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INVESTIGATION OF THE MOTION
OF A HEAVY BODY OF REVOLUTION
ON A PERFECTLY ROUGH PLANE
BY THE KOVACIC ALGORITHM
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Abstract. Investigation of various problems of mechanics and mathematical physics is reduced to the

solution of second-order linear differential equations with variable coefficients. In 1986, the American

mathematician J. Kovacic proposed an algorithm for solution of a second-order linear differential equa-

tion in the case where the solution can be expressed in terms of so-called Liouville functions. If a linear

second-order differential equation has no Liouville solutions, the Kovacic algorithm also allows one to

ascertain this fact. In this paper, we discuss the application of the Kovacic algorithm to the problem

of the motion of a heavy body of revolution on a perfectly rough horizontal plane. The existence of

Liouville solutions of the problem is examined for the cases where the rolling body is an infinitely

thin disk, a disk of finite thickness, a dynamically symmetric torus, a paraboloid of revolution, and a

spindle-shaped body.
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1. Introduction

Problems of the motion of bodies that touch fixed or moving rigid surfaces have a long history.
It is closely related to the process of formation and development of a large branch of analytical
mechanic, namely, dynamics of nonholonomic systems. In works of I. Newton, L. Euler, I. Bernoulli,

J. D’Alembert, and J. Lagrange, some problems on the rolling of rigid bodies without sliding were
studied; these problems are typical in the dynamics of systems with nonholonomic constraints and
hence they are considered as classical problems of nonholonomic mechanics. One of such classical

problems is the problem on the motion of a heavy, rotationally symmetric rigid body on a fixed,
perfectly rough horizontal plane. For the first time, this problem was considered in [27] by E. Lindelöf.

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie
Obzory, Vol. 145, Geometry and Mechanics, 2018.

1072–3374/20/2454–0417 c© 2020 Springer Science+Business Media, LLC 417

DOI 10.1007/s10958-020-04705-4



To solve this problem, Lindelöf used the Hamilton principle or the Lagrange equations of the second

kind obtained from this principle. Having written two equations of nonholonomic constraints, he
applied them to the construction of the expression for the kinetic energy and erroneously assumed
that the nonholonomicity of this problem is completely accounted and therefore the Lagrange equations
of the second kind can be constructed. Naturally, the system of differential equations obtained by

Londelöf was simpler than the valid system and admitted solutions in quadratures. The error was
first detected by S. A. Chaplygin who informed Lindelöf about it. On October 25, 1895, Chaplygin
reported his results on this topic in a session of the Physics Division of the Society of Devotees of

Natural Science, Anthropology, and Ethnography. Chaplygin noted that “in the first pages of his
work, . . . E. Lindelöf made a serious mistake which led to the fact that the equations obtained turned
out simpler than the actual valid equations, which explained the seeming achievement of the author.”

In this report, Chaplygin first presented his equations of the motion of nonholonomic systems. Two
years later, he found a valid solution to the E. Lindelöf problem and published new results in [5]. In this
paper, Chaplygin proved the integrability of this problem and detected that its solution is reduced

to integration of a second-order linear differential equation whose coefficients depend on the shape
and the mass distribution of the body. Having the general solution of the corresponding equation,
the problem is reduced to quadratures. Chaplygin also found two cases where the general solution

of the equation can be obtained. In the case where the body is a nonhomogeneous, dynamically
symmetric ball, the general solution of the corresponding equation is expressed in terms of elementary
functions (see [5]). In the case of the motion of a circular disk or a hoop on a horizontal plane, the

general solution is expressed in terms of hypergeometric series (see [5]; this fact was also proved by
P. Appell [1] and D. Korteweg [19]). In 1932, Kh. M. Mushtari continued to examine the problem on
the motion of a heavy, rotationally symmetric body on a perfectly rough horizontal plane (see [35]).

Under an additional condition imposed on the shape and the mass distribution of the body, two new
particular cases were found in which the motion of the body can be described completely. In the first
case, the moving body is bounded by the surface formed by rotating a parabolic arc about an axis

passing through its focus, and in the second case, the moving rigid body is a rotationally symmetric
paraboloid. Further development of Mustari’s results was made by A. S. Kuleshov (see [22–25]).
For any other rotationally symmetric bodies moving without sliding on a horizontal plane, the exact

solution of the corresponding second-order linear differential equation is unknown. Therefore, it is
interesting to find this solution for bodies different from the mentioned above (a ball or a disk) and
hence to solve this problem completely. For this purpose, it is possible to apply the so-called Kovacic

algorithm. In 1986, the American mathematician J. Kovacic presented in [21] an algorithm for finding
a general solution of a second-order linear differential equation with variable coefficients for the case
where this solution can be expressed in terms of so-called Liouville functions (see [15, 17, 21]). Recall

that Liouville functions are functions constructed from rational functions by algebraic operations,
taking exponentials, and integration. If a linear differential equation has no Liouville solutions, the
Kovacic algorithm also allows one to ascertain this fact. The necessary condition for application of the

Kovacic algorithm to a second-order linear differential equation is that the coefficients of this equation
should be rational functions of independent variable. In this paper, the Kovacic algorithm is applied
to the problem of motion of a heavy rotationally symmetric rigid body on a fixed perfectly rough

horizontal plane. The paper is organized as follows. The Introduction contains a review of the results
concerning the problem obtained in different years. In Sec. 2, we discuss the theoretical foundations of
the Kovacic algorithm and describe the algorithm itself. We also discuss specific features of application
of the Kovacic algorithm to second-order linear differential equations. In Sec. 3, we present a detailed

formulation of the general problem of motion of a rotationally symmetric body on a perfectly rough
horizontal plane. We derive the second-order linear differential equation for a rotationally symmetric
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body of an arbitrary shape. Further in Sec. 3 we consider two particular cases where the moving body

is an infinitely thin circular disk or a circular disk of finite thickness. For both these cases, we derive the
corresponding second-order linear differential equation and examine it using the Kovacic algorithm. As
a result, we prove the nonexistence of Liouville solutions for both cases: in the problem of the motion
of an infinitely thin circular disk and a circular disk of finite thickness rolling on a perfectly rough

horizontal plane. In Sec. 4, we study the problem of the motion of a dynamically symmetric torus on a
perfectly rough horizontal plane. Using the Kovacic algorithm, we prove the nonexistence of Liouville
solutions in this problem for almost all values of parameters of the problem. Section 5 is devoted to

the study of the motion of a dynamically symmetric paraboloid on a perfectly rough horizontal plane.
Using the Kovacic algorithm, we prove that the general solution of the corresponding second-order
linear differential equation is expressed through Liouville functions for all values of parameters of

the problem. This fact allows us to study the qualitative behavior of the paraboloid on the plane.
As a result, we obtain that the trajectory of the contact point on the surface of the paraboloid is a
curve constructed from periodically repeated waves touching two parallels of paraboloid, whereas the

trajectory of the contact point on the supporting plane is a similar curve lying between two concentric
circles that are touched by the contact point alternately while the paraboloid moves on the plane.
Similar results were obtained earlier by N. K. Moschuk (see [33, 34]). We also describe all steady

motions of the paraboloid on the plane (permanent rotations and regular precessions) and examine
their stability. In Sec. 6, we consider the problem of motion of a spindle-shaped body on a perfectly
rough plane. This problem was earlier studied by Kh. M. Mushtari (see [35]). Direct application of

the Kovacic algorithm to this problem allows one to state that the problem has no Liouville solutions
for almost all values of parameters of the problem, except the case where these parameters satisfy
the Mushtari condition (see [35]). Finally, we give short conclusions to summarize the content of the

paper and discuss the future work. A part of results presented in this paper were discussed previously
in [6–10, 26].

Acknowledgment. This work was partially supported by the Russian Foundation for Basic Research
(project Nos. 14-01-00380 and 16-01-00338).

2. Kovacic Algorithm and Its Theoretical Foundations

Investigation of many problems of mechanics and mathematical physics is reduced to the solution

of second-order linear differential equations with variable coefficients. In 1986, the American math-
ematician J. Kovacic presented an algorithm for finding general solutions of a second-order linear
homogeneous differential equations with rational coefficients in the case where these solutions can be

expressed in terms of so-called Liouville functions (see [17, 21]). If a linear differential equation has
no Liouville solutions, the Kovacic algorithm also allows one to ascertain that fact. Since the major
part of the results of the paper was obtained by using the Kovacic algorithm, in this section we briefly

discuss the algorithm itself and specific features of its application to second-order linear differential
equations.

2.1. Statement of the problem. We consider the differential field C(x) of rational functions of a
single (complex) variable x. We search for solutions of the differential equation

z′′ + a(x)z′ + b(x)z = 0, (2.1)

where a(x), b(x) ∈ C(x). We are interested in so-called Liouville solution of Eq. (2.1). Recall that a
solution is called a Liouville solution if it is an element of a Liouville field defined as follows.

Definition 1. Let F be a differential field of functions of a single complex variable x containing C(x),

i.e., F is a field of characteristic zero with a differentiation operation (·)′ possessing the following two
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properties:

(a+ b)′ = a′ + b′ and (ab)′ = a′b+ ab′ for all a ∈ F and b ∈ F .

The field F is called a Liouville field if there exists a sequence (tower) of finite extensions of fields

C(x) = F0 ⊆ F1 ⊆ . . . ⊆ Fn = F

obtained by joining a single element such that

Fi = Fi−1(α), where
α′

α
∈ Fi−1 for each i = 1, 2, . . . , n

(i.e., Fi is generated by joining of the exponent of the indefinite integral over Fi−1), or

Fi = Fi−1(α), where α′ ∈ Fi−1

(i.e., Fi is generated by joining the indefinite integral over Fi−1), or Fi is a finite algebraic extension
over Fi−1 (i.e., Fi = Fi−1(α) and α satisfies a finite-degree polynomial equation of the form

a0 + a1α+ · · ·+ anα
n = 0,

where aj ∈ Fi−1, j = 0, 1, 2, . . . , n.

Thus, Liouville solutions are constructed from rational functions by algebraic operations, taking
exponentials, and integration. In this way, we can get logarithmic or trigonometric functions but not
special functions like the Bessel functions, the Legendre polynomials, or the Gauss hypergeometric

functions. Applying the algorithm, it suffices to find only one Liouville solution of Eq. (2.1) since
another solution cam be found as follows. Assume that z2 = νz1, where z1 is the known solution and
ν is some function to be determined. Using the differential equation (2.1) we obtain the following

differential equation for ν:

z1
d2ν

dx2
+

(
2
dz1
dx

+ a(x)z1

)
dν

dx
= 0,

which yields the second solution z2:

z2 = z1

∫ (
1

z21
exp

(
−
∫

a(x)dx

))
dx.

If z1 is a Liouville solution, then, clearly, the second solution z2 is also a Liouville solution and
hence all solutions of Eq. (2.1) are Liouville solution (since all solutions are linear combinations of
z1 and z2). In order to reduce the original differential equation to a simpler form, we perform the

substitution

y(x) = z(x) exp

(
1

2

∫
a(x)dx

)
. (2.2)

Then Eq. (2.1) becomes

y′′ +
(
b− 1

4
a2 − 1

2
a′
)
y = 0

or

y′′ = r(x)y, r(x) =
1

2
a′ +

1

4
a2 − b. (2.3)

Note that this change of variables does not change the Liouville nature of the solutions. If solutions
of (2.1) are Liouville solutions, then solutions of (2.3) will also be Liouville solutions. Further, we will

assume that the equation considered has the form (2.3) and r(x) ∈ C(x), r(x) /∈ C. Using the inverse
transformation

z(x) = y(x) exp

(
−1

2

∫
a(x)dx

)

we can transform solutions of (2.3) to solutions of (2.1).
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2.2. Preliminaries. In this section, we discuss some facts from the theory of linear differential

equations that form the basis of the Kovacic algorithm. A part of them is presented with detailed
proofs, another part is presented without proofs, but proofs can be found in the references. We start
from the description of the possible structure of the solution of the differential equation (2.3).

2.2.1. The four cases. The following theorem by J. Kovacic [21] determines the structure of solutions

with which the algorithm deals.

Theorem 1. For the differential equation (2.3), the following four cases can occur.

1. The differential equation (2.3) has a solution of the form η = exp
∫
ω(x)dx, where ω(x) ∈ C(x).

2. Equation (2.3) has a solution of the form η = exp
∫
ω(x)dx, where ω(x) is algebraic function of

degree 2 over C(x) and Case 1 does not hold.

3. All solutions of Eq. (2.3) are algebraic functions over C(x) and Cases 1 and 2 do not hold. In this
case, the solutions of Eq. (2.3) have the form η = exp

∫
ω(x)dx, where ω(x) is an algebraic function

of degree 4, 6, or 12 over C(x).

4. Equation (2.3) has no Liouville solutions.

Below we discuss the basic ideas of the proof of this theorem. Let η and ζ be two independent solu-

tions of the differential equation (2.3). Denote by G the differential extension field of C(x) generated
by η and ζ, i.e., G = C(x) (η, η′, ζ, ζ ′). Higher derivatives of η and ζ are not needed since η′′ = rη ∈ G,
η′′′ = r′η + rη′ ∈ G, etc. The Galois group G = G

(
G/C(x)

)
of the differential equation (2.3) is

the Galois group of G over C(x). In other words, G is the group of all differential automorphisms
of G leaving elements of C(x) fixed. Recall that an automorphisms of a group H is an isomorphism
from H to itself and a differential automorphism is an automorphism that commutes with the dif-

ferentiation operation (·)′. This means that G is the group of all automorphisms σ : G → G such
that σ(a′) = (σa)′ for all a ∈ G and σf = f for all f ∈ C(x). The Galois group G of the differential
equation (2.3) is isomorphic to a subgroup of the group GL(2,C) of all invertible (2×2)-matrices with

complex coefficients, i.e., each σ ∈ G corresponds to a matrix(
aσ bσ
cσ dσ

)
,

where aσ, bσ, cσ, and dσ are elements of C. This correspondence is established as follows. Since η and
ζ are solutions of Eq. (2.3) and any σ ∈ G is an differential automorphism, we have

(ση)′′ = σ(η′′) = σ(rη) = σr · ση = rση

and hence ση is also a solution of Eq. (2.3). Further, ση is a linear combination of η and ζ since any

solution of Eq. (2.3) is a linear combination of any two independent solutions of (2.3). Then we can
write

ση = aση + bσζ, aσ, bσ ∈ C.

Similarly we obtain

σζ = cση + dσζ, cσ, dσ ∈ C.

Combining these two results we have(
ση
σζ

)
=

(
aση + bσζ
cση + dσζ

)
=

(
aσ bσ
cσ dσ

)(
η
ζ

)
;

obviously, σ corresponds to the matrix (
aσ bσ
cσ dσ

)
.

Using the Wronskian of the solutions η and ζ, we can show that the Galois group G of Eq. (2.3)

is isomorphic to the subgroup SL(2,C) of the group GL(2,C) consisting of invertible (2× 2)-matrices
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with determinant 1. (Recall that the Wronskian W of η and ζ is by definition W = ηζ ′ − η′ζ.) The

derivative of W vanishes:

W ′ = η′ζ ′ + ηζ ′′ − η′ζ ′ − η′′ζ = ηζ ′′ − η′′ζ = ηrζ − rηζ = 0.

Hence the Wronskian W of η and ζ is a constant and hence for any σ ∈ G we have σW = W (since

W ∈ C(x) and σ, by definition, leaves C(x) fixed). This implies that

σW = σ
(
ηζ ′ − η′ζ

)
= ση(σζ)′ − (ση)′σζ

=
(
aση + bσζ

)(
cση

′ + dσζ
′)− (aση′ + bσζ

′)(cση + dσζ
)

=
(
aσdσ − bσcσ

)(
ηζ ′ − η′ζ

)
=
(
aσdσ − bσcσ

)
W

and hence

aσdσ − bσcσ = 1.

The following two facts are presented without proofs.

Theorem 2. The Galois group G of Eq. (2.3) is isomorphic to an algebraic subgroup of SL(2,C).

This theorem is a fundamental fact from the Picard–Vessiot theory. Its proof can be found in [21].

Recall that a subgroup K of the group GL(2,C) is said to be an algebraic group if there exist a finite
number of polynomials P1, . . . , Pn, where Pi ∈ C [x1, x2, x3, x4] (the polynomial ring with 4 variables
x1, x2, x3, x4 over the field C), such that the matrix(

a b
c d

)

is an element of K if and only if

P1(a, b, c, d) = · · · = Pn(a, b, c, d) = 0.

Further, for any algebraic subgroup of SL(2,C), the following lemma holds.

Lemma 1 (see [15, 21]). If G is an algebraic subgroup of SL(2,C), then one of the following four
cases can occur :

1. G is triangulable, i.e., there exists x ∈ G such that for any g ∈ G, the matrix xgx−1 is a triangular

matrix. We assume that xgx−1 is a lower triangular matrix :(
a 0

b a−1

)
,

where a, b ∈ C. Recall that G is a subgroup of SL(2,C) and hence the determinant of xgx−1 is equal
to 1.

2. G is conjugate to a subgroup of the group D†, where

D† =

{(
c 0
0 c−1

)
, c ∈ C, c �= 0

}
∪
{(

0 c
−c−1 0

)
, c ∈ C, c �= 0

}

and Case 1 does not hold, i.e., there exists x ∈ G such that for any g ∈ G, xgx−1 is either a

diagonal matrix or an anti-diagonal matrix, but there is no x ∈ G such that for all g ∈ G the
matrix xgx−1 is lower triangular (this case includes only strictly diagonal matrices).

3. G is finite algebraic subgroup and Cases 1 and 2 do not hold.

4. G = SL(2,C), i.e., G is the infinite group of all (2× 2)-matrices with determinant 1.
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Thus, we know that the Galois group G of Eq. (2.3) is isomorphic to an algebraic subgroup of

SL(2,C). We also know that any algebraic subgroup of SL(2,C) satisfies the above lemma. Now we
can apply the lemma to the Galois group of Eq. (2.3) and establish the relationship betwenn various
subgroups of the group SL(2,C) and solutions of Eq. (2.3) listed in Theorem 1. In Case 1, the group
G is triangulable. Assume that an element x ∈ G has been found and each matrix is conjugated to a

lower triangular matrix (this is equivalent to a change of the basis in the vector space or to the choice
of two different independent solutions η̄ and ζ̄). Then each element σ ∈ G has the form(

aσ 0

cσ a−1
σ

)
, aσ, cσ ∈ C,

and maps η to ση = aση. Setting ω = η′/η or, equivalently, η = exp
∫
ω(x)dx, we have

σω = σ

(
η′

η

)
=

(ση)′

ση
=

aση
′

aση
=

η′

η
= ω

and hence ω ∈ C(x). This is Case 1 of Theorem 1: Eq. (2.3) has a solution of the form η =
exp
∫
ω(x)dx, where ω(x) ∈ C(x). In Case 2, the group G is conjugate to a subgroup of the group D†.

In this case, any element of G has one of the following forms:(
aσ 0
0 a−1

σ

)
or

(
0 bσ

−b−1
σ 0

)
,

so either (ση = aση and σζ = a−1
σ ζ) or (ση = bσζ and σζ = −b−1

σ η). Note that in both cases we have
σ
(
η2ζ2
)
= η2ζ2, so that η2ζ2 ∈ C(x). If we set now ω = η′/η (i.e., η = exp

∫
ω(x)dx) and ϕ = ζ ′/ζ,

then either (σω = ω and σϕ = ϕ) or (σω = ϕ and σϕ = ω). Minimally, both cases are described by

the conditions σ2ω = ω or σ2ω − ω = 0, so ω satisfies a polynomial equation of degree 2 over C(x),
hence it is algebraic function of degree 2 over C(x). This is Case 2 of Theorem 1. In Case 3, the
group G is a finite group, i.e., there are only a finite number of automorphisms σ1, . . . , σn. Consider
an arbitrary elementary symmetric function of the arguments σ1η, σ2η, . . ., σnη, for example,∑

σiη = σ1η + σ2η + · · ·+ σnη.

For any σj ∈ G we have

σj

(∑
σiη
)
=
∑

σiη

since σiσj ∈ G for all σi (because G is a group and hence is closed). Hence
∑

σiη = f(x) ∈ C(x) and
the solution η satisfies the equation

σ1η + σ2η + · · ·+ σnη − f(x) = 0;

i.e., η is an algebraic function over C(x). Similar arguments hold for ζ. Therefore, η and ζ are algebraic
over C(x) and hence all solutions of Eq. (2.3) are algebraic over C(x). To clarify the structure of the

group G in Case 3, we present the following theorem (its detailed proof can be found in [21]).

Theorem 3. If K is a finite subgroup of SL(2,C), then one of the following possibilities is realized :

(1) K is conjugate to a subgroup of the group D†;
(2) K has order 24;

(3) K has order 48;
(4) K has order 120.

Clearly, the first case of this theorem is a particular subcase of Case 2 of Lemma 1. This means

that in Case 3, the group G has order 24, 48, or 120, and hence the order of η over C(x) is 24, 48,
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or 120, respectively. In each of these cases, the functions of solutions η and ζ belonging to C(x) are

known: if the group G has order 24, then

(η4 + 8ηζ3)3 ∈ C(x),

if the group G has order 48, then

(η5ζ − ηζ5)2 ∈ C(x),

and if the group G has order 120, then

η11ζ − 11η6ζ6 − ηζ11 ∈ C(x)

(for details, see [21]). In Case 4 of Lemma 1, we have G = SL(2,C). Below we show that in this case,
Eq. (2.3) has no Liouville solution. We prove this assertion by the contrary. Assume that Eq. (2.3) has

a Liouville solution. Then the second solution obtained by the method of order reduction (see above) is
also a Liouville solution, and hence all solutions of Eq. (2.3) are Liouville solutions (since any solution
of Eq. (2.3) is a linear combination of two independent solutions). Clearly, G = C(x)(η, η′, ζ, ζ ′)
is contained in a Liouville extension and the component G0 of the identity of the group G must
be solvable (see [18, p. 415]). (Recall that the component of the identity of a group is the largest
connected subgroup of the group containing the identity. A set is said to be connected if any two

points in the set can be joined by an arc lying in the set.)
A group H is said to be solvable (in the sense of the Galois theory) if

H = H0 ⊃ H1 ⊃ . . . ⊃ Hm = {e},
where each Hi+1 is normal in Hi, each factor group Hi/Hi+1 is abelian, and e is the identity element

of H. If G = SL(2,C), then G0 = SL(2,C) and hence SL (2,C) must be solvable. But SL(2,C) is not
solvable; this contradiction implies that the initial assumption was false and Eq. (2.3) has no Liouville
solutions. This is Case 4 of Theorem 1.

2.2.2. Necessary conditions. In order to reduce the amount of calculations involved in the solution of
Eq. (2.3), Kovacic (see [21]) indicated some conditions on the function r in the right-hand side of the

equation. For each of the first three cases where Liouville solutions exist, these conditions are different.
For example, if the function r satisfies the conditions corresponding to Case 1 of Theorem 1, then we
must search for solutions of Eq. (2.3) exactly in the form indicated for this case. If the function r does
not satisfy any conditions corresponding the Cases 1–2 of Theorem 1, then we conclude that Eq. (2.3)

has no Liouville solutions. These conditions are necessary but not sufficient. For example, if the
conditions corresponding to Case 1 of Theorem 1 are violated, then we must turn to the verification
of the conditions corresponding to Cases 2 and 3. If these conditions are fulfilled, then we must

search for solutions of Eq. (2.3) exactly in the form indicated for the corresponding case. However,
the existence of such a solution is not guaranteed. In order to explain the sense of the necessary
conditions mentioned, we recall some facts from complex analysis. Recall that any analytic function

f of a complex variable z can be expanded in a Laurent series in a neighborhood of any point a as
follows:

f(z) = a0 + a1(z − a) + a2(z − a)2 + · · ·+ a−1

z − a
+

a−2

(z − a)2
+ . . . .

