3)

6. opA~pFr oA (~pVY) 5:(r7)

7. 9N (VY)Y (a8)

8. oA~py Y 6,7: (r5)
1. vyAxkH1 ¥ (al)
2. Yy Apk1x (a2)
3. ~y b~ Ayx) 1: (rd)
4, ~y 1~ A x) 2:(rd)
5. ~yVv~xt1~WAyx 3,4:(r3)
6. o1V~ Ax) (a3)

T. ~WAxX)F1eV~{Ax) (ad)
8. ~YyV~xykFiroVv~HAyx 5,7:(rl)
9. v~y Vv~ F1eVv~WWAx) 6,8 (r3)

10. ov(~yV~x)b2ovVv~rAyx) 9:07)

System ETL% is sound with respect to Definition 7.

Theorem 1 Forany o,y € L@y = @ By .

Proof A direct check shows that all axioms of ETL% are valid with respect to Def-
inition 7. It is also not difficult to see that for every inference rule (r1)—(r6) the
conclusion of the rule is valid with respect to Definition 7, provided the premises are.
For the preservation of ETL-validity of (»7) see Lemma 1. O

For a completeness proof we employ a canonical model construction in terms of
FDE-theories. Let a theory T be a set of formulas closed under the provable I and
under A. That is, for any ¢, ¢ € L:

peT.obfge Vv =V eT; (1

peT.veT=>pAYyeT. 2)
As usual, a theory T is prime if the following holds:

ovyeT=peToryeT. 3)

For any theory 7, and any formula ¢, let 7 + ¢ stands for the smallest theory 77,
such that 7 U ¢ C T'. We will need the following version of Lindenbaum lemma:

Lemma 2 Let ¢ /4 . Then there is a prime theory T, such that ¢ € T, ~¢ & T,
and y ¢ T.

Proof This is a suitable adjustment of the proof of Lemma 8 from [12]. Enumerate
all the sentences of L: ¢y, ¢2, . .., and then built up a series of theories starting with
To ={¢¥' : ¢ Fgge ¥'}. Clearly, ¢ € Ty. By the lemma condition and (r7), ¢ V¢4e ¥,
and hence, ¥ ¢ To. Moreover, ~¢ ¢ 7o. Indeed, assume ~¢ € To. Then ¢ Fpgqe ~¢.
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By (r7) ¢ Feq ~¢. Since ¢ Foq @, by (r6) we have ¢ o ¢ A ~¢. From this and
@ AN ~@ ey ¥ we obtain by (r5) ¢ ¢ V¥, contrary to the lemma condition.

For every T, define T, as follows: (1) if T, + ¢, Feyg ~¢ vV ¥, then Ty = T3
(@) if Tn + ¢n ten ~¢ V . then Tost = T + ¢

The required theory 7 can be defined as the union of all the 7,,. It is easy to see
that 7 is the maximal theory containing ¢ with respect to the property of not having
~¢@ Vv . To show that 7 is also prime, assume that there are x, x’ ¢ 7T, such that
x V x' € T. Consider two theories 7 + x and 7 + x’. By the above maximality
both these theories must contain ~¢ V 1. Hence, there is a conjunction of members
of T,say 7,such that T A x Fgge ~@ V¥, and T A x' Fgge ~¢ V V. By (r3) we get
TAY)V(EAY) Ffge ~¢ V. By using (a5), we obtain T A (x V ) Fege ~@ V V.
Hence, ~¢ v ¢ € T, a contradiction.

To finish the proof we have to show that ~¢ ¢ 7T and ¥ ¢ T, which is an easy
task by using (a3) and (a4). O]

The following valuation lemma is quite standard, given that we deal with theories
defined exclusively with respect to FDE-consequence .

Lemma 3 Let T be a prime theory, and define a canonical valuation v; so that
tev(p)iffpeT,and f € v(p) iff ~p € T. Then Definition 1 holds for the
canonical valuation so defined.

Proof See, e.g., proof of Lemma 10 in [12]. O

We are now in a position to establish completeness of ETL% with respect to
Definition 7.