The part of this series

a0 + a1(z − a) + a2(z − a)2 + . . .

containing nonnegative powers of z − a is called the analytic part of the Laurent series whereas the
other part, namely,

a−1

z − a
+

a−2

(z − a)2
+ . . . ,
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is called the principal part of the expansion. By definition, a point a is called a pole of f(z) of order n

if the proncipal part of the Laurent expansion contains a finite number of terms and the last term has
the form a−n/(z − a)n. If f(z) is a rational function of z, then a point a is a pole of f(z) of order n
if it is a root of the denominator of f(z) of multiplicity n. Let z = ∞ be a zero of a function f(z) of
order n (i.e., n is the order of the pole at z = 0 of f(z)). Then we say that n is the order of f(z) at

infinity. If f(z) is a rational function, then its order at z = ∞ is the difference between the degrees of
the denominator and the numerator. The following theorem states necessary conditions under which
the first three cases listed in Theorem 1 can hold.

Theorem 4. For the differential equation (2.3), the following conditions are necessary for the exis-

tence of Liouville solutions in the corresponding case from Theorem 1.

1. Each pole of the function r has order 1 or an even order. The order of r at ∞ is even or greater

than 2.
2. The function r has at least one pole whose order either 2 or an odd number greater than 2.
3. The function r has no poles of order greater than 2. The order of r at ∞ is at least 2. If the

partial-fraction expansion of r is

r =
∑
i

αi

(x− ci)2
+
∑
j

βj
x− dj

,

then √
1 + 4αi ∈ Q for each i,

∑
j

βj = 0

and, moreover, √
1 + 4γ ∈ Q, where γ =

∑
i

αi +
∑
j

βjdj .

Below we present a sketch of the proof of this theorem. Some ideas will be explained in more details

in the description of the algorithm itself (see Sec. 2.3). In Case 1, the differential equation (2.3) has
a solution of the form

η = exp

∫
ω(x)dx, ω(x) ∈ C(x). (2.4)

Substituting this solution into Eq. (2.3), we see that the function ω(x) satisfies the differential equation

ω′ + ω2 = r. (2.5)

Since both functions r(x) and ω(x) belong to C(x), they can be expanded in Laurent series in a
neighborhood of a point c of the complex plane as follows:

ω = b(x− c)μ + higher-order terms, μ ∈ Z, b �= 0, (2.6)

r = α(x− c)ν + higher-order terms, ν ∈ Z, α �= 0. (2.7)

Substituting (2.6) and (2.7) to (2.5) we obtain

μb(x− c)μ−1 + · · ·+ b2(x− c)2μ + · · · = α(x− c)ν + . . . . (2.8)

We prove demonstrate that if c is a pole of r (i.e., ν < 0), then its order is either 1 or even. In the
expansion (2.8), we indicate only the lowest powers of x − c in each term. These terms must cancel.
Indeed,

(1) if ν = −1 (i.e., c is a pole of order 1), then μ = −1 and we can cancel the two terms in the
left-hand side of the expansion (2.8);

(2) if ν = −2, then μ = −1, and we can cancel three terms of the lowest degree;
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(3) if ν ≤ −3, then the corresponding coefficients of the lowest power of x− c in the expansion (2.8)

yield

ν ≥ min (μ− 1, 2μ) .

If ν ≤ −3, this implies that μ < −1, i.e., 2μ < μ − 1. Since b �= 0 (by assumption), we have
ν = 2μ, i.e., ν is an even number as required.

These arguments also show that if r has a pole of order −ν = −2μ ≥ 4 at c, then ω has a pole of
order −μ at c. This fact will be used in the proof of the algorithm in Sec. 2.3.2. The verification of
the conditions on the order of r at x = ∞ is similar; it is based on the expansions of r and ω at x = ∞
(see [21] for details). In Case 2, the differential equation (2.3) has a solution of the form

η = exp

∫
ω(x)dx, (2.9)

where ω(x) is an algebraic function of degree 2 over C(x). The Galois group G of the differential

equation (2.3) is conjugate to a subgroup of the group D†, so that for every σ ∈ G, either (ση = aση
and σζ = a−1

σ ζ) or (ση = bσζ and σζ = −b−1
σ η). In both cases, we have σ(η2ζ2) = η2ζ2, so that

η2ζ2 ∈ C(x). Also, ηζ /∈ C(x) since in the opposite case we have σ(ηζ) = ηζ = aσηa
−1
σ ζ, and G would

be consists of diagonal matrices with aσ and a−1
σ on the diagonal (i.e., the case where ση = bσζ and

σζ = −b−1
σ η will be impossible). Therefore, we can represent η2ζ2 in the form

∏
(x − ci)

ei , ei ∈ Z,
where at least one of ei is be odd (if all ei are odd, then we have ηζ ∈ C(x), which is impossible). We

assume that η2ζ2 = (x− c)e
∏
(x− ci)

ei , where e is an odd number. Let

ϕ =
(ηζ)′

ηζ
=

1
2(η

2ζ2)′

η2ζ2
.

Since η′′ = rη and ζ ′′ = rζ, it is easy to find by a direct calculation that the function ϕ satisfies the

differential equation

ϕ′′ + 3ϕϕ′ + ϕ3 = 4rϕ+ 2r′. (2.10)

Expand the functions r and ϕ in Laurent series in a neighborhood of c:

ϕ =
e

2(x− c)
+ polynomial in x− c, (2.11)

r = α(x− c)ν + higher-order terms. (2.12)

Substituting (2.11) and (2.12) into the differential equation (2.10), we obtain

e

(x− c)3
+ · · ·+ −3

4e
2

(x− c)3
+ · · ·+

1
8e

3

(x− c)3
+ · · · = 2α(e + ν)(x− c)ν−1 + . . . .

If ν > −2, then

e− 3

4
e2 +

1

8
e3 = 0

and hence e = 0, 2, 4. However, e must be odd, so ν ≤ −2. If ν < −2, then 2α(e+ ν) = 0 and e = −ν,

so that ν is odd. Therefore, either ν = −2 or ν < −2 is odd, i.e., r(x) has either a pole of order 2 or a
pole of odd order greater than 2. In Case 3, the differential equation (2.3) has a solution of the form

η = exp

∫
ω(x)dx, (2.13)

where ω(x) is an algebraic function of degree 4, 6, or 12 over C(x), i.e., η is an algebraic function over
C(x). It can be expanded in a Puiseux series (a series with fractional exponents) in a neighborhood
of a certain point c in the complex plane. Since η is a solution of the differential equation (2.3), we

have

η′′ = rη. (2.14)
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Expanding the functions η and r in a neighborhood of c, we obtain

η = a(x− c)μ + higher-order terms, a ∈ C, a �= 0, μ ∈ Q, (2.15)

r = α(x− c)ν + higher-order terms, α ∈ C, α �= 0, ν ∈ Z. (2.16)

Substituting (2.15) and (2.16) into (2.14), we obtain

aμ(μ− 1)(x− c)μ−2 + · · · = αa(x− c)μ+ν + . . . . (2.17)

The lowest-order term in the right-hand side is the product of the lowest-order terms of η and r. It
cannot be zero, so we have μ + ν ≥ μ− 2, i.e., ν ≥ −2; therefore, the orders of poles of the functions

r can be only 1 or 2. If ν = −2, then, equating the coefficients of (x − c)μ−2 in both sides of (2.17),
we obtain

α = μ(μ− 1) or μ =
1

2
± 1

2

√
1 + 4α.

Since μ ∈ Q by assumption, we have
√
1 + 4α ∈ Q and the partial-fraction expansion of r is

r =
∑
i

αi

(x− ci)2
+
∑
j

βj
x− dj

+ polynomial

and
√
1 + 4αi ∈ Q for each i. The remaining conditions of Case 3 can be obtained similarly, namely, by

expanding r and η in a neighborhood of x = ∞ and substituting the corresponding series in Eq. (2.14).

2.3. Kovacic algorithm and its proof.

2.3.1. Kovacic algorithm for Case 1. The goal of the Kovacic algorithm is to find a solution of the

differential equation (2.3) in the form η = P exp
∫
θ(x)dx, where P ∈ C[x] is a polynomial with

coefficients in the field of complex numbers C and θ ∈ C(x). Since η can be written as

η = exp

∫ (
P ′

P
+ θ

)
dx,

this corresponds to the general form of a solution in Case 1 described by Theorem 1, where ω =
P ′/P+θ. The first step of the algorithm consists of determining parts of the partial fraction expansion
of θ. In the second step, we add these parts and obtain a function, which is a candidate for the role

of θ. The maximal number of possible candidates is 2ρ+1, where ρ is the number of poles of r. If there
are no candidates, then Case 1 cannot hold. In the third step, for each candidate for θ, we try to
find a suitable polynomial P . If this is possible, then we obtain a desired solution of the differential

equation (2.3); otherwise, Case 1 cannot hold. We assume that the necessary conditions (see Sec. 2.2.2)
for Case 1 are fulfilled and denote by Γ the set of finite poles of the function r.

Step 1. For each c ∈ Γ ∪ {∞}, we introduce the rational function [
√
r]c and two complex numbers

α+
c and α−

c as described below.

(c1) If c ∈ Γ and c is a pole of order 1, then

[
√
r]c = 0, α+

c = α−
c = 1.

(c2) If c ∈ Γ and c is a pole of order 2, then

[
√
r]c = 0.

Let b be the coefficient of (x− c)−2 in the partial fraction expansion of r. Then

α±
c =

1

2
± 1

2

√
1 + 4b.
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(c3) If c ∈ Γ and c is a pole of order 2ν ≥ 4 (the order must be even due to the necessary conditions

stated in Sec. 2.2.2), then [
√
r]c is the sum of terms involving (x − c)−i, 2 ≤ i ≤ ν, in the

Laurent expansion of
√
r at c. There are two possibilities for [

√
r]c that differ by sign; we can

choose one of them. Thus,

[
√
r]c =

a

(x− c)ν
+ · · ·+ d

(x− c)2
. (2.18)

In practice, one would not construct the Laurent series for
√
r in a neighborhood of c: it suffices

to find the function [
√
r]c by the method of undefined coefficients. Let b be the coefficient of

(x− c)−ν−1 in r − [
√
r]2c . Then

α±
c =

1

2

(
± b

a
+ ν

)
.

(∞1) If the order of the function r at x = ∞ is greater than 2, then

[
√
r]∞ = 0, α+

∞ = 0, α−
∞ = 1.

(∞2) If the order of r at x = ∞ is 2, then

[
√
r]∞ = 0.

Let b be the coefficient of x−2 in the Laurent expansion of r in a neighborhood of x = ∞. If
r = s/t, where s ∈ C[x] and t ∈ C[x] are relatively prime polynomials, then b is the ratio of the
leading coefficients of s and t. Then

α±
∞ =

1

2
± 1

2

√
1 + 4b.

(∞3) If the order of r at x = ∞ is −2ν ≤ 0 (it is even due to the necessary conditions stated in

Sec. 2.2.2), then the function [
√
r]∞ is the sum of terms involving xi, 0 ≤ i ≤ ν, of the Laurent

expansion of
√
r at x = ∞ (one of the two possibilities can be chosen). Thus,

[
√
r]∞ = axν + · · ·+ d.

Let b be the coefficient of xν−1 in r − ([√r]∞
)2
. Then

α±
∞ =

1

2

(
± b

a
− ν

)
.

Step 2. For each tuple s = (s(c))c∈Γ∪{∞}, where s(c) is +1 or −1, let

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c . (2.19)

If d is a nonnegative integer, then the function

θ =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞ (2.20)

is a candidate for θ(x). If d is not a nonnegative integer, then the corresponding tuple s should be
rejected. If all tuples s have been rejected, then Case 1 cannot hold.

Step 3.This step must be executed for each of the tuples s found on Step 2. If for a certain tuple
success is achieved, then a solution is found; otherwise, this tuple is rejected. If all tuples found on
Step 2 have been rejected, then Case 1 cannot hold. For each tuple s found on Step 2, we search for
a polynomial P of degree d (the constant d is defined by the formula (2.19)) satisfying the differential

equation

P ′′ + 2θP ′ + (θ′ + θ2 − r)P = 0; (2.21)

428



the method of undefined coefficients is convenient for this purpose. If such a polynomial exists, then

η = P exp

∫
θ(x)dx

is a solution of the differential equation (2.3). If for each tuple s found on Step 2, we cannot find such

a polynomial, then Case 1 cannot hold.

Below, we present the proof of the Kovacic algorithm for Case 1 of the differential equation (2.3).

2.3.2. Proof of the Kovacic algorithm for Case 1. In Case 1, we search for a solution of the differential

equation (2.3) in the form (2.4), where

ω(x) = θ(x) +
P ′(x)
P (x)

, θ(x) ∈ C(x), P (x) ∈ C[x].

Since ω(x) ∈ C(x), it can be expanded in a Laurent series in a neighborhood of any point of the
complex plane. The algorithm starts from the determining the partial fraction expansion of ω(x) by
using the Laurent expansion of r and the Riccati equation (2.5). We can write the Laurent expansion
of ω in a neighborhood of a pole c of the function r as follows:

ω =

μ∑
i=2

ai
(x− c)i

+
ec

x− c
+

∞∑
j=0

bj(x− c)j .

In the sequel, we will not need to determine the explicit form of ai and bj , so we indroduce the notation

[ω]c =

μ∑
i=2

ai
(x− c)i

, ω̄c =
∞∑
j=0

bj(x− c)j .

Then

ω =

μ∑
i=2

ai
(x− c)i

+
ec

x− c
+

∞∑
j=0

bj(x− c)j = [ω]c +
ec

x− c
+ ω̄c. (2.22)

Now the main task of the algorithm is to determine these parts of the function ω, i.e., find ec and

[ω]c and the polynomial remainder ω̄c. We know that, due to the necessary conditions for Case 1, all
poles of the function r have order either 1, or 2, or an even order greater than 4. First, we assume
that c is a pole of the function r of order 1. Then

r =
α

x− c
+ polynomial in x− c. (2.23)

Substituting (2.22) and (2.23) into the Riccati equation (2.5), we obtain

− μaμ
(x− c)μ+1

+ · · ·+ a2μ
(x− c)2μ

+ · · · = α

x− c
+ . . . .

If we assume that aμ �= 0 and μ ≥ 2, then 2μ ≥ 4 and the term
a2μ

(x− c)2μ
cannot be canceled with

any other term of the latter equation. Therefore, [ω]c = 0 and

ω =
ec

x− c
+ ω̄c.

Using this expression and substituting it into the Riccati equation (2.5) again, we get

− ec
(x− c)2

+ ω̄′
c +

e2c
(x− c)2

+
2ecω̄c

x− c
+ ω̄2

c =
α

x− c
+ . . . .
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The term with (x − c)−2 must vanish, so we have −ec + e2c = 0, i.e., ec = 0 or 1. The case ec = 0

is impossible since in this case the right-hand side of the Riccati equation has no poles whereas the
right-hand side has a pole of order 1. Hence, if c is a pole of r of order 1, then ω has the form

ω =
ec

x− c
+ ω̄c, ec = 1.

Now we assume that c is a pole of r of order 2. Then

r =
b

(x− c)2
+

α

x− c
+ . . . . (2.24)

Substituting (2.22) and (2.24) into the Riccati equation (2.5), we obtain

− μaμ
(x− c)μ+1

+ · · ·+ a2μ
(x− c)2μ

+ · · · = b

(x− c)2
+

α

x− c
+ . . . .

As above, if we assume that aμ �= 0 and μ ≥ 2, i.e., 2μ ≥ 4, then the term a2μ/(x− c)2μ cannot be

canceled with any other term of the latter equation. Therefore, [ω]c = 0 and

ω =
ec

x− c
+ ω̄c.

Substituting this expression into the Riccati equation (2.5) we get

− ec
(x− c)2

+ ω̄′
c +

e2c
(x− c)2

+
2ecω̄c

x− c
+ ω̄2

c =
b

(x− c)2
+

α

x− c
+ . . . .

Equating the coefficient of 1/(x− c)2 to zero and taking into account this relation, we obtain e2c−ec = b,

i.e., for ec we have the following two possibilities:

ec =
1

2
+

1

2

√
1 + 4b or ec =

1

2
− 1

2

√
1 + 4b.

Hence, if c is a pole of r of order 2, then

ω =
ec

x− c
+ ω̄c, ec =

1

2
± 1

2

√
1 + 4b.

Now we assume that c is a pole of the function r of order 2ν ≥ 4. From the proof of the necessary
conditions for Case 1 (see Sec. 2.2.2) we see that ω must have a pole of order ν at c, i.e.,

[ω]c =
ν∑

i=2

ai
(x− c)i

.

According to the formulation of the algorithm (see Sec. 2.3.1), we define the function [
√
r]c by the

formula (2.18). Introduce the notation

r̄c =
√
r − [

√
r]c;

then

r =
(
r̄c + [

√
r]c
)2

= r̄2c + 2r̄c[
√
r]c +

(
[
√
r]c
)2

and, therefore,

r − ([√r]c
)2

= r̄2c + 2r̄c[
√
r]c. (2.25)

Using (2.22) and the Riccati equation (2.5), we can show that

(
[ω]c + [

√
r]c
)(
[ω]c − [

√
r]c
)
=
(
[ω]c
)2 − ([√r]c

)2
= −[ω]′c +

ec
(x− c)2

− ω̄′
c + r − ([√r]c

)2 − 2ec[ω]c
x− c

− e2c
(x− c)2

− 2ecω̄c

x− c
− 2[ω]cω̄c − ω̄2

c .
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The left-hand side of this equation contains only terms of the form 1/(x − c)i, where i = ν + 2, . . . , 2ν.

The right-hand side contains terms involving 1/(x− c)i, i = 1, . . . , ν + 1, and polynomials in x− c.
Since there are no terms involving 1/(x− c)i in the right-hand side for i = ν + 2, . . . , 2ν, the left-hand
side must be equal to zero (we take into account the inequality ν ≥ 2) and hence either [ω]c = [

√
r]c

or [ω]c = −[
√
r]c. Finally,

ω = ±[
√
r]c +

ec
x− c

+ ω̄c.

Using this representation of the function ω and substituting it in the Riccati equation (2.5), we obtain

±aν

(x− c)ν+1
+ · · · + ec

(x− c)2
− ω̄′

c +
b

(x− c)ν+1
+ . . .

+
∓2aec

(x− c)ν+1
− e2c

(x− c)2
− 2ecω̄c

x− c
∓ 2ω̄ca

(x− c)ν
+ · · · = 0.

Equating the coefficients of (x− c)−ν−1 on both sides, we obtain

±aν + b∓ 2aec = 0,

and hence

ec =
1

2

(
ν +

b

a

)
or ec =

1

2

(
ν − b

a

)
.

Therefore, if c is a pole of the function r of even order 2ν ≥ 4, then

ω = ±[
√
r]c +

ec
x− c

+ ω̄c, ec =
1

2

(
ν ± b

a

)
.

Now we consider a point g of the complex plain, which is not a pole of r. The Laurent expansion
of r at this point is a polynomial in x− g. Expanding ω in a neighborhood of g and using the Riccati
equation (2.5), we obtain

ω =
f

x− g
+ polynomial in x− g,

where f = 0 or 1. Finally, we have

ω = [ω]c +
ec

x− c
+ ω̄c =

∑
c∈Γ

(
ec

x− c
± [

√
r]c

)
+

d∑
i=1

1

x− gi
+R,

where [
√
r]c = 0 if c is not a pole of r of order ≥4 and R is a polynomial in C[x]. We now determine

the polynomial part R of the function ω. We use the Laurent expansion of ω in a neighborhood of
x = ∞:

ω = R+
e∞
x

+ lower powers of x. (2.26)

Using arguments similar to the above, we arrive at the following results. If the order of the pole

x = ∞ of the function r is greater than 2, then e∞ = 0 or 1 and R = 0; if r has a pole of order 2 at
x = ∞, then

e∞ =
1

2
± 1

2

√
1 + 4b, R = 0,

and if the order of the pole of r at x = ∞ is equal to −2ν ≤ 0, then

e∞ =
1

2

(
−ν ± b

a

)
, R = ±[

√
r]∞.

Therefore,

ω =
∑
c∈Γ

(
ec

x− c
+ s(c)[

√
r]c

)
+ s(∞)[

√
r]∞ +

d∑
i=1

1

x− gi
, (2.27)
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where s(c) is +1 or −1 depending on the sign of the corresponding ec and s(∞) is +1 or −1 depending

on the sign of e∞. Moreover, [
√
r]c = 0 if c is not a pole of r of order ≥4 and [

√
r]∞ = 0 if the order of

the pole at r is ≥2. Expanding (2.26) in a neighborhood of the point x = ∞ and equating it to (2.27),
we obtain the equation

e∞ =
∑
c∈Γ

ec +
d∑

i=1

1

and hence we arrive at the following expression for d in terms of e∞ and ec:

d = e∞ −
∑
c∈Γ

ec.

If we set P =
d∏

i=1
(x− gi) (note that d is the degree of P ), then

P ′

P
=

d∑
i=1

1

x− gi
,

and if

θ =
∑
c∈Γ

(
ec

x− c
± [

√
r]c

)
± [

√
r]∞,

then ω = θ+ P ′/P . Thus, we have complete information on θ is known; it remains to find an explicit
form of P . Substitute the expression ω = θ + P ′/P into the Riccati equation (2.5), we obtain

ω′ = θ′ +
PP ′′ − P ′2

P 2
, ω2 = θ2 +

2θP ′

P
+

P ′2

P 2
,

P ′′ + 2θP ′ + (θ′ + θ2 − r)P = 0.

We see that if ω satisfies the Riccati equation (2.5), then P satisfies the differential equation (2.21).
We can verify that if P satisfies (2.21), then ω satisfies the Riccati equation (2.5) and hence the

function η = exp
∫
ω(x)dx satisfies the differential equation (2.3). Indeed,

ω′ + ω2 = θ′ +
PP ′′ − P ′2

P 2
+ θ2 +

2θP ′

P
+

P ′2

P 2
=

P ′′ + 2θP ′ + P (θ′ + θ2)

P
=

Pr

P
= r.

This completes the proof of the validity of the Kovacic algorithm for Case 1.

2.3.3. The Kovacic algorithm for Case 2. Considering the Kovacic algorithm for Case 2, we assume
that the necessary conditions for this case (see Sec. 2.2.2) are fulfilled, and that Case 1 is known to
fail. As in Case 1, we first collect data for each finite pole c of the function r and also for the pole of

R at infinity. For each of the poles, we form the set Ec (or E∞) consisting of integers (their number
may vary from 1 to 3). Next we consider tuples of elements of these sets; after analysis, some of these
tuples will be rejected. If all tuples have been rejected, then Case 2 cannot hold for the differential

equation (2.3). For each suitable tuple, we search for a polynomial that satisfies a certain linear
differential equation. If such a polynomial exists for a certain tuple, then a solution of the differential
equation (2.3) has been found. If for all tuples, there are no such polynomials, then Case 2 cannot

hold for the differential equation (2.3). Now we describe the algorithm for Case 2. Let Γ be the set of
finite poles of the function r.

Step 1. For each c ∈ Γ ∪ {∞}, we define Ec as follows.

(c1) If c ∈ Γ is a pole of the function r of order 1, then

Ec = {4}.
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(c2) If c ∈ Γ is a pole of the function r of order 2 and b is the coefficient of 1/(x − c)2 in the partial

fraction expansion of r, then

Ec =
{
(2 + k

√
1 + 4b) ∩ Z, k = 0,±2

}
.

(c3) If c ∈ Γ is a pole of the function r of order ν > 2, then

Ec = {ν}.
(∞1) If the function r has order >2 at the point x = ∞, then

E∞ = {0, 2, 4}.
(∞2) If the function r has order 2 at the point x = ∞ and b is the coefficient of 1/x2 in the Laurent

series expansion of r at x = ∞, then

E∞ =
{
(2 + k

√
1 + 4b) ∩ Z, k = 0,±2

}
.

(∞3) If the order of r at x = ∞ is ν < 2, then

E∞ = {ν}.

Step 2. We consider all tuples s = (e∞, ec), c ∈ Γ, where ec ∈ Ec, e∞ ∈ E∞ and at least one of

these numbers is odd. Let

d =
1

2

(
e∞ −

∑
c∈Γ

ec

)
. (2.28)

If d is a nonnegative integer, then the corresponding tuple is suitable; otherwise it must be rejected.

Step 3. For each suitable tuple obtained on Step 2, we construct the rational function

θ =
1

2

∑
c∈Γ

ec
x− c

. (2.29)

Next we search for a polynomial P of degree d (where d is defined by the formula (2.28)) such that

P ′′′ + 3θP ′′ +
(
3θ2 + 3θ′ − 4r

)
P ′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
P = 0. (2.30)

If success is achieved and such a polynomial is found, we set ϕ = θ+P ′/P , and let ω be a solution of
the square equation (algebraic equation of degree 2)

ω2 − ϕω +
1

2
ϕ′ +

1

2
ϕ2 − r = 0. (2.31)

Then η = exp
∫
ω(x)dx is a solution of the differential equation (2.3). If we cannot find such a

polynomial for any suitable tuple found on Step 2, then Case 2 cannot hold for the differential equation
(2.3).

2.3.4. Proof of the Kovacic algorithm for Case 2. In Case 2, we search for a solution to the differential

equation (2.3) of the form (2.9). The Galois group of Eq. (2.3) is conjugate to a subgroup of the group

D† =
{(

c 0
0 c−1

)
, c ∈ C, c �= 0

}
∪
{(

0 c
−c−1 0

)
, c ∈ C, c �= 0

}

and η2ζ2 is an invariant of the group (i.e., η2ζ2 is a fixed element under the action of automorphisms
from the Galois group of Eq. (2.3)). Hence, η2ζ2 ∈ C(x) but ηζ /∈ C(x) (otherwise we would have

Case 1). Therefore, we can write

η2ζ2 = α
∏
c∈Γ

(x− c)ec
m∏
i=1

(x− gi)
fi , α = const,
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and

ϕ =
(ηζ)′

ηζ
=

1

2

(η2ζ2)′

η2ζ2
=

1

2

∑
c∈Γ

ec
x− c

+
1

2

m∑
i=1

fi
x− gi

. (2.32)

The task of the algorithm is to find explicit values of ec and fi (we need not find gi). If the
function ϕ is determined, we can construct a quadratic equation with coefficients depending on ϕ that
determines ω and hence a solution of Eq. (2.3). Since η and ζ are solutions of Eq. (2.3), we conclude

that η′′ = rη and ζ ′′ = rζ. Then ϕ satisfies Eq. (2.10). This equation allows one to find a relationship
between the function ϕ (i.e., in fact, ec and fi) and the known function r. Now we can determine
the coefficients ec by analyzing the poles of the function r and the Laurent expansion of r and ϕ in

neighborhoods of these poles. Assume that c is a pole of the function r of order 1; then

r =
α

x− c
+ polynomial in x− c (2.33)

and

ϕ =
1

2

ec
x− c

+ k + polynomial in x− c, k ∈ C. (2.34)

Substituting (2.33) and (2.34) into Eq. (2.10), we obtain

ec
(x− c)3

+ · · · + −3
4e

2
c

(x− c)3
+

−3
2eck

(x− c)2
+ · · ·+

1
8e

3
c

(x− c)3
+

3
4e

2
ck

(x− c)2
+ . . .

=
2αec

(x− c)2
+ · · ·+ −2α

(x− c)2
+ . . . .

Equating the coefficient of 1/(x − c)3 to zero, we obtain

ec − 3

4
e2c +

1

8
e3c = 0, i.e., ec = 0, 2, 4.

Equating the coefficients of 1/(x− c)2 on both sides, we obtain

−3

2
eck +

3

4
e2ck = 2αec − 2α.

Since α �= 0, we have ec �= 0 and ec �= 2. Hence if c is a pole of the function r of order 1, then ec = 4.

Now we assume that c is a pole of the function r of order 2. Then

r =
b

(x− c)2
+

α

x− c
+ polynomial in x− c (2.35)

and also

ϕ =
1

2

ec
x− c

+ polynomial in x− c. (2.36)

Substituting (2.35) and (2.36) into (2.10) we obtain

ec
(x− c)3

+ · · ·+ −3
4e

2
c

(x− c)3
+ · · · +

1
8e

3
c

(x− c)3
=

2bec
(x− c)3

+ · · ·+ −4b

(x− c)3
+ . . . .

Equating the coefficients of 1/(x− c)3 on both sides, we obtain

ec − 3

4
e2c +

1

8
e3c = 2bec − 4b

so that there exists three possibilities for ec:

ec = 2, ec = 2 + 2
√
1 + 4b, ec = 2− 2

√
1 + 4b.

Since ec must be an integer, we reject noninteger solutions for ec. Finally, if c is a pole of r of order 2,

then

ec = 2, 2± 2
√
1 + 4b ∈ Z.
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Now assume that that c is a pole of r of order ν > 2. Then

r =
α

(x− c)ν
+ higher-order terms, (2.37)

and for the function ϕ we have the expression (2.36). Substitute (2.36) and (2.37) into Eq. (2.10), we
obtain

ec
(x− c)3

+
−3

4e
2
c

(x− c)3
+ · · · +

1
8e

3
c

(x− c)3
+ · · · = 2αec

(x− c)ν+1
+ · · ·+ −2αν

(x− c)ν+1
+ . . . .

Since ν > 2 and, therefore, ν +1 > 3, we have 2αec − 2αν = 0, i.e., ec = ν. Hence if c is a pole of r of

order ν > 2, then ec = ν. Now consider the points gi that are poles of ϕ but regular points of r. In
this case

r is a polynomial in x− gi, (2.38)

ϕ =
1

2

fi
x− gi

+ g + polynomial in x− gi, g ∈ C. (2.39)

Substituting (2.38) and (2.39) into (2.10), we get

fi
(x− gi)3

+ · · · + −3
4f

2
i

(x− gi)3
+

−3
2fig

(x− gi)2
+ · · ·+

1
8f

3
i

(x− gi)3
+

3
4f

2
i g

(x− gi)2
+ · · · = α

x− gi
+ . . . .

Since the right-hand side does not contain terms with 1/(x− gi)
3, we have

fi − 3

4
f2
i +

1

8
f3
i = 0,

i.e., fi = 0, 2, or 4; hence all fi in ϕ are even. Finally, we obtain

η2ζ2 = α
∏
c∈Γ

(x− c)ecP 2,

where α = const and

P 2 =

m∏
i=1

(x− gi)
fi ∈ C[x].

Now we can use the expansion of ϕ in a neighborhood of x = ∞, namely,

ϕ =
e∞
2x

+ lower-order terms. (2.40)

Using arguments similar to the above, we obtain that e∞ = 0, 2, 4 if the order of r at x = ∞ is greater
than 2; e∞ = 2 or 2 ± 2

√
1 + 4b if the order of r at x = ∞ is 2, and e∞ = ν if the order of r at

x = ∞ is ν < 2. Expanding the expression (2.32) into the Laurent series in a neighborhood of x = ∞,
equating the result to (2.40), and comparing the coefficients of 1/x on both sides, we obtain

1

2
e∞ =

1

2

∑
c∈Γ

ec +
1

2

m∑
i=1

fi.

If d is the degree of P , then 2d =
m∑
i=1

fi so that from the last equation we obtain the following expression

for d in terms of ec and e∞, which is similar (2.28):

d =
1

2

(
e∞ −

∑
c∈Γ

ec

)
.

If we set

θ =
1

2

∑
c∈Γ

ec
x− c

,
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then ϕ = θ + P ′/P . Using this expression and Eq. (2.10), we obtain for P the differential equa-

tion (2.30). Nevertheless, we still do not have an expression for ω, the objective of the algorithm.
Kovacic [21] introduced the algebraic equation (2.31) for ω. We can verify that if ω is a solution
of Eq. (2.31) and Case 2 holds, then ω satisfies Eq. (2.5) and hence the function η = exp

∫
ω(x)dx

satisfies Eq. (2.3). Differentiating Eq. (2.31), we obtain

(2ω − ϕ)ω′ = ϕ′ω − 1

2
ϕ′′ − ϕϕ′ + r′.

On the other hand, from (2.31) we have

ω2 − r = ϕω − 1

2
ϕ′ − 1

2
ϕ2,

so that

(2ω − ϕ)(ω′ + ω2 − r) = −1

2

(
ϕ′′ + 3ϕϕ′ + ϕ3 − 4rϕ− 2r′

)
= 0

(see (2.10)); hence either 2ω − ϕ = 0 or ω′ + ω2 − r = 0. Now 2ω − ϕ cannot be zero since in this
case ω = 1

2ϕ ∈ C(x), which corresponds to Case 1. Hence ω′ + ω2 − r = 0 and η = exp
∫
ω(x)dx is a

solution of Eq. (2.3). This proves the validity of the algorithm for Case 2.

2.3.5. Kovacic algorithm for Case 3. In Case 3, the differential equation (2.3) has only algebraic

solutions. We assume that Cases 1 and 2 are known to fail (although, in this case Eq. (2.3) may
have algebraic solutions). Let η be a solution of Eq. (2.3) and ω = η′/η. Then it is possible to prove
(see [21]) that ω is an algebraic function over C(x) of degree 4, 6, or 12. In this case, the task of the

algorithm is to find the minimal polynomial annihilating the function ω. The algorithm is described
as follows. As above, we denote by Γ the set of finite poles of the function r. Recall that, due to the
necessary conditions (see Sec. 2.2.2), the function r cannot have poles of order > 2.

Step 1.For each c ∈ Γ ∪ {∞}, we define the set Ec of integers as follows.

(c1) If c ∈ Γ is a pole of order 1, then Ec = {12}.
(c2) If c ∈ Γ is a pole of order 2 and b is the coefficient of 1/(x − c)2 in the partial fraction expansion

of r, then

Ec =
{
(6 + k

√
1 + 4b) ∩ Z

}
, k = 0, ±1, ±2, ±3, ±4, ±5, ±6.

Note that by the necessary conditions, an analog of the case (c3) in Step 1 cannot occur.
(∞) If the Laurent series for r at x = ∞ has the form r = b/x2 + . . . , where b ∈ C and possibly

b = 0, then

E∞ =
{
(6 + k

√
1 + 4b) ∩ Z

}
, k = 0, ±1, ±2, ±3, ±4, ±5, ±6.

Step 2.Consider the tuples s = (e∞, ec), c ∈ Γ, where ec ∈ Ec, e∞ ∈ E∞. Let

d = e∞ −
∑
c∈Γ

ec. (2.41)

If d is a nonnegative integer, the tuple is suitable; otherwise, it must be rejected.

Step 3.For each suitable tuple obtained on Step 2, we construct the rational function

θ =
∑
c∈Γ

ec
x− c

(2.42)

and the polynomial

S =
∏
c∈Γ

(x− c). (2.43)
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We search for a polynomial P of degree d satisfying a certain differential equation, which can be

written in the recursive form:

P12 = −P, Pi−1 = −SP ′
i + ((12 − i)S′ − Sθ)Pi − (12 − i)(i+ 1)S2rPi+1, P−1 = 0. (2.44)

The second formula in (2.44) should be applied for i = 12, . . . , 0. The sense of the last equation is as
follows: after P−1 has been calculated, we must equate it to zero. If success is achieved, then for any

solution ω of the algebraic equation
12∑
i=0

SiPi

(12− i)!
ωi = 0,

the function η = exp
∫
ω(x)dx is a solution of Eq. (2.3). Otherwise, Case 3 cannot hold for Eq. (2.3).

The proof of the correctness of the algorithm for Case 3 is similar to the proof for Case 2 presented
above and we omit it for brevity (for details, see [21]. Thus, if the problem of the study of a mechanical
system is reduced to the solution of a second-order linear differential equation, we can try to find a

change of variables that reduces the coefficients of the initial equation to rational functions and then
apply the Kovacic algorithm to find Liouville solutions of the equation obtained. Below, we apply
the Kovacic algorithm to the study of the classical problem of nonholonomic system dynamics on the

motion of a heavy, rigid, rotationally symmetric body on a fixed, perfectly rough horizontal plane.

3. General Problem on the Motion of a Rotationally Symmetric Body
on a Perfectly Rough Plane. Motion of a Thin Circular Disk

and a Circular Disk of Finite Thickness

3.1. Formulation of the problem.

3.1.1. Basic coordinate systems. Let a rigid body move on a fixed horizontal plane in a homogeneous
gravity field. We assume that the body is bounded by a strictly convex surface, i.e., at every instant

of time, there exists a unique contact point. In the majority of problems, we assume that the surface
of the body has a unique tangent plane at the contact point. We also consider the motion of a body
with a sharp edge in the case where the contact point lies of the edge. We introduce a fixed coordinate

system Oxyz whose plane Oxy coincides with the horizontal supporting plane and the Oz-axis is
directed vertically upward. Let γ be the unit normal vector to the surface of the moving body at the
point M of contact of the body with the horizontal plane (see Fig. 1).

Now we assume that the moving body is rotationally symmetric, i.e., it is bounded by a strictly
convex surface of revolution and the axis of rotation of this surface coincides with the axis of dynamical
symmetry of the body and contains the center of mass G of the body. We also introduce the coordinate

system Gx1x2x3 whose origin coincides with the center of mass G of the body and the axes coincide
with the principal central axes of inertia of the body. Due to the rotational symmetry of the body,
its axis of symmetry is one of the principal central axes of inertia of the body; let the Gx3-axis be

directed along the symmetry axis of the body (Fig. 2). The orientation of the body relative to the
fixed coordinate system Oxyz is defined by the Euler angles ψ, θ, and ϕ, where θ is the angle between
the axis Gx3 of dynamical symmetry of the body and the Oz-axis. Therefore, the mutual orientation

of the coordinate systems Oxyz and Gx1x2x3 is defined by the matrix A of direction cosines:

x1 x2 x3
x a11 a12 a13
y a21 a22 a23
z a31 a32 a33
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Fig. 1. Motion of a rotationally symmetric
body: the Euler angles.

Fig. 2. Motion of a rotationally symmetric
body: the principal central axes of inertia of

the body.

The elements aij of this matrix are expressed through the Euler angles ψ, θ, and ϕ by the following

formulas:

a11 = cosψ cosϕ− sinψ sinϕ cos θ, a12 = − cosψ sinϕ− sinψ cosϕ cos θ,

a13 = sinψ sin θ, a21 = sinψ cosϕ+ cosψ sinϕ cos θ,

a22 = − sinψ sinϕ+ cosψ cosϕ cos θ, a23 = − cosψ sin θ,

a31 = sinϕ sin θ, a32 = cosϕ sin θ, a33 = cos θ.

(3.1)

Let

F (x1, x2, x3) = 0, (3.2)

be the equation of the surface of the body in the coordinate system Gx1x2x3. We choose the sign of
F (x1, x2, x3) so that

γ = − gradF

| gradF | ,
where

gradF =
∂F

∂x1
e1 +

∂F

∂x2
e2 +

∂F

∂x3
e3, | gradF | =

√(
∂F

∂x1

)2

+

(
∂F

∂x2

)2

+

(
∂F

∂x3

)2

,

and e1, e2, and e3 are the unit vectors of the axes Gx1, Gx2, and Gx3, respectively. Using these
equations and (3.1), we obtain

a31 = sin θ sinϕ = − 1

| gradF |
∂F

∂x1
,

a32 = sin θ cosϕ = − 1

| gradF |
∂F

∂x2
,

a33 = cos θ = − 1

| gradF |
∂F

∂x3
.

(3.3)

Since the moving rigid body is rotationally (geometrically) symmetric, we can rewrite Eq. (3.2) in
the form

F (δ, x3) = 0, δ =
√

x21 + x22. (3.4)
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Fig. 3. Motion of a rotationally symmetric body: basic coordinate systems.

Equations (3.3) take the form

a31 = sin θ sinϕ = − 1

| gradF |
∂F

∂δ
· x1
δ
,

a32 = sin θ cosϕ = − 1

| gradF |
∂F

∂δ
· x2
δ
,

a33 = cos θ = − 1

| gradF |
∂F

∂x3
.

(3.5)

The first two equations in (3.5) yields the identity

x1 cosϕ = x2 sinϕ. (3.6)

Due to the dynamical symmetry of the body, the directions of the orthogonal axes Gx1 and Gx2
can be chosen up to rotation by an arbitrary angle in the equatorial plane of the central ellipsoid of
inertia of the body. Let us choose these axes so that the first coordinate x1 of the contact point M
is x1 = −δ when ϕ = π/2. Figure 3 shows the meridional section of the body corresponding to the

angle ϕ = π/2.
From (3.4) and (3.6) we obtain that

x1 = −δ sinϕ, x2 = −δ cosϕ. (3.7)

Using (3.7) and the second and third equations (3.5) we get

∂F

∂δ
cos θ +

∂F

∂x3
sin θ = 0.

This equation together with (3.4) shows that δ and x3 are functions of θ. Now we introduce the
coordinate system Gξηζ with the origin at the center of mass G of the body, which moves both in
the space and in the body, such that the Gζ-axis coincides with the Gx3-axis, the Gη-axis is directed

along the vector product [e3×γ], and the Gξ-axis is such that Gξηζ is a right orthogonal system (see
Fig. 3). We denote the unit basis vectors of this coordinate system by eξ, eη, and eζ , respectively. It
is easy to understand that the Gη-axis is always perpendicular to the meridional section of the body

corresponding to the value ϕ = π/2 and the Gξ-axis always lies in the plane of this meridional section
(see Fig. 3). Since Gη is directed along [e3 × γ], we have for the vector eη the following formula:

eη =
1

sin θ
[e3 × γ].
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Taking into account the formulas (3.1), we get

eη = − cosϕe1 + sinϕe2

and, therefore,

eξ = [eη × eζ ] = [eη × e3] = sinϕe1 + cosϕe2.

Thus, the unit vectors e1, e2, e3 are connected with the unit vectors eξ, eη, eζ by the formulas

e1 = sinϕeξ − cosϕeη, e2 = cosϕeξ + sinϕeη, e3 = eζ .

The unit normal vector γ has the following decomposition in the coordinate system Gξηζ:

γ = sin θeξ + cos θeζ ,

and the radius-vector
−−→
GM of the point M of contact of the body with the horizontal plane has the

form −−→
GM = (x1 sinϕ+ x2 cosϕ)eξ + (x2 sinϕ− x1 cosϕ)eη + x3eζ = ξeξ + ηeη + ζeζ .

Taking into account (3.6) and (3.7), we conclude that

ξ = −δ, η = 0, ζ = x3,

i.e., the components of the vector
−−→
GM in the coordinate system Gξηζ are function only of θ. Hence,

the distance from the center of mass of the body to the horizontal supporting plane is also a function

only of θ:

GQ = −(
−−→
GM · γ) = −ξ sin θ − ζ cos θ = f(θ). (3.8)

The equations ξ = ξ(θ) and ζ = ζ(θ) are the parametric equations of the meridional section of the

body (see Fig. 3). Since the vector
−−→
MQ is a tangent vector to this meridional section at M , it is

collinear to the vector whose components in the coordinate system Gξηζ are ξ′ and ζ ′, where (·)′
denotes the derivative by θ. On the other hand, the vector

−−→
GQ is collinear to the vector γ. This

means that
(−−→
MQ · −−→GQ

)
= 0, i.e.,

ξ′ sin θ + ζ ′ cos θ = 0. (3.9)

Differentiating both sides of (3.8) by θ and applying (3.9) we obtain

f ′(θ) = −ξ cos θ + ζ sin θ. (3.10)

From (3.8) and (3.10) we obtain the parametric equations of the meridional section of the body in

the form

ξ = −f(θ) sin θ − f ′(θ) cos θ, ζ = −f(θ) cos θ + f ′(θ) sin θ. (3.11)

Thus, the function f(θ) completely characterizes the shape of the moving body. In the sequel, we will
consider the motion on the body in the coordinate system Gξηζ.

3.1.2. Equations of motion. We obtain the equations of motion of the rotationally symmetric body
on a fixed, perfectly rough horizontal plane from the basic theorems of dynamics. The position of the

body on the plane is completely determined by the angles θ, ψ, and ϕ and by the coordinates x and y
of the contact point M . Let the velocity v of the center of mass G, the angular velocity vector ω of
the body, the angular velocity vector Ω of the coordinate system Gξηζ, and the reaction R of the

plane be specified in the coordinate system Gξηζ by their components vξ, vη, vζ ; p, q, r; Ωξ, Ωη, Ωζ ,
and Rξ, Rη, Rζ , respectively. Let m be mass of the body, A1 be its moment of inertia about axes Gξ
and Gη, and A3 be its moment of inertia about the symmetry axis Gζ. The equations of motion of

the body in the coordinate system Gξηζ have the following form:

mv̇ +m[Ω× v] = −mgγ +R, (3.12)

K̇ + [Ω×K] = [
−−→
GM ×R], (3.13)
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γ̇ + [Ω× γ] = 0, (3.14)

v + [ω ×−−→
GM ] = 0. (3.15)

Equations (3.12) and (3.13) follow from the theorems of change of momentum and angular momentum
of the body, and Eqs. (3.14) and (3.15) express respectively the facts that the vector γ is constant in
the inertial frame Oxyz and that the body moves without sliding. Here g is the acceleration of gravity
and K is the angular momentum of the body with respect to its center of mass. Let ξ, η, ζ be the

coordinates of the contact point M in the moving coordinate system Gξηζ. Then η = 0, whereas ξ
and ζ are defined by (3.11). We can write Eqs. (3.12), (3.13), and (3.15) in the scalar form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dvξ
dt

+Ωηvζ − Ωζvη = −g sin θ +
Rξ

m
,

dvη
dt

+Ωζvξ − Ωξvζ =
Rη

m
,

dvζ
dt

+Ωξvη − Ωηvξ = −g cos θ +
Rζ

m
;

(3.16)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A1
dp

dt
+A3rΩη −A1qΩζ = −ζRη,

A1
dq

dt
+A1pΩζ −A3rΩξ = ζRξ − ξRζ ,

A3
dr

dt
+A1qΩξ −A1pΩη = ξRη;

(3.17)

vξ + qζ = 0, vη + rξ − pζ = 0, vζ − qξ = 0. (3.18)

Now we find the relations between the components of the angular velocity Ω of the moving trihedron

Gξηζ and the angular velocity ω of the body. Since the Gζ-axis is immovable in the body, we have

Ωξ = p, Ωη = q. (3.19)

The third component Ωζ can be easily expressed through p; indeed, since (due to (3.14)) the vector
Ω os orthogonal to the vector γ̇, this and (3.19) imply that

Ωζ = Ωξ cot θ = p cot θ. (3.20)

Eliminating the values Rξ, Rη, and Rζ from Eqs. (3.16) and (3.17), after certain simplifications
based on (3.11) and (3.18)–(3.20), we obtain the equations

[
A1 +m(ξ2 + ζ2)

]dq
dt

= mgf ′(θ) + (A3r −A1p cot θ)p

−mp(ζ cot θ + ξ)(pζ − rξ)−mq

(
ξ
dξ

dt
+ ζ

dζ

dt

)
, (3.21)

A1
dp

dt
+A3

ζ

ξ

dr

dt
= (A1p cot θ −A3r)q,

d

dt
(pζ − rξ)− A3

mξ

dr

dt
= (ζ cot θ + ξ)pq.