Theorem 2 Forany ¢,y € L@ Er; ¥ = ¢ oy Y.

Proof Suppose, ¢ /ey Y. By Lemma 2, there is a prime theory 7, such that ¢ € T,
~¢ ¢ T,and ¢ ¢ T. Consider canonical valuation defined in Lemma 3. We have
t € v (@), f ¢ ve(p),and t ¢ v (Y¥). Thatis, v;(¢) = T, and v, (¥) # T. Hence,
o . O

It remains to demonstrate the deductive equivalence of ETL; and ETL%.

Theorem 3 Forany ¢, € L : ¢ & is provable in ETL if and only if ¢ 5 ¥ is
provable in ETL%.

Proof =>: It is not difficult to see that the F-version of every axiom of ETL; is
derivable in ETL%, and the inference rules of ETL; are also inference rules with
respect to -derivability.

<: Any axiom of ETL% is derivable in ETL. As an example, show a derivation
in ETL; for (a6):

. oVr~~pkF~~pVv~~p (9)
2. opFoV~~p 3)
3. NV g b g (5)
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4. @b ~~¢p 1,2,3: (rl), twice

Now, let ¢ 2  is obtained by an inference rule of ETL%. It can be (r5), (r6) or
(r7). The -versions of the first two are also inference rules of ETL . The case with
(r7) trivially holds by inductive hypothesis. O

Theorem 4 ETL, is sound and complete with respect to Definition 7.
Proof Theorem 1, Theorem 2, and Theorem 3. O

There is an interesting question concerning a possible philosophical understanding
of the proposed bi-consequence formalism. Intuitively, the construction of proof sys-
tems with several consequence relations may be justified by special requirements for
a “computer based logic”.!3 Whereas a human being may find it difficult to operate
simultaneously with several entailment relations, it seems much more natural for an
“electronic brain”, especially when performing parallel computations. Even though
the system ETL% has emerged from the need to provide a completeness proof for
the corresponding standard binary consequences system, it may well have value in
itself. Moreover, a comparison of two kinds of systems reveals certain advantages of
the bi-consequence construction. While ETL| may look rather cumbersome and not
very user-friendly, its bi-consequence counterpart ETL% is clearly more compact and
more operational in its deductive applications. Within certain boundaries, which are
precisely defined by the relation k1, it can draw upon the entire deductive power of
the first-degree entailment (including contraposition), thus resulting in a considerable
simplification of derivations.

This construction is analogous to a technique known from certain formalizations
of the non-monotonic reasoning, where a non-monotonic consequence p~ is expli-
cated as a supraclassical relation, i.e. as an “ampliative extension” of the classical
consequence = subject to the following stipulation: “if |~ is supraclassical, then
¢ | ¥ is a sufficient condition for ¢ p~ . Thus supraclassical consequence rela-
tions build on the pairs in = by adding new inference-pairs legitimised by the agent’s
heuristic information” [19, p. 3271.14

Similarly, in the case of the exactly true logic some additional to the first-degree
entailment of relevant logic inference-pairs emerge, legitimized (in this case) by
a new approach to designated truth-values. Thus, in ETL%, as well as in other
bi-consequence systems based on Egge, -2 in fact represents a suprarelevant conse-
quence relation built on the first-degree relevant consequence ;. Remarkably, the
rule (r7), which essentially expresses this idea of a suprarelevancy, allows for a fine
tuning of a wide variety of “suprarelevant binary systems” by picking out specific

131t may be illuminating in this respect to recall Belnap’s initial motivation for constructing a “useful
four-valued logic” of “how a computer should think”.

14Incidentally, we find in [19] an interesting quote from Johan van Benthem in defense of the plurality of
consequences: “The idea that logic is about just one notion of ‘logical consequence’ is actually one very
particular historical stance. It was absent in the work of the great pioneer Bernard Bolzano, who thought
that logic should chart the many different consequence relations that we have, depending on the reasoning
task at hand” [37, p. 72].
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axioms and rules for I, without collapsing it into classical consequence relation. In
Section 5 we will outline a family of such bi-consequence systems based on the logic
of first-degree entailment.

4 A Bi-consequence System for Non-falsity Logic

As already observed, the entailment relation of the non-falsity logic Fx, (Defini-
tion 7) is dual to the entailment relation of the exactly true logic F7;. This duality
finds its exact formulation in the following lemma:

Lemma 4 Let ¢,  be any sentences of L, and let ¢ be obtained from ¢ by inter-
changing between A and Vv, and replacing every atomic sentence with its negation
(and likewise for ¢). Then ¢ Frn v & v Fr @4,

Proof An easy induction on the length of a formula gives for any formula ¢, and for
any valuation v: 1 € v(p) < f € v(p9), and f € v(p) & € v(<pd). The main
claim of the lemma follows from this fact. O

Note, that (a8) and (76) are the only axiom and rule of ETL?, which are not ETL-
dualizable, i.e. the dual versions of (a8) and (#6) are not ETL-valid. However, in
view of Lemma 4, dualizations of (¢8) and (r6) turn out to be valid principles of non-
falsity logic. Thus, a bi-consequence system for the non-falsity FMLA-FMLA logic
NFL% can be obtained from ETL% by a simple substitution of (¢8) and (r6) for their
dual versions:

@) YoV (~oAY)
o) ol x, Vv x/eViYiax

System NFL% is also defined as a triple (£, F1, F2), where - is built over
as its proper extension. Consequence ¢ ,  is provable in NFL% (NFL-provable)
if and only if there exists a finite list of consequence expressions (either with - or
with -5, ad lib), where every list item is either an axiom of NF L% or results from the
preceding elements of the list by an inference rule application, and the last item in
the list is ¢ 3 . Such a consequence is labeled by ¢ 5 V.

We invite an interested reader to dualize the proofs of Theorem 1 and Theorem 2
to obtain the following soundness and completeness result for NFL% with respect to
Definition 8:

Theorem 5 Forany o, ¥ € L: 9 Fr ¥ & ¢ by .
The dual version of Theorem 3 also holds, and thus, systems NFL; and NFL%

are deductively equivalent. Hence, NFL; is sound and complete with respect to
Definition 8.
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5 A Family of Bi-consequence Systems

There is an interesting line of research concerning the diversity of possible systems
around ETL% and NFL%. As observed in Section 2, adding either ¢ A ~¢ + ¢ or
¢ = ¢ v ~y to Egqe collapses it into classical logic. The only non-trivial non-
classical extension of this system seems to be the first-degree entailment fragment of
the system “R-Mingle”, obtained by adopting the axiom of safety:'?

A~ LYV~

In contrast, if we take the system Rgge, the corresponding additions produce
two further non-trivial non-classical logics—the first-degree fragments of either
Kleene’s strong three-valued logic, or Priest’s logic of paradox. These three possible
extensions of the first-degree entailment logic are generally well studied.

As shown in [28] and [1], Font’s “Hilbert-style formulation” of Belnap’s logic g
allows for more subtle distinctions. In particular, the rule y turns out to be not deriv-
able in the system -y +¢ A ~¢p - ¥, see [28, p. 329], which makes it a distinctive
system in its own right. Moreover, there is an infinite denumerable chain of systems
between this latter system and Kleene’s logic, the n-th element of which is obtained
by accepting the following rule for any n > 1:

(@1 A~@1) V...V (@n A ~@p)
v )
ending with the system, which is the union of all the elements of the chain.

The results of Sections 3 and 4 suggest a possibility of the corresponding
extensions of systems ETL; and NFL;. Moreover, construction of the two-level
bi-consequence systems provides us with an effective tool for obtaining non-trivial
extensions of the first-degree entailment as a direct add-in of the given basis. Namely,
the distinction between two consequence relations makes it possible to accept addi-
tional principles merely for the second-level consequence without trivializing the
background (first-level) consequence or collapsing it into classical logic.