Here ξ and ζ are functions of θ determined by (3.11). Adding to (3.21) the obvious equation

q = −dθ

dt
, (3.22)

we obtain a closed system of four differential equations with four unknown functions p, q, r, and θ.

The equations of motion (3.21)–(3.22) possess the energy integral

E = T + V = const .
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Using König’s theorem and the conditions of the absence of sliding (3.18), we can rewrite this integral

as follows:
1

2
A1p

2 +
1

2

(
A1 +m(ξ2 + ζ2)

)
q2 +

1

2
A3r

2 +
1

2
m(pζ − rξ)2 +mgf(θ) = const . (3.23)

Assume that θ �= const. Then using (3.22) we can introduce the new independent variable θ in the
second and third equation of the system (3.21). We obtain⎧⎪⎪⎨

⎪⎪⎩
A1

dp

dθ
+A3

ζ

ξ

dr

dθ
= −A1p cot θ +A3r,

ζ
dp

dθ
− A3 +mξ2

mξ

dr

dθ
= −(ζ cot θ + ξ + ζ ′

)
p+ ξ′r.

(3.24)

From these linear first-order equations we can obtain one second-order linear differential equation
for r. Integrating this equation or the system (3.24), we obtain the dependence of p and r on θ with

two arbitrary constants; then the problem can be completed by quadratures. Indeed, if we have found
p and r, then we can determine q from the energy integral (3.23). The dependence of the angle θ on
time is given by the equation

dt = −dθ

q
.

Recall that ϕ is the angle between the meridian Mζ of the body and a certain fixed meridional plane
and ψ is the angle between the horizontal tangent MQ of the meridian Mζ and the immovable axis Ox

(see Fig. 3). Then from the kinematic equations

dϕ

dt
= r − Ωζ = r − p cot θ,

dψ

dt
= p sin θ +Ωζ cos θ =

p

sin θ
. (3.25)

we find the angles ϕ and ψ by quadratures. The coordinates x and y of the point M can also be
found by quadratures. Indeed, let dσ1 and dσ2 be respectively the arc elements of the meridian and
the parallel at M ; dσ1 is oriented from M to Q and dσ2 is perpendicular to the plane of Fig. 3 along

the Gη-axis. It is easy to see that

dσ1 =
√

ξ′2 + ζ ′2dθ, dσ2 = −ξdϕ. (3.26)

Since the motion occurs without sliding,

dx = dσ1 cosψ + dσ2 sinψ, dy = dσ1 sinψ − dσ2 cosψ. (3.27)

From (3.26) and (3.27) we obtain⎧⎪⎨
⎪⎩

dx

dt
=
√

ξ′2 + ζ ′2 cosψ
dθ

dt
− ξ sinψ

dϕ

dt
,

dy

dt
=
√

ξ′2 + ζ ′2 sinψ
dθ

dt
+ ξ cosψ

dϕ

dt
.

(3.28)

If θ, ψ, and ϕ have already been found as functions of t, then x and y can be found from (3.28) by

quadratures. Thus, the problem on the rolling if a heavy rotational body on a fixed, perfectly rough
horizontal plane is equivalent to the solution of the system (3.24). We solve this system with respect
to the derivatives dp/dθ and dr/dθ:⎧⎪⎪⎨

⎪⎪⎩

dp

dθ
=

(
−cos θ

sin θ
− A3mζ(ξ + ζ ′)

Δ

)
p+

A3(A3 +mξ2 +mξ′ζ)
Δ

r,

dr

dθ
=

A1mξ(ξ + ζ ′)
Δ

p+
mξ(A3ζ −A1ξ

′)
Δ

r.

(3.29)

Here we introduce the notation

Δ = A1A3 +A1mξ2 +A3mζ2.
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Note that if ξ + ζ ′ = 0, then the second equation of the system (3.29) can be integrated separately.

This condition is valid for the rotational body whose shape is defined by the equations

f(θ) = R− d cos θ, ξ = −R sin θ, ζ = d−R cos θ,

i.e., for a dynamically symmetric ball of radius R whose center of mass is located on the axis Gζ at the
distance d from the geometrical center of the ball. The motion of such nonhomogeneous dynamically
symmetric ball was completely examined by S. A. Chaplygin (see [5]). In particular, Chaplygin proved

that the system (3.24) or (3.29) possesses two first integrals linear in p and r:

A1p sin θ +A3r

(
cos θ − d

R

)
= j1 = const,

r

√√√√A1A3 +mR2

(
A1 sin

2 θ +A3

(
cos θ − d

R

)2
)

= j2 = const,

and hence, it can be solved in Liouville functions. Further, we will assume that ξ + ζ ′ �= 0. Then it is
possible to obtain from the system (3.29) the following second-order linear differential equation:

d2r

dθ2
+

[
cos θ

sin θ
+

3m(A1ξξ
′ +A3ζζ

′)
Δ

−
d
dθ (ξ(ξ + ζ ′))
ξ(ξ + ζ ′)

]
dr

dθ

+
mξ(ξ + ζ ′)
Δ sin θ

[
d

dθ

(
(A1ξ

′ −A3ζ) sin θ

ξ + ζ ′

)
−A3 sin θ

]
r = 0. (3.30)

The further analysis of the problem consists of integration of the second-order linear differential
equation (3.30). In this paper, we consider the motion of various bodies on a horizontal plane; for

each body we present the corresponding equation of the form (3.30) and, using the Kovacic algorithm,
examine whether the obtained second-order linear differential equation has a Liouville solution.

3.2. Motion of a thin disk.

3.2.1. Equations of motion. Integrability in terms of hypergeometric functions. First, we consider

the problem of motion of a thin disk, which is a rotationally symmetric body with sharp edge, rolling
on a horizontal plane. The edge of the disk is a planar circle of radius R centered at the center of
mass G. The axis of symmetry of the disk is perpendicular to the plane of the sharp edge. We assume

that during the motion the lowest point of the edge remains in contact with the horizontal plane
(see [1, 5, 11, 19, 20]). In this case, the formulas (3.8) and (3.11) yield

f(θ) = R sin θ, ξ = −R, ζ = 0. (3.31)

Taking into account (3.31), we can write the system (3.24) as follows:

(A3 +mR2)
dr

dθ
= mR2p, A1

d

dθ
(p sin θ) = A3r sin θ, (3.32)

and the second-order linear differential equation (3.30) takes the form

d2r

dθ2
+ cot θ

dr

dθ
−Br = 0, B =

mR2A3

A1(A3 +mR2)
, θ ∈ (0, π). (3.33)

Introducing instead of θ the new independent variable z by the formula

cos θ = 1− 2z

(see [1, 5, 19, 20]), we reduce (3.33) to the form

z(1− z)
d2r

dz2
+ (1− 2z)

dr

dz
−Br = 0. (3.34)
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The obtained second-order linear differential equation is the Gauss hypergeometric equation (see [13]).

Thus, the problem of motion of a thin round disk is solved in terms of hypergeometric functions. The
Gauss hypergeometric series

F (α, β, γ; z) = 1 +
αβ

1 · γ z +
α(α + 1)β(β + 1)

1 · 2 · γ(γ + 1)
z2 + . . .

+
α(α + 1) . . . (α+ n)β(β + 1) . . . (β + n)

1 · 2 . . . (n+ 1)γ(γ + 1) . . . (γ + n)
zn+1 + . . . , (3.35)

is a particular solution of the differential equation

z(1 − z)
d2r

dz2
+
[
γ − (α + β + 1)z

]dr
dz

− αβr = 0.

For Eq. (3.34) we have

α+ β = 1, γ = 1, αβ = B =
mR2A3

A1(A3 +mR2)
,

α+ β + 1

2
= γ,

and hence its general solution has the form

r = c1F (α, β, 1; z) + c2F (α, β, 1; 1 − z)

(see [13]), where c1 and c2 are arbitrary constants and α and β are the roots of the quadratic equation

s2 − s+B = 0.

Note (see [13]) that the hypergeometric series (3.35) converges uniformly on any segment of the real

axis lying inside the interval −1 < z < 1. Turning from z to the old independent variable θ, we obtain
the function r(θ) in the form

r = c1F

(
α, β, 1; sin2 θ

2

)
+ c2F

(
α, β, 1; cos2

θ

2

)
. (3.36)

From (3.32) and (3.36) we find the function p = p(θ):

p =
A3

2A1
sin θ

[
c1F

(
α+ 1, β + 1, 2; sin2 θ

2

)
− c2F

(
α+ 1, β + 1, 2; cos2

θ

2

)]
(3.37)

taking into account the expression for the derivative of the Gauss hypergeometric function

d

dz
F (α, β, γ; z) =

αβ

γ
F (α+ 1, β + 1, γ + 1; z).

Thus, the general solution of the system (3.32) can be written in the form (3.36), (3.37) in terms

of hypergeometric functions. Hence, in general case, Eq. (3.33) has no Liouville solutions. We try to
examine whether can Liouville solutions exist for a certain particular values of the parameter B. For
this purpose, we apply the Kovacic algorithm.

3.2.2. Application of the Kovacic algorithm to the problem of motion of a disk. In order to apply

the Kovacic algorithm to Eq. (3.33), we first transform its coefficients to the rational form. For this
purpose, in Eq. (3.33) we change the independent variable θ by the formula cos θ = x. As a result,
Eq. (3.33) takes the form

d2r

dx2
− 2x

1− x2
dr

dx
− B

1− x2
r = 0. (3.38)

This equation is the starting equation for application of the Kovacic algorithm. If we denote

a(x) = − 2x

1− x2
, b(x) = − B

1− x2
,
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then Eq. (3.38) has the form (2.1). By the change of variables (2.2), we reduce Eq. (3.38) to the form

d2y

dx2
= D(x)y, (3.39)

where

D(x) =
2B − 1

4(x+ 1)
− 2B − 1

4(x− 1)
− 1

4(x+ 1)2
− 1

4(x− 1)2
.

The Laurent expansion of D(x) in a neighborhood of the point x = ∞ is

D(x)
∣∣
x=∞ = −B

x2
+O(

1

x4
).

All initial preparations necessary for the application of the Kovacic algorithm have been performed.

Remark 1. Here and in the sequel, we consider only values of parameters of the problem that have a
physical sense. In other words, we assume that all geometric parameters of the problem are positive,
the mass of the body is positive, and the moments of inertia of the body are positive and satisfy the

triangle inequality. However, the Kovacic algorithm allows one to find Liouville solutions of a second-
order linear differential equation for all values of parameters. For example, if B = 0 (i.e., the mass
of the disk is concentrated on its symmetry axis), then Eq. (3.33) has a solution expressed through

elementary functions:

r(θ) = c1 ln

(
tan

θ

2

)
+ c2. (3.40)

Direct application of the Kovacic algorithm to Eq. (3.39) yields the following result.

Theorem 5. For all physically valid values of parameters, Eq. (3.39) has no Liouville solutions.

Proof. First, we try to search for a solution of Eq. (3.39) that has the form (2.4), i.e., a solution

described in Case 1 of Theorem 1. Note that the function D(x) has two finite second-order poles at
x = 1 and x = −1. The point x = ∞ is also a second-order pole of D(x). Therefore, the necessary
conditions (see Theorem 1) of the existence of a solution to Eq. (3.39) of the form (2.4) are fulfilled.

Now we apply the Kovacic algorithm following Sec. 2.3.1.

Step 1. Let us calculate the following values:

[
√
D]±1 = 0, b±1 = −1

4
, α±

1 = α±
−1 =

1

2
,

[
√
D]∞ = 0, b∞ = −B, α±

∞ =
1±√

1− 4B

2
.

Step 2. Since the number ρ of finite poles of the function D(x) is equal to 2, we have 2ρ+1 = 23 = 8

tuples of signs s = (s(∞), s(1), s(−1)). For each tuple, we calculate d by the formula (2.19):

d = αs(∞)
∞ − α

s(1)
1 − α

s(−1)
−1 .

It is easy to verify that only two values of d are distinct, namely,

d =
±√

1− 4B − 1

2
.

According to the algorithm, d must be nonnegative integer. However, according to the physical sense
of parameters, we have B > 0. Therefore, in this case, d can only be negative. Hence, Eq. (3.39) has
no Liouville solutions of the form (2.4). Note that for B = 0, we have the unique nonnegative integer

d = 0 and Eq. (3.39) possesses a Liouville solution, which has the form (3.40) for Eq. (3.33).
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Now we try to search for a solution of the form (2.9) for Eq. (3.39), i.e., a solution corresponding to

Case 2 of Theorem 1. The necessary conditions for the existence of such a solution are fulfilled (see
Theorem 4). We apply the Kovacic algorithm as was described in Sec. 2.3.3.

Step 1. Let us define the following sets of integers:

E1 = {2}, E−1 = {2}, E∞ =
{
(2± k

√
1− 4B) ∩ Z, k = 0,±2

}
.

It is easy to see that either E∞ = {1, 2, 3} for B = 3/16 or E∞ = {2} for any other admissible values

of B satisfying the conditions B ≥ 0 and 1− 4B ≥ 0.

Step 2. Now we consider all possible tuples s = (e∞, e1, e−1) of elements of the sets E∞, E1,

and E−1; at least one of the elements in each set must be odd. Obviously, odd numbers in the set s
can appear only for B = 3/16. We have exactly two such sets: (1, 2, 2) and (3, 2, 2). However, the
corresponding values of d calculated by the formula (2.28)

d =
1

2
(e∞ − e1 − e−1),

are not nonnegative integers: we have d = −3/2 for the set (1, 2, 2) and d = −1/2 for the set (3, 2, 2).

Therefore Eq. (3.39) has no Liouville solutions of the form (2.9).

Finally, we try to search for a solution of the form (2.13) to Eq. (3.39), i.e., a solution corresponding
to Case 3 of Theorem 1. First, we analyze the necessary conditions of the existence (see Theorem 4).

The function D(x) has no poles of order greater than 2. The order of the pole of D(x) at x = ∞ is
greater than 1. The partial fraction expansion of D(x) is

D(x) =
α1

(x+ 1)2
+

α2

(x− 1)2
+

β1
(x+ 1)

+
β2

(x− 1)
,

α1 = −1

4
, α2 = −1

4
, β1 =

2B − 1

4
, β2 = −2B − 1

4
,

It can be easily shown that
√
1 + 4α1 = 0 ∈ Q,

√
1 + 4α2 = 0 ∈ Q, β1 + β2 = 0.

Thus, for the existence of a solution (2.13) to Eq. (3.39), the following condition must be fulfilled:√
1 + 4γ ∈ Q, γ = α1 + α2 − β1 + β2.

For Eq. (3.39), this condition can written in the form
√
1− 4B ∈ Q.

Assume that this condition holds. Now we apply the Kovacic algorithm for Case 3 as described in
Sec. 2.3.5.

Step 1. Let us define the following sets of integers:

E1 = {6}, E−1 = {6}, E∞ =
{
(6 + k

√
1− 4B) ∩ Z, k = 0, ±1, ±2, . . . ,±6

}
.

Step 2. Consider all possible tuples s = (e∞, e1, e−1) of elements of the sets E∞, E1, and E−1 and
calculate d by the formula (2.41):

d = e∞ − e1 − e−1 = k
√
1− 4B − 6.

According to the algorithm, d must be nonnegative integer. Note that k = 6 is the maximal possible
value for k. Therefore, d cannot be a nonnegative integer for B > 0. This means that Eq. (3.39) does
not possess a solution of the form (2.13). Thus, we can conclude that Eq. (3.39) has no Liouville

solutions for B > 0. The theorem is proved. �
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Thus, we have proved that the problem of motion of a round disk on a perfectly rough plane cannot

be solved in terms of Liouville functions. In other words, the hypergeometric functions (3.36), (3.37)
cannot be reduced to any simpler functions for all physically admissible values of the parameter B.

3.3. Motion of a thick disk. Mow we consider the problem of the motion of a rotationally sym-
metric disk whose sharp edge (a planar circle of radius R) rolls on a horizontal plane. The symmetry
axis Gζ of the body is perpendicular to the plane of the circle and passes through its center. The

center of mass G of the body is also situated on the Gζ-axis, but in the case considered, it does not
coincide with the center of the circle. Let h be the distance between the center of mass of the body
and the center of the circle. Such a body is called a disk of finite thickness or a thick disk (see [2–4,

30]). The distance between the center of mass of the disk and the horizontal supporting plane is

f(θ) = R sin θ + h cos θ.

According to (3.11) we have

ξ = −R, ζ = −h.

The system (3.29) takes the form⎧⎪⎪⎨
⎪⎪⎩

dp

dθ
= −
(cos θ
sin θ

+
A3mRh

A1A3 +A1mR2 +A3mh2

)
p+

A3(A3 +mR2)

A1A3 +A1mR2 +A3mh2
r,

dr

dθ
=

A1mR2

A1A3 +A1mR2 +A3mh2
p+

A3mRh

A1A3 +A1mR2 +A3mh2
r,

(3.41)

and Eq. (3.30) can be written as follows:

d2r

dθ2
+

cos θ

sin θ

dr

dθ
− A3mR(R sin θ + h cos θ)

(A1A3 +A1mR2 +A3mh2) sin θ
r = 0, θ ∈

(
0, π − arccos

R√
R2 + h2

)
. (3.42)

The general solution of the system (3.41) expressed in terms of hypergeometric functions was first

found by M. Batista (see [2–4]). In the problem considered, explicit expressions for p(θ) and r(θ) are
more complicated than the corresponding expressions (3.36) and (3.37) in the problem of the motion
of a thin disk. We do not describe in detail the procedure of calculating the general solution of the

system (3.41) or Eq.(3.42). Let us examine the question on the existence of Liouville solutions of
Eq. (3.42). In this differential equation, we perform the change of the independent variable by the
formula cot θ = x and introduce the following notation:

A =
A3mhR

A1A3 +A1mR2 +A3mh2
, B =

A3mR2

A1A3 +A1mR2 +A3mh2
. (3.43)

Then Eq. (3.42) becomes

d2r

dx2
+

x

x2 + 1

dr

dx
− Ax+B

(x2 + 1)2
r = 0. (3.44)

Let

a(x) =
x

x2 + 1
, b(x) = − Ax+B

(x2 + 1)2
;

then Eq. (3.44) takes the form of Eq. (2.1). By the change of variables (2.2), we reduce Eq. (3.44) to
the form

d2y

dx2
= D1(x)y, D1(x) =

(4B + 1)i

16(x+ i)
− 3 + 4B − 4Ai

16(x+ i)2
− (4B + 1)i

16(x− i)
− 3 + 4B + 4Ai

16(x− i)2
. (3.45)

The Laurent expansion of D1(x) in a neighborhood of the point x = ∞ is

D1(x)
∣∣
x=∞ = − 1

4x2
+O

(
1

x3

)
.
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All initial preparations necessary for application of the Kovacic algorithm to Eq. (3.45) are fulfilled.

Direct application of the Kovacic algorithm to Eq. (3.45) yields the following result.

Theorem 6. For all physically admissible values of the parameters of the problem, Eq. (3.45) has no

Liouville solutions.

Proof. First, for Eq. (3.45), we try to search for a solution of the form (2.4), i.e., a solution described
in Case 1 of Theorem 1. Note that the function D1(x) has two finite second-order poles at x = i and

x = −i. The order of the pole of D1(x) at x = ∞ is also 2. Therefore, the conditions of Theorem 4
necessary for the existence of solutions of the form (2.4) for Eq. (3.45) are fulfilled. Now we start to
apply the Kovacic algorithm as was described in Sec. 2.3.1.

Step 1. Let us calculate the following values:

[
√

D1]±i = 0, α±
i =

1

2
± 1

2

√
1

4
−B −Ai, α±

−i =
1

2
± 1

2

√
1

4
−B +Ai,

[
√

D1]∞ = 0, b∞ = −1

4
, α±

∞ =
1

2
.

Step 2. Since the number ρ of finite poles of the function D1(x) is equal to 2, we have 2ρ+1 = 23 = 8

tuples of signs s = (s(∞), s(i), s(−i)). For each tuple, we evaluate the value d by (2.19):

d = αs(∞)
∞ − α

s(i)
i − α

s(−i)
−i .

As a result, we have the following explicit expression for d:

d = −1

2
+

1

2

√
1

4
−B −Ai+

1

2

√
1

4
−B +Ai.

Here the radical means a pair of two opposite complex numbers. After calculation of square roots, we
obtain the four numbers ±u± vi, where

u =

∣∣∣∣∣Re
√

1

4
−B +Ai

∣∣∣∣∣ , v =

∣∣∣∣∣Im
√

1

4
−B +Ai

∣∣∣∣∣ .
Therefore, d can be a nonnegative integer only if

d = −1

2
+

1

2
(u+ vi+ u− vi) = −1

2
+

∣∣∣∣∣Re
√

1

4
−B +Ai

∣∣∣∣∣ .
It is easy to verify that

d = −1

2
+

1

2

√
1− 4B +

√
16A2 + (1− 4B)2

2
. (3.46)

We prove that if A and B are defined by (3.43), then the value d defined by (3.46) cannot be
nonnegative integer. We rewrite Eq. (3.46) as follows:

16A2 = 4(2d+ 1)4 − 4(2d+ 1)2(1− 4B).

Introduce the notation 2(2d + 1)2 = k ≥ 2 for d ≥ 0. Taking into account this notation, we obtain

16A2 = k2 − 2k(1 − 4B)

or

8B

(
2
A2

B
− k

)
= k(k − 2). (3.47)
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The right-hand side of Eq. (3.47) is nonnegative for k ≥ 2, whereas the left-hand side is negative.

Indeed, from (3.43) we get

A2

B
=

A3mh2

A1A3 +A1mR2 +A3mh2
<

A3mh2

A3mh2
= 1

(recall that B > 0). The contradiction obtained allows one to state that Eq. (3.45) has no Liouville
solutions of the form (2.4).

Now we search for a solution of the form (2.9) for Eq. (3.45), i.e., a solution described in Case 2 of
Theorem 1. The necessary conditions for the existence of such solutions are fulfilled (see Theorem 4).
Now we apply the Kovacic algorithm as was described in Sec. 2.3.3.