Consider the following additional second-level consequence expressions:

@) oA~V ¥V (Y Ag)
@l0) @A~y
(all) o2y v~y
Schema (a9) combines Ackerman’s y and its dual, and can thus be called united y;
(a10) and (al1) represent the principles ex falso quodlibet and verum ex quodlibet

correspondingly. Provided ETL% and NFL% are defined as in Sections 3 and 4, one
can define more bi-consequence systems of the FMLA-FMLA type as follows:

FDE? = (al)~(a7), (r)~(r4), (r7).
SM; = FDE] + (a9), (r5).

158ee conjecture formulated in footnote 3 of [30].
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EFQ} = FDE? + (a10), (r5), (r6).

VEQ? = FDE? + (all), (r5), (r6)°.

K%zz FDE%;— (a8), ElrS), (r6), (r6)4. )

LP? = FDE? + (a8)?, (r5), (r6), (r6).
RM? = FDE? + (a9), (r5), (r6), (r6).

C? = FDE} + (a8), (a8)?, (r5), (r6), (r6)".

FDE% is just a formulation of the first-degree entailment system closed under .
It has only one rule for the second-level consequence relation, which ensures the
above-mentioned closure, and no specific axioms for . As the next step we add the
“second-level transitivity”, and also accept the axiom of united y. Safety becomes
then derivable, as the following schema of inference shows:

I. (pA~@)V(pAPY)F1oA(~eVY) (distributivity)

2. V(Y AL (W VA~Y)A (V) (distributivity)

3. WV~Y)AW V) L (Y vV ~Y) (al)

4. (eA~p)F1(eA~p) V(e AY) (a3)

50 vV Y Ae) L (Y V~Y) 2,3:(rl)

6. (pA~p)F1LoA(~pVY) 4,1:(r1)

T. YNV EY A2 (Vv ~Y) 5:(r7)

8. (@wA~) 29N (~pVY) 6: (r7)

9. oA~ VY)YV (~Y Ag) (a9)

0. pA~p 2 YV~ 7,8,9: (r5), twice

As mentioned above, safety is the characteristic principle of the first degree entail-
ment fragment of the logic R-Mingle. However, the system so defined which we label
by SM% (for “sub-mingle”), is not a bi-consequence formulation of the first degree
fragment of RM. The later system validates the following consequence expressions,
which are not derivable in SM? in the absence of conjunction introduction and
disjunction elimination:

(@A~)V ( A~Y) 2 (X V ~X) “4)
(@A~@) 2 (Y vV ~Y) A (X V~x) )
@A~V (I A~Y) 2 (x vV ~x) A (E YV ~E) (6)

We then proceed with adopting further rules and axioms for -5, thus making the
second-level consequence richer and richer. System EFQ% supplies > with the rule
for conjunction introduction, but lacks disjunction elimination. ETL% possesses dis-
junction elimination on the -level in a “polluted” form of an axiom which also
involves negation. If we restore the disjunction elimination in full generality as an
indirect rule of inference (r6)?, we obtain the first-degree fragment of Kleene’s three-
valued (strong) logic K% Dually we can move through systems VEQ% and NFL%,
up to the first-degree fragment of Priest’s logic of paradox LP%. By uniting K% and
LP% we arrive at the bi-consequence system of classical logic C%. There is also the
third way to classical logic, which runs through the bi-consequence formulation of
R-Mingle RM?.
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Fig. 1 The kite of C2
bi-consequence systems 1

LP? K2
NFL? ETL?
VEQ? EFQj

SM?
e FDE?

The relations between these systems can be described by a “kite of bi-consequence
systems” as represented in Fig. 1, where the bottom-up lines stand for the proper
inclusion between the sets of valid consequences of the corresponding systems.

Note, that we can also consider some other intermediate systems that lie between
the ones represented in Fig. 1. For example, one can consider a system obtained by
adding to FDE% axiom (a10) without the rule (r6), which will be situated between
SM% and EFQ?, as well as the dual system between SM% and VEQ%. Likewise we
can obtain a further system between SM% and EFQ% by merely changing (a10) to
(a8). Moreover, by employing the results from [1] and [28], one can show that there
is in fact infinitely many logical systems between EFQ% and K% (dually—between
EFQ% and LP%), each being definable by adding a version of (a10) (dually—(all))
for some n.