Step 1. Let us define the following sets of integers:

E±i =

{(
2 + k

√
1

4
−B ∓Ai

)
∩ Z

}
= {2}, k = 0,±2, E∞ = {2}.

Step 2. Now we should consider all possible tuples s = (e∞, ei, e−i) of elements from E∞, Ei, E−i;
recall that at least one element in each tuple must be odd. Obviously, in the case considered, there

are no such sets. Thus, Eq. (3.45) has no Liouville solutions of the form (2.9).

Now we search for a solution (2.13) of Eq. (3.45), i.e., a solution described in Case 3 of Theorem 1.

First, we verify whether the necessary conditions for its existence hold (see Theorem 4). The function
D1(x) can be written as follows:

D1(x) =
α1

(x+ i)2
+

α2

(x− i)2
+

β1
x+ i

+
β2

x− i
,

where

α1 = −3 + 4B − 4Ai

16
, α2 = −3 + 4B + 4Ai

16
, β1 =

(4B + 1)i

16
, β2 = −(4B + 1)i

16
.

Therefore, we have

√
1 + 4α1 =

√
1

4
−B +Ai /∈ Q,

√
1 + 4α2 =

√
1

4
−B −Ai /∈ Q.

Thus, the necessary conditions for the existence of a solution of the form (2.13) for Eq. (3.45) are not
fulfilled. This means that Eq. (3.45) has no Liouville solutions of the form (2.13). Finally, we can

conclude that Eq. (3.45) has no Liouville solutions. The theorem is proved. �
Thus, we have proved that the problem of the motion of a thick disk on a perfectly rough horizontal

plane cannot be solved in terms of Liouville functions.

4. Motion of Torus

4.1. Formulation of the problem. Equations of motion. General case and special cases.
Consider the problem of the motion of a dynamically symmetric torus on a perfectly rough horizontal

plane. Let R be the radius of the meridian of the torus (called the radius of the tube) and a be the
distance from the center of the tube to the center of the torus. We assume that a > R. The center
of mass of the torus is located at its center (see Fig. 4). Then the distance between the the center of

mass and the horizontal supporting plane is

f(θ) = R+ a sin θ.

According to (3.11) we have

ξ = −a−R sin θ, ζ = −R cos θ.
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Fig. 4. Torus rolling on a horizontal plane.

Therefore, the system (3.29) can be written as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dp

dθ
= −
(
1 +

A3maR sin θ

Δ

)
cos θ

sin θ
p+

A3(A3 +ma2 +mR2 + 2maR sin θ)

Δ
r,

dr

dθ
=

A1ma(R sin θ + a)

Δ
p+

mR(A3 −A1)(R sin θ + a) cos θ

Δ
r,

Δ = (A1 −A3)mR2 sin2 θ + 2A1mRa sin θ +A1A3 +A1ma2 +A3mR2,

(4.1)

and the differential equation (3.30) takes the form

d2r

dθ2
+ b1

dr

dθ
+ b2r = 0, θ ∈ (0, π), (4.2)

where

b1 =
a cos θ

(R sin θ + a) sin θ
+

3mR((A1 −A3)R sin θ +A1a) cos θ

Δ
,

b2 =
m(R sin θ + a)(R(A1 −A3)(1− 2 sin2 θ)−A3a sin θ)

Δ sin θ
,

Δ = (A1 −A3)mR2 sin2 θ + 2A1mRa sin θ +A1A3 +A1ma2 +A3mR2.

The system (4.1) was first obtained by L. G. Lobas (see [28, 29, 36]). We examine the question on

the existence of Liouville solutions of Eq. (4.2). We perform in Eq. (4.2) the change of the θ by the
formula sin θ = x and introduce the notation B = a/R. Since a > R by assumption, we have B > 1.
Thus, we rewrite (4.2) as follows:

d2r

dx2
+ d1(x)

dr

dx
+ d2(x)r = 0, (4.3)

where

d1(x) =
B

x(x+B)
+

x

x2 − 1
+

3mR2((A1 −A3)x+A1B)

Δ
,

d2(x) =
mR2(x+B)((A1 −A3)(2x

2 − 1) +A3Bx)

x(x2 − 1)Δ
,

Δ = (A1 −A3)mR2x2 + 2A1BmR2x+A1A3 +A1B
2mR2 +A3mR2.
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If A3 �= A1, then the polynomial Δ has two roots x1 and x2:

x1 = −A1mRB −√A3m(A1mR2B2 − (A1 −A3)(A1 +mR2))

mR(A1 −A3)
,

x2 = −A1mRB +
√

A3m(A1mR2B2 − (A1 −A3)(A1 +mR2))

mR(A1 −A3)
.

(4.4)

The change of variable (2.2) reduces Eq. (4.3) to the form

d2y

dx2
= T (x)y, (4.5)

where

T (x) =
β1

x− 1
+

α1

(x− 1)2
+

β2
x+ 1

+
α2

(x+ 1)2
+

β3
x− x1

+
α3

(x− x1)2

+
β4

x− x2
+

α4

(x− x2)2
+

β5
x+B

+
α5

(x+B)2
+

β6
x

+
α6

x2
, (4.6)

α1 = α2 = α3 = α4 = − 3

16
, α5 =

3

4
, α6 = −1

4
,

β1 =
8B3 + 4(x1 + x2 + 2)B2 + (5x1x2 − 3x1 − 3x2 + 9)B

16(x1 − 1)(x2 − 1)(B + 1)
+

x1x2 − 3x1 − 3x2 + 5

16(x1 − 1)(x2 − 1)(B + 1)
,

β2 = −8B3 + 4(x1 + x2 − 2)B2 + (5x1x2 + 3x1 + 3x2 + 9)B

16(x1 + 1)(x2 + 1)(B − 1)
+

x1x2 + 3x1 + 3x2 + 5

16(x1 + 1)(x2 + 1)(B − 1)
,

β3 =
8x1B

3 + 4(x21 + x1x2 + 2)B2 + (5x31 − 4x21x2 + x1 + 6x2)B

8x1(x1 − 1)(x1 + 1)(x1 − x2)(x1 +B)

+
(3x21 − 2x1x2 − 1)x21

8x1(x1 − 1)(x1 + 1)(x1 − x2)(x1 +B)
,

β4 =
8x2B

3 + 4(x22 + x1x2 + 2)B2 + (5x32 − 4x1x
2
2 + 6x1 + x2)B

8x2(x2 − 1)(x2 + 1)(x2 − x1)(x2 +B)

+
(3x22 − 2x1x2 − 1)x22

8x2(x2 − 1)(x2 + 1)(x2 − x1)(x2 +B)
,

β5 =
10B4 + 7(x1 + x2)B

3 + 4(x1x2 − 2)B2 − 5(x1 + x2)B − 2x1x2
4B(B − 1)(B + 1)(x1 +B)(x2 +B)

,

β6 = −4B2 + 3(x1 + x2)B + 2x1x2
4x1x2B

.

Thus, the function T (x) has six finite poles: x = 0, x = 1, x = −1, x = −B, x = x1, and

x = x2. In the general case, these poles are distinct. Nevertheless, under some additional conditions
for parameters, the function T (x) has another form different from (4.6). This takes place in the
following cases:

1. If

A3 = A1, (4.7)

then Δ is a first-degree polynomial and its unique root x0 is

x0 = −A1 +mR2 +mR2B2

2mBR2
. (4.8)
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2. For x0 expressed by (4.8), we have x0 < −1. Hence x0 �= 0, 1,−1. However, under the condition

A3 = A1 = mR2(B2 − 1) = m(a2 −R2) (4.9)

we get x0 = −B.
3. If

A3 �= A1, A1 = m(a2 −R2), (4.10)

then we have x1 = −B.
4. Under the condition

A3 =
A1

A1 +mR2
(A1 +mR2 −ma2) (4.11)

the polynomial Δ has a multiple root:

x1 = x2 = −A1 +mR2

mBR2
.

The condition (4.11) has a physical sense if A1 +mR2 −ma2 > 0. Then

x1 = x2 < −B.

Consequently, under the condition (4.11), the multiple root x1 = x2 does not coincide with other
poles x = 0, x = 1, x = −1, x = −B.

We see that in the examining the existence of Liouville solutions for Eq. (4.5), we must consider the

general case where the function T (x) has the form (4.6), and four special cases where the parameters
of the problem satisfy one of the relations (4.7), (4.9), (4.10), or (4.11).

4.2. General case. Assume that the function T (x) is determined by formula (4.6), i.e., all its poles
are distinct. In this case, the Laurent expansion of T (x) at x = ∞ is

T (x)
∣∣
x=∞ =

12B2 + 4(x1 + x2)B + 2x1x2 − 3x21 − 3x22 − 8

16x4
+O

(
1

x5

)
.

Direct application of the Kovacic algorithm to Eq. (4.5) yields the following result.

Theorem 7. Assume that all poles of the function T (x) are distinct. Then Eq. (4.5) has no Liouville
solutions for any physically admissible values of parameters.

Proof. First, we search for a solution of Eq. (4.5) of the form (2.4), i.e., a solution described in Case 1

of Theorem 1. Note that the function T (x) has six finite second-order poles: x = 0, x = 1, x = −1,
x = −B, x = x1, and x = x2. The order of T (x) at x = ∞ is at least fourth. Therefore, the conditions
of Theorem 4 (the necessary conditions of the existence of a solution of Eq. (4.5) of the form (2.4))

are fulfilled. Now we apply the Kovacic algorithm as was described in Sec. 2.3.1.

Step 1. Let us calculate the following values:

[
√
T ]1 = 0, α+

1 =
3

4
, α−

1 =
1

4
,

[
√
T ]−1 = 0, α+

−1 =
3

4
, α−

−1 =
1

4
,

[
√
T ]x1 = 0, α+

x1
=

3

4
, α−

x1
=

1

4
,

[
√
T ]x2 = 0, α+

x2
=

3

4
, α−

x2
=

1

4
,

[
√
T ]−B = 0, α+

−B =
3

2
, α−

−B = −1

2
,

[
√
T ]0 = 0, α+

0 =
1

2
, α−

0 =
1

2
,

[
√
T ]∞ = 0, α+

∞ = 0, α−
∞ = 1.
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Step 2. Since the number ρ of finite poles of the function T (x) is equal to 6, we have 2ρ+1 = 27 = 128

tuples of signs

s =
(
s(∞), s(1), s(−1), s(x1), s(x2), s(−B), s(0)

)
.

For each tuple, we evaluate the value d by the formula (2.19):

d = αs(∞)
∞ − α

s(1)
1 − α

s(−1)
−1 − αs(x1)

x1
− αs(x2)

x2
− α

s(−B)
−B − α

s(0)
0 .

According to the algorithm, d must be nonnegative integer. Further, we analyze all possible tuples
of signs s and the corresponding values α. It is easy to verify that the unique tuple s such that d is
nonnegative is

α =
(
α−
∞, α−

1 , α−
−1, α−

x1
, α−

x2
, α−

−B, α−
0

)
=

(
1,

1

4
,
1

4
,
1

4
,
1

4
, −1

2
,
1

2

)
,

and d = 0. The corresponding function θ = θ(x) calculated by the formula (2.20) has the form

θ =
1

4(x− 1)
+

1

4(x+ 1)
+

1

4(x− x1)
+

1

4(x− x2)
− 1

2(x+B)
+

1

2x
.

Step 3. For the tuple of signs s found in Step 2, we search for a polynomial P of degree d = 0

satisfying Eq. (2.21). Since the polynomial P has a zero degree, we set P ≡ 1 and substitute it to
Eq. (2.21), which takes the form

− B(2B + x1 + x2)(Bx+ 1)

2x(x2 − 1)(x+B)(x− x1)(x− x2)
= 0.

Using the explicit expression for x1 and x2 (see (4.4)) and the inequality B > 0, we conclude that for

the existence of a solution of the form (2.4) for Eq. (4.5), the following condition must be valid:

2B + x1 + x2 =
2A3B

A3 −A1
= 0.

Since B > 0 and A3 > 0, the last condition cannot hold. Thus, the differential equation (4.5) has no
Liouville solutions of the form (2.4).

Now we try to search for a solution of the form (2.9) of Eq. (4.5), i.e., a solution described in Case 2

of Theorem 1. The necessary conditions for existence of a such solution hold (see Theorem 4). Now
we apply the Kovacic algorithm.

Step 1. Let us define the following sets of integers:

E1 = {1, 2, 3}, E−1 = {1, 2, 3}, Ex1 = {1, 2, 3}, Ex2 = {1, 2, 3},
E−B = {−2, 2, 6}, E0 = {2}, E∞ = {0, 2, 4}.

Step 2. Now we consider all possible tuples

s =
(
e∞, e1, e−1, ex1 , ex2 , e−B , e0

)
of elements from E∞, E1, E−1, Ex1 , Ex2 , E−B , E0, and at least one of the elements in each tuple
must be odd. Using (2.28), for each tuple s we get

d =
1

2

(
e∞ − e1 − e−1 − ex1 − ex2 − e−B − e0

)
.

According to the algorithm, d must be a nonnegative integer. Analyzing all possible tuples s, we

conclude that the unique set with nonnegative d is

e =
(
e∞, e1, e−1, ex1 , ex2 , e−B , e0

)
=
(
4, 1, 1, 1, 1, −2, 2

)
,

and d = 0.
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Step 3. Using (2.29), we form the rational function θ for the chosen tuple e found in Step 2. We

get

θ =
1

2(x− 1)
+

1

2(x+ 1)
+

1

2(x− x1)
+

1

2(x− x2)
− 1

x+B
+

1

x
.

A polynomial of degree d = 0 (P ≡ 1) must satisfy Eq. (2.30). Substituting P ≡ 1 in this equation,

we obtain
B(2B + x1 + x2)(Bx2 − (2B2 − 2)x−B)

x2(x+B)2(x2 − 1)(x − x1)(x− x2)
= 0.

Since none of the factors can be zero, this equation has no solutions. Thus, Eq. (4.5) has no Liouville

solutions of the form (2.9).
Now we search for a solution of the form (2.13) of Eq. (4.5), i.e., a solution described in Case 3 of

Theorem 1. First, let us check whether the necessary conditions hold (see Theorem 4). The function

T (x) has no poles of order greater than 2. The order of the pole of T (x) at x = ∞ is greater than 1.
The partial fraction expansion of T (x) is (4.6). It can be easily proved that the remaining conditions
of Theorem 4 hold:

√
1 + 4αi =

1

2
∈ Q (i = 1, . . . , 4),

√
1 + 4α5 = 2 ∈ Q,

√
1 + 4α6 = 0 ∈ Q,

6∑
i=1

βi = 0,
√

1 + 4γ = 1 ∈ Q, γ = 0.

Now we start to apply the Kovacic algorithm for Case 3 (see Sec. 2.3.5).

Step 1. Let us define the following sets of integers:

E1 = {3, 4, 5, 6, 7, 8, 9}, E−1 = {3, 4, 5, 6, 7, 8, 9},
Ex1 = {3, 4, 5, 6, 7, 8, 9}, Ex2 = {3, 4, 5, 6, 7, 8, 9},
E−B = {−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18}, E0 = {6},
E∞ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Step 2. Now we consider all possible tuples

s =
(
e∞, e1, e−1, ex1 , ex2 , e−B , e0

)
of elements of the sets E∞, E1, E−1, Ex1 , Ex2 , E−B, and E0. By the formula (2.41), we calculate the
number d:

d = e∞ − e1 − e−1 − ex1 − ex2 − e−B − e0,

which must be a nonnegative integer. By analyzing all possible tuples of elements of E∞, E1, E−1,
Ex1 , Ex2 , E−B , and E0, we conclude that the unique tuple with nonnegative d is

e =
(
e∞, e1, e−1, ex1 , ex2 , e−B , e0

)
=
(
12, 3, 3, 3, 3, −6, 6

)
,

and d = 0.

Step 3. By the formula (2.42), we construct the function θ using the tuple e obtained on Step 2.
Then we get

θ =
3

x− 1
+

3

x+ 1
+

3

x− x1
+

3

x− x2
− 6

x+B
+

6

x
.

Using (2.43), we construct the polynomial

S = x(x− 1)(x+ 1)(x− x1)(x− x2)(x+B).

Further, we need the following recursive formulas (2.44):

P12 = −P, Pi−1 = −SP ′
i + ((12 − i)S′ − Sθ)Pi − (12 − i)(i + 1)S2T (x)Pi+1, P−1 = 0,
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where P12 = −P ≡ −1 is a polynomial of degree d = 0. The numerator of P−1 is a polynomial, which

must be identically zero. Therefore, all its coefficients must be equal to zero. From this condition one
can derive (using a computer algebra system) that either B = 0, x1 = 0, x2 = 0 or x1 + x2 + 2B = 0.
It was proved above that B �= 0 and x1 + x2 + 2B �= 0. The inequalities x1 �= 0 and x2 �= 0 follow
from (4.4). This means that Eq. (4.5) has no Liouville solutions of the form (2.13). Finally, we

conclude that if all poles of T (x) are distinct, then Eq. (4.5) has no Liouville solutions. The theorem
is proved. �

4.3. Special case A3 = A1 �= m
(
a2 −R2

)
. Now we assume that the moments of inertia of the

torus satisfy (4.7). Let A3 = A1 = A. Then Eq. (4.3) has the form

d2r

dx2
+ d1(x)

dr

dx
+ d2(x)r = 0, (4.12)

where

d1(x) =
B

x(x+B)
+

x

x2 − 1
+

3

2(x− x0)
, d2(x) =

x+B

2(x2 − 1)(x− x0)
, x0 = −A+mR2(B2 + 1)

2mR2B
.

After the change of variables (2.2) Eq. (4.12) becomes

d2y

dx2
= T1(x)y, (4.13)

where

T1(x) =
β1

x− 1
+

α1

(x− 1)2
+

β2
x+ 1

+
α2

(x+ 1)2
+

β3
x− x0

+
α3

(x− x0)2
+

β4
x+B

+
α4

(x+B)2
+

β5
x

+
α5

x2
, (4.14)

α1 = α2 = α3 = − 3

16
, α4 =

3

4
, α5 = −1

4
,

β1 =
4B2 + (5x0 − 3)B + x0 − 3

16(x0 − 1)(B + 1)
, β2 = −4B2 + (5x0 + 3)B − x0 − 3

16(x0 + 1)(B − 1)
,

β3 = − 2x0B
2 + (3− 2x20)B − x30

4x0(x0 +B)(x0 − 1)(x0 + 1)
, β4 =

7B3 + 4x0B
2 − 5B − 2x0

4B(x0 +B)(B + 1)(B − 1)
,

β5 = −3B + 2x0
4x0B

, x0 = −A+mR2(B2 + 1)

2mR2B
.

The Laurent expansion of T1(x) at x = ∞ in the considered case is

T1(x)
∣∣
x=∞ ≈ − 3

16x2
+O

(
1

x3

)
.

Applying the Kovacic algorithm to the differential equation (4.13), we arrive at the following result.

Theorem 8. Under the condition (4.7), Eq. (4.13) has no Liouville solutions for all physically ad-
missible values of parameters.

Proof. First, we search for a solution of Eq. (4.13) of the form (2.4), i.e., a solution described in Case 1
of Theorem 1. Note that the function T1(x) has five finite second-order poles and a second-order pole
at x = ∞. Therefore, all conditions of Theorem 4 are hold. Now we apply the Kovacic algorithm (see

Sec. 2.3.1).
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Step 1. Let us calculate the following values:

[
√

T1]1 = 0, α+
1 =

3

4
, α−

1 =
1

4
,

[
√

T1]−1 = 0, α+
−1 =

3

4
, α−

−1 =
1

4
,

[
√

T1]x0 = 0, α+
x0

=
3

4
, α−

x0
=

1

4
,

[
√

T1]−B = 0, α+
−B =

3

2
, α−

−B = −1

2
,

[
√

T1]0 = 0, α+
0 =

1

2
, α−

0 =
1

2
,

[
√

T1]∞ = 0, α+
∞ =

3

4
, α−

∞ =
1

4
.

Step 2. Since the number ρ of finite poles of the function T1(x) is equal to 5, we have 2
ρ+1 = 26 = 64

tuples of signs

s =
(
s(∞), s(1), s(−1), s(x0), s(−B), s(0)

)
.

For each tuple, we calculate the value d by the formula (2.19):

d = αs(∞)
∞ − α

s(1)
1 − α

s(−1)
−1 − αs(x0)

x0
− α

s(−B)
−B − α

s(0)
0 .

According to the algorithm, d must be a nonnegative integer. Further, we analyze all possible tuples of
signs s and corresponding values α. It is easy to verify that a unique tuple s such that d is nonnegative

is

α =
(
α+
∞, α−

1 , α−
−1, α−

x0
, α−

−B , α−
0

)
=

(
3

4
,
1

4
,
1

4
,
1

4
, −1

2
,
1

2

)
,

for which d = 0. The function θ = θ(x) defined by (2.20) for the chosen tuple of values α has the form

θ =
1

4(x− 1)
+

1

4(x+ 1)
+

1

4(x− x0)
− 1

2(x+B)
+

1

2x
.

Step 3. For the tuple of values α obtained on the previous step, we search for a polynomial of

degree d = 0 (P ≡ 1) satisfying the differential equation (2.21). We substitute P ≡ 1 in (2.21) and
get

B(Bx+ 1)

2x(x+B)(x− x0)(x2 − 1)
= 0.

Obviously, this condition does not hold since B > 0. Therefore, Eq. (4.13) has no Liouville solutions

of the form (2.4).

Now we search for a solution of the form (2.9) for the differential equation (4.13)., i.e. a solution de-
scribed in Case 2 of Theorem 1. The necessary conditions of its existence are fulfilled (see Theorem 4).

Now we apply the Kovacic algorithm (see Sec. 2.3.3).

Step 1. We define the following sets of integers:

E1 = {1, 2, 3}, E−1 = {1, 2, 3}, Ex0 = {1, 2, 3}, E∞ = {1, 2, 3},
E−B = {−2, 2, 6}, E0 = {2}.

Step 2. Consider all possible tuples of elements of E∞, E1, E−1, Ex0 , E−B , and E0 with at least

one odd element in each tuple:

s =
(
e∞, e1, e−1, ex0 , e−B , e0

)
.

For each tuple s, we calculate d by (2.28):

d =
1

2

(
e∞ − e1 − e−1 − ex0 − e−B − e0

)
.

According to the algorithm, d must be nonnegative integer. Consider all possible tuples of elements
taken from E∞, E1, E−1, Ex0 , E−B , and E0; the unique tuple with nonnegative d is

e =
(
e∞, e1, e−1, ex0 , e−B , e0

)
=
(
3, 1, 1, 1, −2, 2

)
,
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and d = 0.

Step 3. By the formula (2.29), we construct the function θ using the tuple e obtained on Step 2:

θ =
1

2

(
1

x− 1
+

1

x+ 1
+

1

x− x0
− 2

x+B
+

2

x

)
.

A polynomial of degree d = 0 (P ≡ 1) must satisfy Eq. (2.30). Substituting P ≡ 1 to (2.30), we obtain

− B(Bx2 + (2− 2B2)x−B)

x2(x+B)2(x2 − 1)(x − x0)
= 0.

Obviously, the last condition does not hold since B > 0. This means that Eq. (4.13) has no Liouville

solutions of the form (2.9).

Now we search for a solution of the form (2.13) for Eq. (4.13), i.e., a solution described in Case 3
of Theorem 1. First, verify whether the necessary conditions of the existence of such a solution hold
(see Theorem 4). The function T1(x) has no poles of order greater than 2. The order of T1(x) at ∞ is

greater than 1. The partial fraction expansion of T1(x) has the form (4.14). Direct calculations show
that all other conditions of Theorem 4 are satisfied:

√
1 + 4αi =

1

2
∈ Q, i = 1, 2, 3,

√
1 + 4α4 = 2 ∈ Q,

√
1 + 4α5 = 0 ∈ Q,

5∑
i=1

βi = 0,
√

1 + 4γ =
1

2
∈ Q, γ = − 3

16
.

Now we apply the Kovacic algorithm (see Sec. 2.3.5).

Step 1. Let us define the following sets of integers:

E1 = {3, 4, 5, 6, 7, 8, 9}, E−1 = {3, 4, 5, 6, 7, 8, 9},
Ex0 = {3, 4, 5, 6, 7, 8, 9}, E∞ = {3, 4, 5, 6, 7, 8, 9},
E−B = {−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18}, E0 = {6}.

Step 2. Now we consider all possible tuples

s =
(
e∞, e1, e−1, ex0 , e−B , e0

)
of elements from E∞, E1, E−1, Ex0 , E−B , and E0 and calculate d by (2.41):

d = e∞ − e1 − e−1 − ex0 − e−B − e0.

According to the algorithm d must be nonnegative integer. Analyzing all possible tuples of elements
taken from E∞, E1, E−1, Ex0 , E−B , and E0, we conclude that the unique tuple with nonnegative d is

e =
(
e∞, e1, e−1, ex0 , e−B , e0

)
=
(
9, 3, 3, 3, −6, 6

)
,

and d = 0.

Step 3. By (2.42) we construct the function θ using the tuple e obtained on the previous step.
Then we get

θ =
3

x− 1
+

3

x+ 1
+

3

x− x0
− 6

x+B
+

6

x
.

Using (2.43), we construct the polynomial

S = x(x− 1)(x + 1)(x− x0)(x+B).

Further, the recursive formulas (2.44) are required:

P12 = −P, Pi−1 = −SP ′
i + ((12− i)S′ − Sθ)Pi − (12− i)(i + 1)S2T1(x)Pi+1, P−1 = 0,
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where P12 = −P ≡ −1 is a polynomial of degree d = 0. The polynomial P−1 must be identically zero.

Therefore, all its coefficients must be equal to zero. From this condition, using a computer algebra
system, one can derive that either B = 0 or x0 = 0. It was proved above that both these conditions
have no physical sense. This means that Eq. (4.13) has no Liouville solutions of the form (2.13).
Thus, we have proved that under the condition (4.7) Eq. (4.13) has no Liouville solutions. Theorem

is proved. �

4.4. Special Case A3 = A1 = m(a2−R2). Assume that the moments of inertia of the torus satisfy
the relation (4.9). Then the differential equation (4.3) has the following form:

d2r

dx2
+ d1(x)

dr

dx
+ d2(x)r = 0, (4.15)

where

d1(x) =
B

x(x+B)
+

x

x2 − 1
+

3

2(x+B)
, d2(x) =

1

2(x2 − 1)
.

The change of variables (2.2) reduces Eq. (4.15) to the form

d2y

dx2
= T2(x)y, (4.16)

where

T2(x) =
β1

x− 1
+

α1

(x− 1)2
+

β2
x+ 1

+
α2

(x+ 1)2
+

β3
x+B

+
α3

(x+B)2
+

β4
x

+
α4

x2
, (4.17)

α1 = α2 = α3 = − 3

16
, α4 = −1

4
,

β1 =
B + 3

16(B + 1)
, β2 = − B − 3

16(B − 1)
, β3 = − 2B2 − 1

4B(B2 − 1)
, β4 =

1

4B
.

The Laurent expansion of T2(x) at x = ∞ is

T2(x)
∣∣
x=∞ ≈ − 3

16x2
+O

(
1

x3

)
.

Direct application of the Kovacic algorithm to the differential equation (4.16) gives the following result.

Theorem 9. Under the condition (4.9), Eq. (4.16) has no Liouville solutions for all physically ad-

missible values of parameters.

Proof. First, we search for a solution of Eq. (4.16) of the form (2.4), i.e., a solution described in Case 1

of Theorem 1. Note that the function T2(x) has four finite second-order poles and a second-order pole
at x = ∞. Therefore, the conditions of Theorem 4 are satisfied. Now we apply the Kovacic algorithm
(see Sec. 2.3.1).

Step 1. Let us calculate the following values:

[
√

T2]1 = 0, α+
1 =

3

4
, α−

1 =
1

4
,

[
√

T2]−1 = 0, α+
−1 =

3

4
, α−

−1 =
1

4
,

[
√

T2]−B = 0, α+
−B =

3

4
, α−

−B =
1

4
,

[
√

T2]0 = 0, α+
0 =

1

2
, α−

0 =
1

2
,

[
√

T2]∞ = 0, α+
∞ =

3

4
, α−

∞ =
1

4
.

Step 2. Since the number ρ of finite poles of the function T2(x) is equal to 4, we have 2
ρ+1 = 25 = 32

tuples of signs

s =
(
s(∞), s(1), s(−1), s(−B), s(0)

)
.
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For each tuple s, we calculate d by (2.19):

d = αs(∞)
∞ − α

s(1)
1 − α

s(−1)
−1 − α

s(−B)
−B − α

s(0)
0 .

According to the algorithm, d must be nonnegative integer. However, a direct calculation shows that
d = −1/2 is the largest possible value for d. Hence the differential equation (4.16) has no Liouville
solutions of the form (2.4).

Now we search for a solution of the form (2.9) for the differential equation (4.16), i.e., a solution
described in Case 2 of Theorem 1. The necessary conditions for existence of a such solution hold (see
Theorem 4). Now we apply the Kovacic algorithm (see Sec. 2.3.3).

Step 1. Let us define the following sets of integers:

E1 = {1, 2, 3}, E−1 = {1, 2, 3}, E−B = {1, 2, 3}, E∞ = {1, 2, 3}, E0 = {2}.
Step 2. Now we consider all tuples

s =
(
e∞, e1, e−1, e−B, e0

)
of elements from E∞, E1, E−1, E−B , and E0; in each tuple at least one element is odd. For each tuple
s, we calculate d by (2.28):

d =
1

2

(
e∞ − e1 − e−1 − e−B − e0

)
.

According to the algorithm, d must be nonnegative integer. A direct calculation shows that d = −1
is the largest possible value for d. Hence Eq. (4.16) has no Liouville solutions of the form (2.9).

Now we search for a solution of the form (2.13) for Eq. (4.16), i.e., a solution described in Case 3 of

Theorem 1. First, we verify whether the necessary conditions for its existence hold (see Theorem 4).
The function T2(x) has no poles of order greater than 2. The order of the pole of T2(x) at x = ∞
is greater than 1. The partial fraction expansion of T2(x) is (4.17). It can be easily proved that the

remaining conditions of Theorem 4 are also fulfilled:
√
1 + 4αi =

1

2
∈ Q (i = 1, 2, 3),

√
1 + 4α4 = 0 ∈ Q,

4∑
i=1

βi = 0,
√

1 + 4γ =
1

2
∈ Q, γ = − 3

16
.

Now we apply the Kovacic algorithm step (see Sec. 2.3.5).

Step 1. Let us define the following sets of integers:

E1 = {3, 4, 5, 6, 7, 8, 9}, E−1 = {3, 4, 5, 6, 7, 8, 9},
E−B = {3, 4, 5, 6, 7, 8, 9}, E∞ = {3, 4, 5, 6, 7, 8, 9},
E0 = {6}.

Step 2. Consider all possible tuples

s =
(
e∞, e1, e−1, e−B, e0

)
of elements from E∞, E1, E−1, E−B, and E0 and calculate d by (2.41):

d = e∞ − e1 − e−1 − e−B − e0.

According to the algorithm, d must be nonnegative integer. A direct calculation shows that d = −6
is the largest possible value for d. Hence Eq. (4.16) has no Liouville solutions of the form (2.13).

Thus, we can conclude that under the condition (4.9), Eq. (4.16) has no Liouville solutions. The

theorem is proved. �
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4.5. Special Case A1 = m(a2−R2) �= A3. Assume that the moments of inertia of the torus satisfy

the relation (4.10). Then the differential equation (4.3) has the form

d2r

dx2
+ d1(x)

dr

dx
+ d2(x)r = 0, (4.18)

where

d1(x) =
B

x(x+B)
+

x

x2 − 1
+

3(2x − x0 +B)

2(x+B)(x− x0)
, d2(x) =

4x2 − (x0 +B)x− 2

2x(x2 − 1)(x− x0)
,

x0 =
(A3 +mR2B2 −mR2)B

A3 +mR2 −mR2B2
.

The change of variables (2.2) reduces the differential equation (4.18) to the form

d2y

dx2
= T3(x)y, (4.19)

where

T3(x) =
β1

x− 1
+

α1

(x− 1)2
+

β2
x+ 1

+
α2

(x+ 1)2
+

β3
x+B

+
α3

(x+B)2
+

β4
x− x0

+
α4

(x− x0)2
+

β5
x

+
α5

x2
(4.20)

and

α1 = α2 = α3 = α4 = − 3

16
, α5 = −1

4
,

β1 = −4B2 − (x0 − 7)B − 3x0 + 5

16(B + 1)(x0 − 1)
, β2 =

4B2 − (x0 + 7)B + 3x0 + 5

16(B − 1)(x0 + 1)
,

β3 = −7B3 + 4x0B
2 − 5B − 2x0

8B(B2 − 1)(x0 +B)
, β4 =

4x0B
2 + (4x20 + 2)B + 3x30 − x0
8x0(x20 − 1)(x0 +B)

,

β5 =
x0 +B

4Bx0
.

As was noted above, in the case considered, all finite poles of T3(x) are distinct. The Laurent

expansion of T3(x) at x = ∞ has the form

T3(x)
∣∣
x=∞ ≈ 5B2 + 2x0B − 3x20 − 8

16x4
+O

(
1

x5

)
.

Direct application of the Kovacic algorithm to the differential equation (4.19) yields the following

result.

Theorem 10. Under the condition (4.10), Eq. (4.19) has no Liouville solutions for all physically
admissible values of parameters.

Proof. First, we search for a solution of Eq. (4.19) of the form (2.4), i.e., a solution described in Case 1
of Theorem 1. Note that the function T3(x) has five finite second-order poles and a fourth-order pole
at x = ∞ (i.e., at infinity the order is greater than 2). Therefore, the conditions of Theorem 4 are

satisfied. Now we apply the Kovacic algorithm (see Sec. 2.3.1).
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Step 1. Let us calculate the following values:

[
√

T3]1 = 0, α+
1 =

3

4
, α−

1 =
1

4
,

[
√

T3]−1 = 0, α+
−1 =

3

4
, α−

−1 =
1

4
,

[
√

T3]−B = 0, α+
−B =

3

4
, α−

−B =
1

4
,

[
√

T3]x0 = 0, α+
x0

=
3

4
, α−

x0
=

1

4
,

[
√

T3]0 = 0, α+
0 =

1

2
, α−

0 =
1

2
,

[
√

T3]∞ = 0, α+
∞ = 0, α−

∞ = 1.

Step 2. Since the number ρ of finite poles of the function T3(x) is 5, we have 2
ρ+1 = 26 = 64 tuples

of signs

s =
(
s(∞), s(1), s(−1), s(x0), s(−B), s(0)

)
.

For each tuple s, we calculate d by (2.19):

d = αs(∞)
∞ − α

s(1)
1 − α

s(−1)
−1 − αs(x0)

x0
− α

s(−B)
−B − α

s(0)
0 .

According to the algorithm, d must be nonnegative integer. A direct calculation shows that d = −1/2

is the largest possible value for d. Hence Eq. (4.19) has no Liouville solutions of the form (2.4).

Now we search for a solution of the form (2.9) for the differential equation (4.19), i.e., a solution
described in Case 2 of Theorem 1. The necessary conditions for the existence of a such solution are
fulfilled (see Theorem 4). Now we apply the Kovacic algorithm (see Sec. 2.3.3).

Step 1. Let us define the following sets of integers:

E1 = {1, 2, 3}, E−1 = {1, 2, 3}, E−B = {1, 2, 3}, Ex0 = {1, 2, 3},
E0 = {2}, E∞ = {0, 2, 4}

Step 2. Now we consider all possible tuples

s =
(
e∞, e1, e−1, ex0 , e−B , e0

)
of elements of E∞, E1, E−1, Ex0 , E−B , and E0; in each tuple at least one element is odd. For each
tuple s, we calculate d by (2.28):

d =
1

2

(
e∞ − e1 − e−1 − ex0 − e−B − e0

)
.

According to the algorithm, d must be a nonnegative integer. However, direct calculations show that

d = −1 is the largest possible value for d. Hence Eq. (4.19) has no Liouville solutions of the form (2.9).

Now we search for a solution of the form (2.13) for the differential equation (4.19), i.e., a solution
described in Case 3 of Theorem 1. First, we verify the fulfillment of the necessary conditions (see

Theorem 4). The function T3(x) has no poles of order greater than 2. The order of the pole of T3(x)
at x = ∞ is greater than 1. The partial fraction expansion of T3(x) is (4.20). We can easily show that
the remaining conditions of Theorem 4 hold:

√
1 + 4αi =

1

2
∈ Q (i = 1, . . . , 4),

√
1 + 4α5 = 0 ∈ Q,

5∑
i=1

βi = 0,
√

1 + 4γ = 1 ∈ Q, γ = 0.

Now we apply the Kovacic algorithm (see Sec. 2.3.5).
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Step 1. Let us define the following sets of integers:

E1 = {3, 4, 5, 6, 7, 8, 9}, E−1 = {3, 4, 5, 6, 7, 8, 9},
E−B = {3, 4, 5, 6, 7, 8, 9}, Ex0 = {3, 4, 5, 6, 7, 8, 9},
E0 = {6}, E∞ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Step 2. Now we consider all possible tuples

s =
(
e∞, e1, e−1, ex0 , e−B , e0

)
of elements from E∞, E1, E−1, Ex0 , E−B , and E0 and calculate d by (2.41):

d = e∞ − e1 − e−1 − ex0 − e−B − e0.

According to the algorithm, d must be nonnegative integer. However, a direct calculation shows that

d = −6 is the largest possible value for d. Hence Eq. (4.19) has no Liouville solutions of the form (2.13).

Thus, we conclude that under the condition (4.10), Eq. (4.19) has no Liouville solutions. The the
orem is proved. �

4.6. Special case A3(A1 +mR2) = A1(A1 +mR2 −ma2). Assume that the moments of inertia of
the torus satisfy the relation (4.11). Then Eq. (4.3) has the form

d2r

dx2
+ d1(x)

dr

dx
+ d2(x)r = 0, (4.21)

where

d1(x) =
B

x(x+B)
+

x

x2 − 1
+

3

x− x0
, d2(x) =

(x+B)(2x2 − (x0 +B)x− 1)

x(x2 − 1)(x− x0)2
,

x0 = −A1 +mR2

mR2B
.

The change of variables (2.2) reduces the differential equation (4.21) to the form

d2y

dx2
= T4(x)y, (4.22)

where

T4(x) =
β1

x− 1
+

α1

(x− 1)2
+

β2
x+ 1

+
α2

(x+ 1)2
+

β3
x− x0

+
α3

(x− x0)2

+
β4

x+B
+

α4

(x+B)2
+

β5
x

+
α5

x2
, (4.23)

α1 = α2 = − 3

16
, α3 =

4x0B
2 + 4B − x30 + x0
4x0(x20 − 1)

, α4 =
3

4
, α5 = −1

4
.

β1 =
8B3 + 8(x0 + 1)B2 + (5x20 − 6x0 + 9)B + x20 − 6x0 + 5

16(x0 − 1)2(B + 1)
,

β2 = −8B3 + 8(x0 − 1)B2 + (5x20 + 6x0 + 9)B − x20 − 6x0 − 5

16(x0 + 1)2(B − 1)
,

β3 = −4x30B
3 + (6x40 + 4x20 − 2)B2 − (2x50 − 11x30 + 5x0)B − x60 + x40

2x20(x
2
0 − 1)2(x0 +B)

,

β4 =
5B3 + 2x0B

2 − 4B − x0
2B(B2 − 1)(x0 +B)

, β5 = −2B2 + 3x0B + x20
2Bx20

.
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The Laurent expansion of T4(x) at x = ∞ has the form

T4(x)
∣∣
x=∞ ≈ 3B2 + 2x0B − x20 − 2

4x4
+O

(
1

x5

)
.

The special case considered has the following peculiarity: one of the coefficients αi of the partial

fraction expansion of the function T4(x) depends on parameters. The coefficient α3 has no definite
numerical value but it is determined by the expression

α3 =
4x0B

2 + 4B − x30 + x0
4x0(x

2
0 − 1)

.

As a result, the constant d can be arbitrarily large. (Recall that d is the degree of a polynomial
P calculated in each case.) We restrict ourselves to considering only the case where d = 0. Direct
application of the Kovacic algorithm to the differential equation (4.22) yields the following result.

Theorem 11. Assume that d = 0 and the condition (4.11) is fulfilled. Then the differential equation
(4.22) has no Liouville solutions for all physically admissible values of parameters.

Proof. First, we search for a solution of Eq. (4.22) of the form (2.4), i.e., a solution described in Case 1
of Theorem 1. Note that the function T4(x) has five finite second-order poles and a fourth-order pole

at x = ∞. Therefore, the conditions of Theorem 4 are satisfied. Now we apply the Kovacic algorithm
(see Sec. 2.3.1).

Step 1. Let b0 = 1 + 4α3. We calculate the following values:

[
√

T4]1 = 0, α+
1 =

3

4
, α−

1 =
1

4
,

[
√

T4]−1 = 0, α+
−1 =

3

4
, α−

−1 =
1

4
,

[
√

T4]−B = 0, α+
−B =

3

2
, α−

−B = −1

2
,

[
√

T4]0 = 0, α+
0 =

1

2
, α−

0 =
1

2
,

[
√

T4]x0 = 0, α+
x0

=
1

2
+

1

2

√
b0, α−

x0
=

1

2
− 1

2

√
b0,

[
√

T4]∞ = 0, α+
∞ = 0, α−

∞ = 1.

Step 2. Since the number ρ of finite poles of the function T4(x) is equal to 5, we have 2
ρ+1 = 26 = 64

tuples of signs

s =
(
s(∞), s(1), s(−1), s(−B), s(0), s(x0)

)
.

Choose signs in the tuples s in a such way that the value

d = αs(∞)
∞ − α

s(1)
1 − α

s(−1)
−1 − α

s(−B)
−B − α

s(0)
0 − αs(x0)

x0
,

463



calculated by (2.19), is equal to zero for some b0. All such tuples of signs and corresponding values b0
are listed below:

s1 = (−,+,+,+,+,−), b0 = 36; s10 = (+,+,+,+,+,−), b0 = 64;

s2 = (−,+,+,−,+,−), b0 = 4; s11 = (+,+,+,−,+,−), b0 = 16;

s3 = (−,+,−,+,+,−), b0 = 25; s12 = (+,+,−,+,+,−), b0 = 49;

s4 = (−,−,+,+,+,−), b0 = 25; s13 = (+,−,+,+,+,−), b0 = 49;

s5 = (−,−,−,+,+,−), b0 = 16; s14 = (+,−,−,+,+,−), b0 = 36;

s6 = (−,−,+,−,+,−), b0 = 1; s15 = (+,−,+,−,+,−), b0 = 9;

s7 = (−,+,−,−,+,−), b0 = 1; s16 = (+,+,−,−,+,−), b0 = 9;

s8 = (−,−,−,−,+,−), b0 = 0; s17 = (+,−,−,−,+,−), b0 = 4.

s9 = (−,−,−,−,+,+), b0 = 0;

Let us consider in more detail the case where the tuple s1 is chosen; the other cases can be considered

similarly. Let us solve the equation

b0 =
4B(Bx0 + 1)

x0(x
2
0 − 1)

= 36

with respect to B. Since B > 1 and x0 < −1, we have

B =
−1−

√
36x40 − 36x20 + 1

2x0
. (4.24)

Further, using the formula (2.20), we construct the function θ(x) using the values α±
c corresponding

to the signs chosen for the tuple s1. Then the function θ has the form

θ =
3

4(x− 1)
+

3

4(x+ 1)
+

3

2(x+B)
+

1

2x
+

1−√
b0

2(x− x0)
.

Step 3. A polynomial of degree d = 0 (P ≡ 1) must satisfy Eq. (2.21) identically. Eliminating B
from Eq. (2.21) using the formula (4.24) we obtain

(18x50 − 9x30 − 7x30x∗)x+ 22x20(x
2
0 − 1) + x∗(1− 4x20) + 1

x(x2 − 1)(x− x0)(2x0x− x∗ − 1)x20
= 0, (4.25)

where

x∗ =
√

36x40 − 36x20 + 1.

Since (4.25) is an identity, for some values of x0 (x0 < −1) the following conditions hold:

18x50 − 9x30 − 7x30

√
36x40 − 36x20 + 1 = 0, 22x20(x

2
0 − 1) + (1− 4x20)

√
36x40 − 36x20 + 1 + 1 = 0.

It is easy to verify that this system of equations has no solutions such that x0 < −1. Consequently,

for the tuple of signs s1, Eq. (4.22) has no Liouville solutions of the form (2.4). Similarly, we can
consider all remaining tuples of signs and ascertain that Eq. (4.22) does not possess any Liouville
solution of the form (2.4).

Now we search for a solution of the form (2.9) for the differential equation (4.22), i.e., a solution
described in Case 2 of Theorem 1. The necessary conditions for the existence of such a solution are

fulfilled (see Theorem 4). Now we apply the Kovacic algorithm (see Sec. 2.3.3).
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Step 1. Let us define the following sets of integers:

E1 = {1, 2, 3}, E−1 = {1, 2, 3}, E−B = {−2, 2, 6}, E0 = {2},
Ex0 =

{
(2 + k

√
b0) ∩ Z, k = 0,±2

}
, E∞ = {0, 2, 4}.

Step 2. Consider all possible tuples

s =
(
e∞, e1, e−1, e−B , e0, ex0

)
of elements from E∞, E1, E−1, E−B , E0, and Ex0 ; in each tuple at least one element is odd. For each
set s, we calculate d by (2.28):

d =
1

2

(
e∞ − e1 − e−1 − e−B − e0 − ex0

)
.

As before, we assume that d = 0. Execution of this step of the algorithm involves a large number of
possibilities. Thus, we present here a detailed investigation for only one case. All other cases can be

studied in the same way. Choose the tuple

s1 =
(
e∞, e1, e−1, e−B , e0, ex0

)
=
(
0, 1, 1, 2, 2, −6

)
.

In this case, we have b0 = 16. Therefore,

B =
−1−

√
16x40 − 16x20 + 1

2x0
.

Step 3. By the formula (2.29), we form the function θ using elements of the tuple s1. Hence θ has
the form

θ =
1

2(x− 1)
+

1

2(x+ 1)
+

1

x+B
+

1

x
− 3

x− x0
.