The diversity of bi-consequence systems so defined merits separate consideration.
In particular, the issue of semantic characterization of systems between SM7 and
ETL%, as well as SM% and NFL% is of special interest. We here only mention one
definition, which introduces an entailment relation with a property of the forward
preservation of T alongside the backward preservation of F:1©

Definition 9 ¢ Frr v =4r Yv : v(@) =T = v(¥) = Tandv(yy) = F =
v(p) = F.

It is not difficult to see that this definition validates (a9), but neither of (a10),
(all), (4)—(6), which suggests its faithfulness to SM%.

16 A5 Andreas Kapsner informed the first author (personal communication), this definition was suggested
by David Makinson in conversation.
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6 Concluding Remarks and Future Work

In this paper we presented a solution to the problem of a deductive formalization of
the FMLA-FMLA versions of Pietz and Rivieccio’s exactly true logic and the non-
falsity logic dual to it. The corresponding binary consequence systems proposed in
[30] are shown to be sound and complete with respect to the entailment relations
between single propositions based on Belnapian true only (T) and false only (F)
as the designated and non-designated truth-value, respectively. The completeness of
these systems is proved indirectly by means of a specific proof-theoretic construction,
which (1) is deductively equivalent to the initial systems, and (2) can be equipped
with the appropriate Henkin-style canonical models.

The resulting proof-theoretic formalism is constructed in the form of a two-level
bi-consequence system, comprising two consequence relations hierarchically orga-
nized: the first relation is basic for the corresponding system, whereas the second
one extends the basic relation. The set of consequences extended in this way is sound
and complete with respect to the corresponding entailment relation to be deductively
formalized.

It can generally be concluded that the binary consequence systems of the
FMLA-FMLA type are quite useful in both “purely logical” and algebraic respects.
Furthermore, the proposed bi-consequence construction not only presents a help-
ful and highly efficient technical tool for investigating the corresponding (standard)
“mono-consequence’ systems, but is also of interest in its own right.

From a logical point of view the binary consequence systems constitute the
first-degree entailment fragments of the corresponding logics, that can further be
formulated in the “full-fledged” languages with unrestricted implicational connec-
tives. A possible direction for future research consists then in elaborating such logical
systems dealing with a conditional that preserves the “exact truth” and its dual.!”
Moreover, the bi-consequence formalism opens up a possibility of developing logi-
cal systems simultaneously comprising fwo implicational connectives, one of which
is the implication of system E or R, and the other is its augmentation to the exactly
true or non-falsity idea.

Algebraically ETL; and NFL; represent pre-ordered structures that can be
equipped with the corresponding <-based semantics in the sense of Humberstone
[18, p.246]. It should be observed that here we can have at most meet-semilattice,
which raises a question of suitable algebraic modeling for these logics. Again, the
bi-consequence systems provide an opportunity for elaborating interesting algebraic
structures with more than one ordering relation. Bi-lattices based on the four Bel-
napian truth values are generally well known and well studied, see, e.g. [14]. The
algebraic structures that should correspond to ETL% and NFL% would be equipped
with two ordering relations—a lattice ordering for | and a semi-lattice ordering for
5. The resulting lattices are worth studying.

Distinguishing T as the designated truth value and F as the anti-designated one
makes it also possible to extend the range of types of entailment relations under

17Cf. an extension of the exactly true logic with an implicational connective in [39, pp. 458-459].
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consideration, by applying the methodology of quasi-matrices initiated in [21]. The
n-valued g-matrix (quasi-matrix) is defined there as a structure (V, D*, D™, {f. :
¢ € C}), where V is a non-empty set of values with at least two elements, DT (the
set of designated values) and D~ (the set of antidesignated values) are disjoint non-
empty proper subsets of V), and every f. is a function on V with the same arity as c.