A polynomial of degree d = 0 (P ≡ 1) must satisfy equation (2.30). We substitute P ≡ 1 to (2.30)
and obtain

k5x
5 + k4x

4 + k3x
3 + k2x

2 + k1x+ k0
x20x

2(x2 − 1)(x− x0)3(2x0x− x∗ − 1)2
= 0, (4.26)

where

k0 = 96x80 − (4x∗ + 148)x60 + (12x∗ + 60)x40 − (x3∗ + 3x∗ + 4)x20,

k1 = 256x90 + 256x70 − (60x∗ + 780)x50 − (2x3∗ − 102x∗ − 308)x30 − (3x3∗ + 17x∗ + 20)x0,

k2 = 480x80 + (24x∗ − 1008)x60 − (180x∗ − 828)x40 − (9x3∗ − 45x∗ + 348)x20 + 12x3∗ + 12x∗ + 24,

k3 = −512x70 + (120x∗ + 512)x50 − (140x∗ − 100)x30 − (5x3∗ + 15x∗ + 20)x0,

k4 = −152x60 + (100x∗ + 132)x40, k5 = −72x50 + (12x∗ + 12)x30, x∗ =
√

16x40 − 16x20 + 1.

For (4.26) to be an identity, the following conditions are necessary: ki = 0, i = 0, 1, . . . , 5. How-

ever, we can easily verify that this system of equations with respect to the unknown constant x0 is
inconsistent. Thus, we have proved that for the tuple s1 of elements from E∞, E1, E−1, E−B , E0, and
Ex0 , the differential equation (4.22) has no Liouville solution of the form (2.9). Note that a similar

investigation was conducted for all other tuples s with d = 0. As a result, we prove the nonexistence
of solutions of the form (2.9) for the differential equation (4.22) for any tuple s.

Finally, we search for a solution of the form (2.13) for the differential equation (4.22), i.e., a solution
described in Case 3 of Theorem 1. The necessary conditions (see Theorem 4) are fulfilled. The function

T4(x) has no poles of order greater than 2. The order of pole of T4(x) at x = ∞ is greater than 1. The
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partial fraction expansion of T4(x) is (4.23). It can be easily shown that the remaining conditions of

Theorem 4 hold:
√
1 + 4αi =

1

2
∈ Q (i = 1, 2),

√
1 + 4α4 = 2 ∈ Q,

√
1 + 4α5 = 0 ∈ Q,

5∑
i=1

βi = 0,
√

1 + 4γ = 1 ∈ Q, γ = 0.

Let us assume that the condition

√
1 + 4α3 =

√
4B(Bx0 + 1)

x0(x20 − 1)
∈ Q

is valid. Otherwise Eq. (4.22) obviously has no Liouville solutions of the form (2.13). Now we apply
the Kovacic algorithm (see Sec. 2.3.5).

Step 1. Let us define the sets

E1 = {3, 4, 5, 6, 7, 8, 9}, E−1 = {3, 4, 5, 6, 7, 8, 9},
E−B =

{− 6, −4, −2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18
}
, E0 = {6},

Ex0 =
{
(6 + k

√
b0) ∩ Z, k = 0, ±1, . . . , ±6)

}
,

E∞ =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

}
.

Step 2. Consider all possible tuples

s =
(
e∞, e1, e−1, e−B , e0, ex0

)
of elements from E∞, E1, E−1, E−B, E0, and Ex0 and calculate d by (2.41):

d = e∞ − e1 − e−1 − e−B − e0 − ex0 .

Step 3. We assume d = 0 as before. Among all tuples s, we choose tuples with d = 0. Considering

numbers of elements of sets E∞, E1, E−1, E−B, E0, and Ex0 obtained on the first step, we can estimate
that even if we fix one element of Ex0 , we must investigate 7 · 7 · 13 · 13 = 8281 tuples s, for each of
which d = 0. Therefore, we shall illustrate the investigation on a typical example instead of listing all

possible cases. Choose a tuple s1 with d = 0:

s1 =
(
e∞, e1, e−1, e−B , e0, ex0

)
=
(
12, 3, 3, 0, 6, 0

)
.

By the formula (2.42), we construct the function θ using the tuple s1. The function θ has the form

θ =
3

x− 1
+

3

x+ 1
+

6

x
.

According to (2.43), we construct the polynomial

S = x(x− 1)(x + 1)(x− x0)(x+B),

where B is expressed in terms of x0:

B =
−1−

√
36x40 − 36x20 + 1

2x0
.

Further, the recursive formulas (2.44) are required:

P12 = −P, Pi−1 = −SP ′
i + ((12− i)S′ − Sθ)Pi − (12− i)(i + 1)S2T4(x)Pi+1, P−1 = 0,

where P12 = −P ≡ −1 is a polynomial of degree d = 0. The polynomial P−1 must be identically

zero. Therefore, all its coefficients must be equal to zero. These coefficients include one unknown
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Fig. 5. Dynamically symmetric paraboloid on the horizontal plane.

variable x0. The corresponding system of equations is inconsistent. Similarly, all other tuples s may

be considered. This means that Eq. (4.22) has no Liouville solutions of the form (2.13) in the case
d = 0. The theorem is proved. �

In summary, the above investigation shows the absence of Liouville solutions in the problem of
rolling of a dynamically symmetric torus on a perfectly rough plane. The conclusion is valid in the

general case as well as in the special cases where the parameters satisfy additional conditions.

5. Motion of a Rotationally Symmetric Paraboloid

5.1. Formulation of the problem. Equations of motion. In this section, we consider the
problem of the motion of a rotationally symmetric paraboloid with focal length 2λ on a perfectly
rough horizontal plane (Fig. 5). We assume that the center of mass G of the paraboloid coincides with
the focus of the generating parabola. Then the distance between the center of mass and the horizontal

supporting plane is

f(θ) =
λ

cos θ
. (5.1)

Using (3.11), we calculate the coordinates ξ and ζ of the point of contact of the paraboloid with
the horizontal plane:

ξ = −2λ sin θ

cos θ
, ζ =

λ sin2 θ

cos2 θ
− λ, ζ =

ξ2

4λ
− λ. (5.2)

The system (3.29) has the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp

dθ
= −
(
cos θ

sin θ
+

2A3mλ2 sin3 θ(1− 2 cos2 θ)

Δ cos θ

)
p

+
A3((A3 − 4mλ2) cos4 θ + 8mλ2 cos2 θ − 2mλ2)

Δ
r,

dr

dθ
= −4A1mλ2 sin4 θ

Δ
p− 2mλ2 sin θ cos θ(2A1 +A3 − 2A3 cos

2 θ)

Δ
r,

Δ = (A1A3 + 4mλ2(A3 −A1)) cos
4 θ − 4mλ2(A3 −A1) cos

2 θ +A3mλ2,

(5.3)
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and Eq. (3.30) can be written as follows:

d2r

dθ2
+ b1

dr

dθ
+ b2r = 0, (5.4)

where

b1 =
cos2 θ − 4

sin θ cos θ
+

6(A3 − 2(A3 −A1) cos
2 θ)mλ2 sin θ

Δcos θ
, b2 =

2mλ2(A3 − 2A1)(1 + cos2 θ)

Δ
.

Note that under the condition

A3 = 2A1, (5.5)

Eq. (5.4) has the partial solution r = r0 = const. This fact was firstly obtained by Kh. M. Mushtari

(see [35]). In Eq. (5.4), we perform the change of the independent variable by the formula cos2 θ = x
and denote B = mλ2. Hence we obtain

d2r

dx2
+ d1(x)

dr

dx
+ d2(x)r = 0, (5.6)

where

d1(x) =
5− 3x

2x(1− x)
− 3(A3 − 2(A3 −A1)x)B

xΔ
, d2(x) =

(A3 − 2A1)B(x+ 1)

2x(1− x)Δ
,

Δ = (A1A3 + 4(A3 −A1)B)x2 − 4(A3 −A1)Bx+A3B.

In the general case, the polynomial Δ in the expressions d1 and d2 has two roots x1 and x2. In the

explicit form they can be written as follows:

x1 =
2B(A3 −A1)−

√
4A1B2(A1 −A3)−A1A

2
3B

A1A3 + 4B(A3 −A1)
,

x2 =
2B(A3 −A1) +

√
4A1B2(A1 −A3)−A1A

2
3B

A1A3 + 4B(A3 −A1)
.

(5.7)

After the change of variables (2.2) in (5.6) we obtain

d2y

dx2
= Π(x)y, (5.8)

where

Π(x) =
β1

x− 1
+

α1

(x− 1)2
+

β0
x

+
α0

x2
+

β2
x− x1

+
α2

(x− x1)2
+

β3
x− x2

+
α3

(x− x2)2
,

α0 =
5

16
, α1 =

3

4
, α2 = α3 = − 3

16
,

β0 =
x1 + x2 + 2x1x2

8x1x2
, β2 = −4x1 + x2 − 7x1x2 − 2x21 + 4x21x2

8x1(x1 − x2)(x1 − 1)
,

β1 =
4x1 + 4x2 − 3x1x2 − 5

4(x1 − 1)(x2 − 1)
, β3 =

x1 + 4x2 − 7x1x2 − 2x22 + 4x1x
2
2

8x2(x1 − x2)(x2 − 1)
.

We apply the Kovacic algorithm to search for Liouville solutions of the differential equation (5.8).

5.2. Existence of Liouville solutions. In the general case, the function Π(x) has four finite

second-order poles at x = 0, x = 1, x = x1, and x = x2. We assume that all these poles are distinct.
The Laurent expansion of Π(x) at x = ∞ has the form

Π(x)
∣∣
x=∞ ≈ − 3

16x2
+O

(
1

x3

)
.

All initial preparations for application of the Kovacic algorithm have been made.

468



First, we search a solution of the form (2.4) for the differential equation (5.8). Direct application

of the Kovacic algorithm to Eq. (5.8) yields the following result.

Theorem 12. Assume that all poles of the function Π(x) are distinct. Then Eq. (5.8) has a solution

of the form (2.4) if and only if the Mushtari condition (5.5) holds.

Proof. We apply the Kovacic algorithm for the differential equation (5.8) as described in Sec. 2.3.1.

Step 1. Let us calculate the following values:

[
√
Π]0 = 0, α+

0 =
5

4
, α−

0 = −1

4
,

[
√
Π]1 = 0, α+

1 =
3

2
, α−

1 = −1

2
,

[
√
Π]x1 = 0, α+

x1
=

3

4
, α−

x1
=

1

4
,

[
√
Π]x2 = 0, α+

x2
=

3

4
, α−

x2
=

1

4
,

[
√
Π]∞ = 0, α+

∞ =
3

4
, α−

∞ =
1

4
.

Step 2. Since the number ρ of finite poles of the function Π(x) is equal to 4, we have 2ρ+1 = 25 = 32

tuples of signs

s =
(
s(∞), s(0), s(1), s(x1), s(x2)

)
.

For each of these tuples, we calculate d by the formula (2.19):

d = αs(∞)
∞ − α

s(0)
0 − α

s(1)
1 − αs(x1)

x1
− αs(x2)

x2
.

According to the algorithm, d must be nonnegative integer. Analyzing all possible tuples of signs s

and corresponding tuples of α, we conclude that for the tuples

p1 =
(
α+
∞, α−

0 , α−
1 , α+

x1
, α+

x2

)
=

(
3

4
, −1

4
, −1

2
,
3

4
,
3

4

)
,

p2 =
(
α−
∞, α−

0 , α−
1 , α+

x1
, α−

x2

)
=

(
1

4
, −1

4
, −1

2
,
3

4
,
1

4

)
,

p3 =
(
α−
∞, α−

0 , α−
1 , α−

x1
, α+

x2

)
=

(
1

4
, −1

4
, −1

2
,
1

4
,
3

4

)

we have d = 0, and for the tuple

p4 =
(
α+
∞, α−

0 , α−
1 , α−

x1
, α−

x2

)
=

(
3

4
, −1

4
, −1

2
,
1

4
,
1

4

)

we have d = 1.

Consider the tuple p1. The corresponding function θ = θ(x) defined by (2.20) for the chosen tuple
of values α has the form

θ = − 1

4x
− 1

2(x− 1)
+

3

4(x− x1)
+

3

4(x− x2)
.

Step 3. For the tuple p1 obtained on the previous step, we search for a polynomial of degree d = 0
that satisfy the differential equation (2.21). Substituting P ≡ 1 in (2.21), we obtain

(2x1x2 − x1 − x2)(1 + x)

4x(x− 1)(x − x1)(x− x2)
= 0.

This equality holds if the parameters x1 and x2 satisfy the condition

2x1x2 − x1 − x2 = 0. (5.9)
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If we express the condition (5.9) through the initial parameters, we obtain

2mλ2(2A1 −A3)

A1A3 + 4mλ2(A3 −A1)
= 0.

Thus, the condition (5.9) is equivalent to the Mushtari condition (5.5).

One can verify that the conditions for x1 and x2 for the remaining tuples p2, p3, and p4 are not
physically admissible. Thus we proved that Eq. (5.8) has a solution of the form (2.4) only when the
Mushtari condition is valid. Theorem is proved. �

Now we search for a solution of the form (2.9) for the differential equation (5.8), i.e., the solution
described in Case 2 of Theorem 1. The necessary conditions of existence of a such solution are fulfilled
(see Theorem 4). Direct application of the Kovacic algorithm to the differential equation (5.8) yields

the following result.

Theorem 13. If all poles of the function Π(x) are distinct, then all solutions of the differential equa-
tion (5.8) are Liouville solutions and have the form (2.9).

Proof. We apply the Kovacic algorithm as described in Sec. 2.3.3.

Step 1. Let us define the following sets of integers:

E1 = {−2, 2, 6}, E0 = {−1, 2, 5}, Ex1 = {1, 2, 3}, Ex2 = {1, 2, 3}, E∞ = {1, 2, 3}.

Step 2. Now we consider all possible tuples

s =
(
e∞, e1, e0, ex1 , ex2

)
of elements from E∞, E1, E0, Ex1 , and Ex2 , where each tuple s must contain at least one odd number.

We calculate d for each tuple s by (2.28):

d =
1

2

(
e∞ − e1 − e0 − ex1 − ex2

)
.

According to the algorithm, d must be nonnegative integer. Among the tuples of elements from E∞,
E1, E0, Ex1 , and Ex2 , where d is a nonnegative integer, we choose the tuple

e =
(
e∞, e1, e0, ex1 , ex2

)
=
(
3, −2, −1, 1, 1

)
,

for which d = 2.

Step 3. By the formula (2.29), we construct the function θ using the tuple e obtained in the
previous step:

θ = − 1

x− 1
− 1

2x
+

1

2(x− x1)
+

1

2(x− x2)
.

A polynomial of degree d = 2 P = x2 + k1x+ k0 must satisfy Eq. (2.30) identically. Substituting the

function θ and the polynomial P in Eq. (2.30) we obtain

k0 =
x1x2

1− 2x1 − 2x2 + 4x1x2
, k1 = − 2x1x2

1− 2x1 − 2x2 + 4x1x2
,

i.e., the polynomial P exists for all values of x1 and x2 and has the form

P = x2 − 2x1x2
1− 2x1 − 2x2 + 4x1x2

x+
x1x2

1− 2x1 − 2x2 + 4x1x2
.

470



Further, according to the algorithm, we introduce the function

ϕ = θ +
P ′

P
=

1

2(x− x1)
+

1

2(x− x2)
− 1

x− 1

− 1

2x
+

2(1 − 2x1 − 2x2 + 4x1x2)x− 2x1x2
(1− 2x1 − 2x2 + 4x1x2)x2 − 2x1x2x+ x1x2

and find the function ω, which is a solution of the quadratic equation (2.31)

ω = f(x)± ig(x),

where

f(x) =
ϕ

2
=

1

4(x− x1)
+

1

4(x− x2)
− 1

2(x− 1)
− 1

4x

+
(1− 2x1 − 2x2 + 4x1x2)x− x1x2

(1− 2x1 − 2x2 + 4x1x2)x2 − 2x1x2x+ x1x2
,

g(x) =
D(1− x)

(1− 2x1 − 2x2 + 4x1x2)x2 − 2x1x2x+ x1x2

√
x

(x− x1)(x− x2)
,

D =
√

x1x2(2x1 − 1)(2x2 − 1)(2x1x2 − x1 − x2).

Thus, according to the algorithm, the solution of differential equation (5.8) has the form

y(x) = exp

(∫
f(x)dx

)(
c1 cos

(∫
g(x)dx

)
+ c2 sin

(∫
g(x)dx

))
,

where c1 and c2 are arbitrary constants. The theorem is proved. �
Now we obtain the solution of the initial differential equation (5.4). We perform the change of

variable

r(x) = y(x) exp

(
−1

2

∫
d1(x)dx

)
,

where d1(x) is a coefficient of dr/dx in Eq. (5.6). In the obtained expression for r(x), we turn to the
initial parameters m, λ, A1, and A3 using (5.7). Then we set x = cos2 θ. Finally, the solution of
Eq. (5.4) has the form

r(θ) =

√
K1(θ)

K2(θ)
(c1 cos Φ(θ) + c2 sinΦ(θ)), (5.10)

where

Φ(θ) = 2mλ2D

θ∫
0

sin3 ϕ cos2 ϕdϕ

K1(ϕ)
√

K2(ϕ)
, D =

√
2A1A3(A3 + 4mλ2)(2A1 −A3),

K1(θ) = (A1A3 + 4A1mλ2) cos4 θ − 2A3mλ2 cos2 θ +A3mλ2,

K2(θ) = (A1A3 + 4mλ2(A3 −A1)) cos
4 θ − 4mλ2(A3 −A1) cos

2 θ +A3mλ2.

Note that the formula (5.10) includes the particular case studied by Kh. M. Mushtari (see [35]).

Indeed, if we set A3 = 2A1 in (5.10), we obtain r = r0 = const, i.e., the Mushtari solution. Combining
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(3.24) or (3.29) with (5.10), one can obtain the explicit form for p(θ):

p(θ) = − D cos2 θ

2A1 sin θ
√
K1(θ)

(
c2 cos Φ(θ)− c1 sinΦ(θ)

)

− A3

(
(A3 + 4mλ2) cos4 θ − 4mλ2 cos2 θ + 2mλ2

)
cos θ√

K1(θ)K2(θ) sin θ

(
c1 cos Φ(θ) + c2 sinΦ(θ)

)
. (5.11)

Thus, the general solution of the system (3.24) in the problem of motion of a rotationally symmetric

paraboloid on a perfectly rough horizontal plane is determined by the formulas (5.10) and (5.11). Note
that these formulas have been obtained firstly by A.S. Kuleshov (see [23]) without application of the
Kovacic algorithm. It can be proved that the function Φ(θ) is expressed in terms of elliptic integrals

that cannot be simplified if the Mushtari condition (5.5) for the moments of inertia does not hold.
Therefore, investigation of motion of the rotationally symmetric paraboloid on the fixed perfectly rough
horizontal plane is similar for all values of parameters except for the case (5.5). In the next section,

a qualitative analysis of the motion of the paraboloid is considered for the case of a homogeneous
segment of the paraboloid whose center of mass coincides with the focus of the generating parabola.

5.3. Motion of a homogeneous segment of the paraboloid.

5.3.1. Evolution of the angle θ. Consider a homogeneous, rotationally symmetric segment of the
paraboloid rolling on a perfectly rough horizontal plane (the paraboloidal segment). Let the center of

mass of the segment coincide with the focus of the generating parabola with the parameter 2λ. The
plane normal to the symmetry axis of the paraboloid bounds its height, and the height is uniquely
determined by the position of the center of mass. One can show that the equation of this plane in

the coordinate system Gξηζ with origin located at the center of mass of the segment has the form
ζ = λ/2. The moments of inertia of the segment with respect to the central principal axes are

A1 =
9

8
mλ2, A3 = 2mλ2. (5.12)

We assume that during the motion the segment contacts with the horizontal plane only by the parabolic

part of its surface. Then the range of the angle θ is

−θ∗ ≤ θ ≤ θ∗, θ∗ = arccos

√
2

5
. (5.13)

Using the relations (5.12) for the moments of inertia A1 and A3, we obtain that the functions r(θ)

and p(θ) defined by (5.10) and (5.11) have the form

r(θ) =

√
27 cos4 θ − 16 cos2 θ + 8

23 cos4 θ − 14 cos2 θ + 8

(
c1 cos Φ(θ) + c2 sinΦ(θ)

)
,

p(θ) = − 4 cos θ

sin θ
√
27 cos4 θ − 16 cos2 θ + 8

[√
3 cos θ

3

(
c2 cos Φ(θ)− c1 sinΦ(θ)

)

+
4(3 cos4 θ − 2 cos2 θ + 1)√
23 cos4 θ − 14 cos2 θ + 8

(
c1 cos Φ(θ) + c2 sinΦ(θ)

)]
,

Φ(θ) =

θ∫
0

24
√
3 sin3 ϕ cos2 ϕdϕ

(27 cos4 ϕ− 16 cos2 ϕ+ 8)
√

23 cos4 ϕ− 14 cos2 ϕ+ 8
.

(5.14)

The energy integral (3.23) can be rewritten as follows:

A1p
2 + (A1 +m(ξ2 + ζ2))q2 +A3r

2 +m(pζ − rξ)2 + 2mgf(θ) = c20 = const, (5.15)
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Combining (5.12) with (5.15), we have

mλ2(8 + 9 cos4 θ)

8 cos4 θ
q2 = c20 −

2mgλ

cos θ
−mλ2

[
9

8
p2 + 2r2 +

(
2 sin θ

cos θ
r +

(1− 2 cos2 θ)

cos2 θ
p

)2
]
.

Multiplying both sides by sin2 θ and combining it with (3.22), we obtain

mλ2(9 + 8u4)

8u3

(
du

dt

)2

= F (u) =
(u2 − 1)(c20 − 2mgλu)

u
−K0, (5.16)

where u = 1/ cos θ, and the function K0 is determined by

K0 =
mλ2

u

[
9

8
u2p21 + 2(u2 − 1)r2 + (2(u2 − 1)r + u(u2 − 2)p1)

2

]
, p1 = p sin θ.

From the definition of u and (5.13) it follows that

1 ≤ u ≤
√

5

2
. (5.17)

Note that the left-hand side of Eq. (5.16) is nonnegative. Hence the inequality F (u) ≥ 0 determines

the set U of possible values of u. From (5.17) it follows that if u >
√
5/2, then motion is impossible;

therefore, in real motion

F (u) ≥ 0, u ∈ U, F

(√
5

2

)
≤ 0, (5.18)

where U is a subset of the interval (5.17). If c1 = c2 = 0, then p = r = 0 for all time. The symmetry
axis Gζ of the segment moves in a fixed vertical plane. The time dependence of the angle θ between

the Gζ-axis and the vertical is determined by (5.16), where we set K0 = 0:

mλ2

8

(
9 + 8u4

)(du
dt

)2

= u2
(
u2 − 1

)(
c20 − 2mgλu

)
.

From (5.17) and (5.18) it follows that in the considered particular case the paraboloidal segment

moves with a limited energy range:

2mgλ ≤ c20 ≤
√
10mgλ.

Therefore, if c20 < 2mgλ, motion is impossible. The case c20 = 2mgλ corresponds to the equilibrium
of the segment. Moreover, u = 1 and the center of mass is situated in the lowest position. If

2mgλ < c20 ≤
√
10mgλ,

then the symmetry axis of the segment oscillates in a fixed vertical plane with amplitude limited by θ∗
and the track of the point of contact on the supporting plane is a segment of a straight line.

Further, let us examine the motion of the homogeneous paraboloidal segment in general case. First,
we prove the following property of the function F (u).