In [34] the Belnap generalized g-matrix B} with {T', B} and {F, B} as the sets of
designated and anti-designated truth values, respectively, was introduced. We may
consider the exact Belnap generalized ¢g-matrix B, which is the four-valued g-matrix
based on Belnap’s four truth values with DT = {T} and D~ = {F}, and functions
f¢ defined as in the usual Belnap matrix. We can define then the following four
entailment relations (cf. [34, p. 136]):

AkE, Biff Vv :v(A) €e DT = v(B) e DT )
AF; BiffVo:v(A) ¢ D~ = v(B) ¢ D™ (8)
AF, Biff Vv :v(A) ¢ D~ = v(B) € DT )
AF, BiffVv:v(A) € DY = v(B) ¢ D™ (10)

Conditions 7 and 8 are just another formulations of Definitions 7 and 8. Conditions 9
and 10 determine the relations of “quasi-consequence” (g-consequence) [21], and
“plausibility-consequence” (p-consequence) [16] defined on the basis of Bj. We
leave the study of these two latter relations for future work.

Acknowledgments We thank two anonymous reviewers for their valuable comments that greatly
contributed to improving the final version of the paper.

References

1. Albuquerque, H., Pfenosil, A., Rivieccio, U. (2017). An algebraic view of super-Belnap logics. Studia
Logica, 105, 1051-1086.

2. Ackermann, W. (1956). Begriindung einer strengen Implikation. Journal of Symbolic Logic, 21, 113-128.

3. Anderson, A.R., & Belnap, N.D. (1975). Entailment: the logic of relevance and necessity (Vol. I).
Princeton: Princeton University Press.

4. Anderson, A.R., Belnap, N.D., Dunn, J.M. (1992). Entailment: the logic of relevance and neces-
sity (Vol. II). Princeton: Princeton University Press.

5. Avron, A., & E. Ortowska (2003). Classical Gentzen-type methods in propositional many-valued log-
ics. In M. Fitting (Ed.), Beyond two: theory and applications of multiple-valued logic (pp. 117-155).
Berlin—Heidelberg: Springer.

6. Belnap, N.D. (1977). A useful four-valued logic. In J.M. Dunn, & G. Epstein (Eds.), Modern uses of
multiple-valued logic (pp. 8-37). Dordrecht: D. Reidel Publishing Company.

7. Belnap, N.D. (1977). How a computer should think. In G. Ryle (Ed.), Contemporary aspects of
philosophy (pp. 30-55). London: Oriel Press.

8. Demri, S., & Orlowska, E. (2002). Incomplete information: structure, inference, complexity. Berlin:
Springer.

9. Dunn, J.M. (1976). Intuitive semantics for first-degree entailment and coupled trees. Philosophical
Studies, 29, 149-168.

10. Dunn, J.M. (1995). Positive modal logic. Studia Logica, 55, 301-317.

11. Dunn, J.M. (1999). A comparative study of various model-theoretic treatmets of negation: a his-
tory of formal negation. In D.M. Gabbay, & H. Wansing (Eds.), What is negation? (pp. 23-51).
Dordrecht/Boston/London: Kluwer Academic Publishers.

12. Dunn, J.M. (2000). Partiality and its dual. Studia Logica, 66, 5-40.

@ Springer



808 Y. Shramko et al.

13. Dunn, J.M., & Hardegree, G.M. (2001). Algebraic methods in philosophical logic. Oxford, New York:
Clarendon Press, Oxford University Press.

14. Fitting, M.C. (1989). Bilattices and the theory of truth. Journal of Philosophical Logic, 18, 225-256.

15. Font, J.M. (1997). Belnap’s four-valued logic and De Morgan lattices. Logic Journal of the IGPL, 5,
413-440.

16. Frankowski, S. (2004). Formalization of a plausible inference. Bulletin of the Section of Logic, 33,
41-52.

17. Hartonas, C. (2017). Order-dual relational semantics for non-distributive propositional logics. Logic
Journal of the IGPL, 25, 145-182.

18. Humberstone, L. (2011). The connectives. Cambridge: MIT Press.

19. Labuschagne, W., Heidema, J., Britz, K. (2013). Supraclassical consequence relations. In S. Crane-
field, & A. Nayak (Eds.), Al 2013: advances in artificial intelligence. AI 2013. Lecture Notes in
Computer Science (Vol. 8272, pp. 326-337). Cham: Springer.

20. Maclntosh, J.J. (1991). Adverbially qualified truth values. Pacific Philosophical Quarterly, 72, 131—
142.

21. Malinowski, G. (1990). Q-consequence operation. Reports on Mathematical Logic, 24, 49-59.

22. Marcos, J. (2011). The value of the two values. In J.-Y. Beziau, M.E. Coniglio (Eds.), Logic without
frontiers: festschrift for Walter Alexandre Carnielli on the occasion of his 60th birthday (pp. 277-294).
(Tributes), College Publications.

23. Odintsov, S., & Wansing, H. (2015). The logic of generalized truth-values and the logic of bilattices.
Studia Logica, 103, 91-112.

24. Omori, H., Wansing, H. (Eds.) (2017). 40 Years of FDE, Special Issue of Studia Logica, 105, Issue 6.

25. Pietz, A., & Rivieccio, U. (2013). Nothing but the truth. Journal of Philosophical Logic, 42, 125-135.

26. Priest, G. (2008). An introduction to non-classical logic (2nd edn). Cambridge: Cambridge University
Press.

27. Rescher, N. (1965). An intuitive interpretation of systems of four-valued logic. Notre Dame Journal
of Formal Logic, 6, 154—-156.

28. Rivieccio, U. (2012). An infinity of super-Belnap logics. Journal of Applied Non-Classical Logics,
22,319-335.

29. Shramko, Y. (2016). Truth, falsehood, information and beyond: the American plan generalized. In K.
Bimbo (Ed.), J. Michael Dunn on Information Based Logics. Outstanding Contributions to Logic,
(Vol. 8, pp. 191-212). Berlin: Springer.

30. Shramko, Y. (2018). First-degree entailment and structural reasoning, to appear. In H. Omori, H.
Wansing (Eds.), New Essays on Belnap-Dunn Logic, Synthese Library.

31. Shramko, Y. (2018). Dual-Belnal logic and anaything but falsehood, to appear in: Journal of Applied
Logic.

32. Shramko, Y., Dunn, J.M., Takenaka, T. (2001). The trilaticce of constructive truth-values. Journal of
Logic and Computation, 11, 761-788.

33. Shramko, Y., & Wansing, H. (2005). Some useful sixteen-valued logics: how a computer network
should think. Journal of Philosophical Logic, 34, 121-153.

34. Shramko, Y., & Wansing, H. (2007). Entailment relations and/as truth values. Bulletin of the Section
of Logic, 36, 131-143.

35. Shramko, Y., Zaitsev, D., Belikov, A. (2017). First-degree entailment and its relatives. Studia Logica,
105, 1291-1317.

36. Vakarelov, D. (1995). A duality between Pawlak’s knowledge representation systems and bi-
consequence systems. Studia Logica, 55, 205-228.

37. van Benthem, J. (2008). Logic and reasoning: do the facts matter? Studia Logica, 88, 67-84.

38. Wansing, H., & Shramko, Y. (2008). A note on two ways of defining a many-valued logic. In M.
Pelis (Ed.) The logica yearbook 2007 (pp. 255-266). Filosofia: Prague.

39. Wintein, S., & Muskens, R. (2016). A Gentzen calculus for nothing but the truth. Journal of
Philosophical Logic, 45, 451-465.

40. Zaitsev, D. (2009). A few more useful 8-valued logics for reasoning with tetralattice E1G H Ty. Studia
Logica, 92, 265-280.

@ Springer



	The Fmla-Fmla Axiomatizations of the Exactly True and Non-falsity...
	Abstract
	Abstract
	Preliminaries: Dunn-Belnap's Four-Valued Semantics in Different Logical Settings
	Nothing But the Truth, Anything but Falsehood and Consequences of the Fmla-Fmla Type
	A Bi-consequence System for Exactly True Logic
	A Bi-consequence System for Non-falsity Logic
	A Family of Bi-consequence Systems
	Concluding Remarks and Future Work
	References