Proposition 1. The function F (u) is concave upward on the interval (5.17).

Proof. Let us transform the system (5.3) using formulas (5.12) for the moments of inertia A1 and A3.
Then we perform the change of the independent variable by the formula 1/ cos θ = u. As a result, we
obtain ⎧⎪⎪⎨

⎪⎪⎩

dp1
du

= − 16

u2(8u4 − 14u2 + 23)

((
u5 − 3u3 + 2u

)
p1 +

(
u4 − 4u2 + 1

)
r
)
,

dr

du
= − 2

u(8u4 − 14u2 + 23)

(
9u
(
u2 − 1

)
p1 +

(
17u2 − 16

)
r
)
.

(5.19)
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(a) (b)

Fig. 6. The graphs of the functions (a)
q11
mλ2

; (b)
q11q22 − q212

m2λ4
.

The energy integral (5.15) can be transformed to the form

mλ2u2(9 + 8(u2 − 2)2)

8(u2 − 1)
p21 +

1

8
mλ2(9 + 8u4)q2 + 2mλ2(2u2 − 1)r2

+ 4mλ2u(u2 − 2)p1r + 2mgλu = c20. (5.20)

We differentiate the function F (u) twice and substitute the right-hand sides of (5.19) for the deriva-
tives after every differentiation. Then we exclude c20 from the obtained expression using (5.20). As a

result, we obtain the following expression for the second derivative of the function F (u):

F ′′(u) = q0 + q11r
2 + 2q12p1r + q22p

2
1,

where

q0 = −4mgλ(u2 + 1)

u2
− mλ2(9 + 8u4)

4u3
q2, q11 =

64mλ2(u2 + 1)(u4 − 4u2 + 1)

u3(8u4 − 14u2 + 23)
,

q12 =
4mλ2(u2 + 1)(8u4 − 41u2 + 32)

u2(8u4 − 14u2 + 23)
, q22 =

mλ2(64u8 − 528u6 + 624u4 + 46u2 − 495)

4u(u2 − 1)(8u4 − 14u2 + 23)
.

We can show that

q11 < 0, q11q22 − q212 > 0

on the interval (5.17). The graphs of the functions
q11
mλ2

and
q11q22 − q212

m2λ4
shown in Fig. 6 confirm this

conclusion.

Thus, according to the Sylvester criterion (see [12]), the quadratic form

Q(r, p1) = q11r
2 + 2q12p1r + q22p

2
1

is negative definite for all values of u that satisfy (5.17). Obviously, q0 < 0 on the same interval.
Therefore, F ′′(u) < 0 and the function F (u) is concave upward on the considered interval. The

proposition is proved. �
Note that

F (1) = −2mλ2

171

(
24c1 +

√
51c2
)2 ≤ 0. (5.21)

Taking into account the fact that the function F (u) is concave upward and using (5.18) and (5.21), we

conclude that this function has two zeros u1 and u2 on the interval (5.17). These zeros are boundary
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(a) (b)

Fig. 7. Possible types of graphs of the function F (u): (a) F (1) = 0; (b) F (1) < 0.

points of the set U . Hence, U is the interval [u1, u2]. Therefore, u(t) = 1/ cos θ(t) is a periodic
time-dependent function and u varies between u1 and u2, i.e., u1 ≤ u ≤ u2. According to (5.21), if

24c1 +
√
51c2 = 0, then we have F (1) = 0. Otherwise, F (1) < 0. Thus, two types of graphs of the

function F (u) are possible. They correspond to various different behaviour of this function at u = 1
(see Fig. 7).

The cases F (1) = 0 and F (1) < 0 are dynamically distinct. If F (1) = 0, then the point u = 1
belongs to U (it is a boundary point u1). Since u = 1/ cos θ, the value u = 1 corresponds to θ = 0.
This means that during the motion the paraboloidal segment periodically takes the position when its

axis of symmetry is vertical. In this motion the angle θ varies between symmetric limits:

−θ0 ≤ θ ≤ θ0, θ0 = arccos
1

u2
.

If F (1) < 0, then u > 1 and, therefore, θ is a function of fixed sign for all time. The range of angle
θ is nonsymmetric:

−θ2 ≤ θ ≤ −θ1 < 0 or 0 < θ1 ≤ θ ≤ θ2, θi = arccos
1

ui
, i = 1, 2,

and the segment is permanently inclined to the vertical. The angle of inclination is a periodic function
of time.

5.3.2. Case F (1) = 0. From (5.21) we obtain

c2 = − 24√
51

c1. (5.22)

Now we substitute the obtained expression (5.22) for c2 to the solution (5.14) and get

r = c1

√
27 cos4 θ − 16 cos2 θ + 8

23 cos4 θ − 14 cos2 θ + 8

(
cos Φ(θ)− 24√

51
sinΦ(θ)

)
,

p =
4c1 cos θ

sin θ
√
27 cos4 θ − 16 cos2 θ + 8

[(
8√
17

cos Φ(θ) +

√
3

3
sinΦ(θ)

)
cos θ

− 4
(
3 cos4 θ − 2 cos2 θ + 1

)
√
23 cos4 θ − 14 cos2 θ + 8

(
cos Φ(θ)− 24√

51
sinΦ(θ)

)]
.

(5.23)
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(a) (b)

Fig. 8. (a) The graph of the function θ(t) for g = λ = 1 and c1 = 0.1. (b) The phase portrait in the

plane (θ, θ̇).

(a) (b) (c)

Fig. 9. The trajectory of the contact point on the horizontal plane for (a) c1 = 0.3, θ(0) = 0.1,
q(0) = 0.2, Φ(0) = 0; (b) c1 = 0.1, θ(0) = 0.8, q(0) = 1.2, Φ(0) = π/4; (c) c1 = 1, θ(0) = 0.8,

q(0) = 0.3, Φ(0) = π.

Then, using (5.23), we study the remaining equations of motion of the paraboloidal segment. The
first equation of the system (3.21) can be written as follows:

dq

dt
=

8

8 + 9 cos4 θ

(
g

λ
sin θ cos2 θ − cos θ

8 sin θ

(
9 cos4 θ + 16 cos2 θ − 8

)
p2

+ 2cos2 θ(1 + cos2 θ)pr +
2 sin θ

cos θ
q2
)
, (5.24)

and Eq. (3.22) in the form dθ/dt = −q. Using (5.14), we have the following differential equation for
the function Φ(θ):

dΦ

dt
= − 24

√
3q sin3 θ cos2 θ

(27 cos4 θ − 16 cos2 θ + 8)
√
23 cos4 θ − 14 cos2 θ + 8

. (5.25)
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(a) (b)

Fig. 10. (a) The graph of the function θ(t) for g = λ = 1. (b) The phase portrait on the plane (θ, θ̇).

Now to Eqs. (5.24) and (5.25) we add Eqs. (3.25):

dϕ

dt
= r − p cot θ,

dψ

dt
=

p

sin θ
. (5.26)

From (3.28), using (3.25), one can derive two differential equations for evolution of the coordinates x
and y of the point M of contact of the paraboloidal segment and the horizontal plane:⎧⎪⎨

⎪⎩
dx

dt
= −2λp sinψ − 2λ cosψ

cos3 θ
q +

2λ sin θ sinψ

cos θ
r,

dy

dt
= 2λp cosψ − 2λ sinψ

cos3 θ
q − 2λ sin θ cosψ

cos θ
r.

(5.27)

We substitute the expressions for p and r defined by (5.23) in Eqs. (5.24), (5.26), and (5.27). Then
we obtain the complete system of differential equations (5.24)–(5.27) with respect to variables q(t),

Φ(t), θ(t), ψ(t), ϕ(t), x(t), and y(t). Thus, the Euler angles θ, ψ, and ϕ and the coordinates x and y
of the contact point M of the paraboloidal segment with the horizontal plane can be found from
system (5.24)–(5.27) as functions of time t. The mentioned system of differential equations was solved

numerically by the Runge–Kutta–Fehlberg method of order 4. Note that all singularities for θ = 0 in
the system of equations are removable. Figure 8 displays the dependence θ(t) and the corresponding

phase portrait in the plane (θ, θ̇). Figure 9 illustrates typical trajectories of the contact point M on
the horizontal plane for different values of c1 and fixed values of g and λ.

5.3.3. Case F (1) < 0. From the system (5.24)–(5.27), we exclude Eq. (5.25) for the function Φ(t)
and complete the system (5.24), (5.26), (5.27) by the equations⎧⎪⎪⎨

⎪⎪⎩

dp

dt
= −(9 cos6 θ − 66 cos4 θ + 56 cos2 θ − 16)pq

(23 cos4 θ − 14 cos2 θ + 8) sin θ cos θ
+

16(cos4 θ − 4 cos2 θ + 1)qr

23 cos4 θ − 14 cos2 θ + 8
,

dr

dt
=

18 sin4 θpq

23 cos4 θ − 14 cos2 θ + 8
− 2(16 cos2 θ − 17) sin θ cos θqr

23 cos4 θ − 14 cos2 θ + 8
,

(5.28)

which can be derived from the system (5.3). In addition to these equations, we find the coordinates ξ
and ζ as functions of time using the equations:

dξ

dt
=

2λq

cos2 θ
,

dζ

dt
= −2λq sin θ

cos3 θ
. (5.29)

These equations can be derived from (5.2) by differentiation with respect to time.
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(a) (b)

Fig. 11. The graphs of the functions (a) p(t), (b) r(t) for g = λ = 1.

(a) (b) (c)

Fig. 12. The trajectory of the contact point on the supporting plane for (a) θ(0) = 0.8, p(0) = 0.1,
q(0) = 1, r(0) = 1; (b) θ(0) = 0.01, p(0) = 0.01, q(0) = 0.3, r(0) = 1; (c) θ(0) = 0.1, p(0) = 1,

q(0) = 0.1, r(0) = 0.1.

As a result, Eqs. (5.24) and (5.26)–(5.29) form a complete system of differential equations with

respect to the unknown functions p(t), q(t), r(t), θ(t), ψ(t), ϕ(t), x(t), y(t), ξ(t), and ζ(t). Fixing
constants g and λ and initial conditions for all listed functions, we can solve the system of equations
numerically. The Runge–Kutta–Fehlberg method of order 4 has been applied for integration. Figure 10

shows the graph of the function θ(t) and the phase portrait in the plane (θ, θ̇). In Fig. 11 the graphs
of components p(t) and r(t) of angular velocity are shown. Figure 12 illustrates typical trajectories of
the contact point M on the horizontal plane.

The above analysis shows that the trajectory of the contact pointM on the surface of the paraboloidal

segment is a curve constructed from periodically repeated waves touching alternately two parallels of
the paraboloid. The trajectory of the point of contact on the horizontal plane is a similar curve
bounded between two concentric circles that are touched by the point of contact alternately while

the paraboloid moves on the plane. The motion of the paraboloidal segment is quasiperiodic. Our
conclusions are consistent with the results previously obtained by N. K. Moshchuk (see [33, 34]).
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5.4. Steady Motions of the Paraboloid and Their Stability. In this section, we study the

existence and stability of steady motions of the paraboloid (see [16]). From (5.1) we have

f ′(θ)
∣∣∣
θ=0

=
λ sin θ

cos2 θ

∣∣∣
θ=0

= 0,

i.e., the symmetry axis Gζ of the paraboloid intersects its surface being normal to it for negative
values of ζ. In this case, the paraboloid can move in a such way that (see [31])

p = 0, r = ω = const, q = 0, θ = 0. (5.30)

In this motion, the paraboloid rotates about its axis of symmetry, which is fixed and vertical, with an
arbitrary constant angular velocity ω. The stability condition of the steady motion (5.30) is

(
A3 +mf0

(
f0 + f ′′

0

))2
ω2 + 4mgf ′′

0

(
A1 +mf2

0

)
> 0 (5.31)

(see [31]), where the subscript 0 denotes the values of function f(θ) and its second derivative for

θ = 0. In the case where the center of mass of the paraboloid is situated at the focus of the generating
parabola, we have

f ′′
0 = f ′′(θ)

∣∣
θ=0

=
λ(1 + sin2 θ)

cos3 θ

∣∣∣
θ=0

= λ > 0;

and hence the expression on the left-hand side of (5.31) is always positive; therefore, the solution (5.30)
is stable for all values of ω. Further, there exist steady motions of the paraboloid such that the angle
θ between the symmetry axis and the vertical remains constant and nonzero (see [16, 31, 32]):

θ = θ0 �= 0, q = 0, p = p0 �= 0, r = r0, (5.32)

if the constants θ0, p0, and r0 satisfy the equation

a11p
2
0 + a12p0r0 −mgf ′

0 = 0 (5.33)

(see [16, 31, 32]), where

a11 =

(
A1 − mζ0

cos θ0
f0

)
cot θ0, a12 = −

(
A3 − mξ0

sin θ0
f0

)
.

Here and below, the subscript 0 means that the value of the corresponding function is calculated at
θ = θ0.

Let us consider Eq. (5.33) as a quadratic equation with respect to p0 and require that its roots be
real. Then we obtain the following condition of the existence of the solution (5.32):

(
A3 − mξ0

sin θ0
f0

)2

r20 + 4mgf ′
0

(
A1 − mζ0

cos θ0
f0

)
cot θ0 ≥ 0.

The solution (5.32) corresponds to a regular precession of the paraboloid. The stability condition for
the solution (5.32) has the following form (see [16, 31, 32]):

b11p
2
0 + b12p0r0 + b22r

2
0 +mgf ′′

0 > 0, (5.34)

where

b11 =

(
A1 +mζ20

)(
1 + 2 cos2 θ0

)
sin2 θ0

+
mξ0
(
ξ0 sin θ0 + 3ζ0 cos θ0

)
sin θ0

+
A3mζ0(ξ0 + ζ ′0)

(
(A1 +mζ20) cos θ0 +mξ0ζ0 sin θ0

)
(
A1A3 +A1mξ20 +A3mζ20

)
sin θ0

,
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(a) (b)

Fig. 13. The graphs of the functions (a) b11(θ0)/(mλ2); (b) D(θ0)/(m
2λ4).

b12 = −
(
3A3 + 3mξ20 +mξ′0ζ0

)cos θ0
sin θ0

− mξ0ζ0(1 + cos2 θ0)

sin2 θ0

+
mξ0
(
2A3 + 2mξ20 +mξ′0ζ0

)
A1A3 +A1mξ20 +A3mζ20

(
A1ξ0

cos θ0
sin θ0

−A3ζ0

)

− A3mζ0ζ
′
0

A1A3 +A1mξ20 +A3mζ20

(
A3 +mξ20 +

mξ0ζ0 cos θ0
sin θ0

)
,

b22 =

(
A3 +mξ20 +

mξ0ζ0 cos θ0
sin θ0

)
A3

(
A3 +mξ20 +mξ′0ζ0

)
A1A3 +A1mξ20 +A3mζ20

.

The expressions of the coefficients bij in (5.34) are sufficiently complicated. One can show that for

a homogeneous paraboloidal segment whose moments of inertia are defined by (5.12) and the angle θ
is limited by (5.13), the coefficients bij can be explicitly expressed as follows:

b11 =
mλ2
(
126 cos10 θ0 + 1267 cos8 θ0 − 430 cos6 θ0 − 432 cos4 θ0 + 400 cos2 θ0 − 64

)
8 sin2 θ0 cos4 θ0

(
23 cos4 θ0 − 14 cos2 θ0 + 8

) ,

b12 = −2mλ2
(
1 + cos2 θ0

)(
5 cos6 θ0 + 104 cos4 θ0 − 74 cos2 θ0 + 16

)
sin θ0 cos3 θ0

(
23 cos4 θ0 − 14 cos2 θ0 + 8

) ,

b22 = −32mλ2
(
1 + cos2 θ0

)(
cos4 θ0 − 4 cos2 θ0 + 1

)
cos2 θ0

(
23 cos4 θ0 − 14 cos2 θ0 + 8

) ;

moreover, they satisfy the inequalities

b11 > 0, b22 > 0, D = b212 − 4b11b22 < 0. (5.35)

Thus, the quadratic form b11p
2
0 + b12p0r0 + b22r

2
0 is positive definite for all values of θ0. Taking into

account the fact that the value mgf ′′
0 is also positive, we conclude that the solution (5.32) is stable

whenever it exists. In other words, all regular precessions of the homogeneous paraboloidal segment
whose center of mass coincides with the focus of the generating parabola are stable.

In Fig. 13 the graphs of the functions b11(θ0)/(mλ2) and D(θ0)/(m
2λ4) are shown; these graphs

ascertain the validity of the inequalities (5.35).
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Fig. 14. Motion of a spindle-shaped body on a horizontal plane.

6. Motion of a Spindle-Shaped Body

6.1. Formulation of the problem. Equations of motion. General case and special cases.

In this section, we consider the problem of the motion of a so-called spindle-shaped body on a perfectly
rough horizontal plane. The surface of this body is formed by rotation of a parabolic arc about the
axis passing through the focus and parallel to the directrix. The surface of a such body has two sharp

peaks; it looks like a spindle (see Fig. 14). The problem of the motion of a spindle-shaped body
was studied by Kh. M. Mushtari (see [35]), who presented a complete solution under the following
additional restriction on the moments of inertia of the body:

A3 =
2

3
A1. (6.1)

We assume that the contact point of the body and the plane lies on the convex surface of the body.
The general case where the contact at peaks is also possible was examined by A. A. Zobova (see [37]).

The distance between the center of mass of the body and the horizontal supporting plane is

f(θ) =
λ

sin θ
, λ = const .

Remark 2. Since the contact point lies on the convex surface of the body, the following restriction
for θ holds:

θ ∈
(
π

4
,
3π

4

)
.

According to (3.11), we find the coordinates ξ and ζ of the contact point:

ξ =
λ cos2 θ

sin2 θ
− λ, ζ = −2λ cos θ

sin θ
, ζ2 = 4λ(ξ + λ).

Therefore, the system (3.29) can be written as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dp

dθ
=

(
2A3mλ2 sin2 θ(3− 2 sin2 θ)

Δ
− 1

)
cos θ

sin θ
p+

A3

(
(A3 + 4mλ2) sin4 θ − 8mλ2 sin2 θ + 5mλ2

)
Δ

r,

dr

dθ
=

A1mλ2(1− 2 sin2 θ)(3− 2 sin2 θ)

Δ
p+

2mλ2 cos θ(1− 2 sin2 θ)(A1 −A3 sin
2 θ)

Δ sin θ
r,

Δ =
(
A1A3 + 4(A1 −A3)mλ2

)
sin4 θ − 4(A1 −A3)mλ2 sin2 θ +A1mλ2,

481



and the differential equation (3.30) takes the form

d2r

dθ2
+ b1

dr

dθ
+ b2r = 0, (6.2)

where

b1 =

(
4 sin4 θ − 24 sin2 θ + 15

)
cos θ

(1− 2 sin2 θ)(3− 2 sin2 θ) sin θ
− 6
(
A1 − 2(A1 −A3) sin

2 θ
)
mλ2 cos θ

Δsin θ
,

b2 =
(3A3 − 2A1)mλ2(1− 2 sin2 θ)2

Δ(3− 2 sin2 θ)
.

If the Mushtari condition (6.1) is fulfilled, then the differential equation (6.2) has the following
solution (see [35]):

r = r0 = const .

In (6.2), we perform the change of the independent variable by the formula sin2 θ = x and introduce
the notation B = mλ2. Then we rewrite Eq. (6.2) as follows:

d2r

dx2
+ d1(x)

dr

dx
+ d2(x)r = 0, (6.3)

where

d1(x) =
18− 53x+ 48x2 − 12x3

2x(1− x)(1− 2x)(3 − 2x)
− 3(A1 − 2(A1 −A3)x)B

xΔ
,

d2(x) =
(3A3 − 2A1)(1 − 2x)2B

4x(1− x)(3 − 2x)Δ
,

Δ = (A1A3 + 4B(A1 −A3))x
2 − 4B(A1 −A3)x+A1B.

If A1A3 + 4B(A1 −A3) �= 0, then the polynomial Δ has two roots x1 and x2:

x1 =
2B(A1 −A3)−

√
4A3B2(A3 −A1)−A2

1A3B

A1A3 + 4B(A1 −A3)
,

x2 =
2B(A1 −A3) +

√
4A3B2(A3 −A1)−A2

1A3B

A1A3 + 4B(A1 −A3)
.

(6.4)

After the change of variable (2.2) in Eq. (6.3) we get

d2y

dx2
= S(x)y, (6.5)

where

S(x) =
β0
x

+
β1

x− 1
+

α1

(x− 1)2
+

β2
x− 1/2

+
α2

(x− 1/2)2

+
β3

x− 3/2
+

α3

(x− 3/2)2
+

β4
x− x1

+
α4

(x− x1)2
+

β5
x− x2

+
α5

(x− x2)2
, (6.6)

where

α1 = α4 = α5 = − 3

16
, α2 = α3 =

3

4
,

β0 =
3(x1 + x2)− 4x1x2

48x1x2
, β1 =

4x1x2 − 9(x1 + x2) + 12

16(x1 − 1)(x2 − 1)
,

β2 =
3(x1 + x2 − 1)

(2x1 − 1)(2x2 − 1)
, β3 =

15(x1 + x2)− 8x1x2 − 27

3(2x1 − 3)(2x2 − 3)
,
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β4 = −(8x31 − 36x21 + 51x1 − 25)(4x2 − 3)x1 + 15(x1 − 1)x1 + 3(x2 − x1)

16x1(x1 − 1)(2x1 − 1)(2x1 − 3)(x1 − x2)
,

β5 =
(8x32 − 36x22 + 51x2 − 25)(4x1 − 3)x2 + 15(x2 − 1)x2 + 3(x1 − x2)

16x2(x2 − 1)(2x2 − 1)(2x2 − 3)(x1 − x2)
.

Thus, the function S(x) has six finite poles: x = 0, x = 1, x = 1/2, x = 3/2, x = x1, and x = x2. In
the general case, all these poles are distinct. Nevertheless, under some additional conditions for the

parameters, the function S(x) has a form different from (6.6). This occurs in the following cases:

1. If

A1A3 + 4B(A1 −A3) = 0, (6.7)

then Δ is a first-degree polynomial and its unique root x0 is

x0 =
A1

4(A1 −A3)
= −mλ2

A3
.

Since x0 < 0, it does not coincide with the poles x = 0, x = 1, x = 1/2, and x = 3/2.
2. If

A1A3 + 4B(A1 −A3) �= 0, B =
9A1A3

4(3A3 − 4A1)
(6.8)

then x1 = 3/2. It is easy to show that the poles x = 0, x = 1, and x = 1/2 do not coincide with

the poles x = x1 and x = x2 for all physically admissible values of parameters.
3. If

A1A3 + 4B(A1 −A3) �= 0, B =
A2

1

4(A3 −A1)
(6.9)

we have

x1 = x2 =
A1

2(A1 −A3)
< 0.

4. Under the condition (6.1), we obtain β0 = 0 in (6.6) and, therefore, the function S(x) does not
have a first-order pole at x = 0. In this case, Eq. (6.5) possesses Liouville solutions (see [35]).

Thus, to perform a complete analysis of the problem on the existence of Liouville solutions of the
differential equation (6.5), we must consider the general case where all poles of the function S(x) are

distinct and three special cases (6.7), (6.8), and (6.9).

6.2. General case. Assume that all poles of the function S(x) are distinct and the coefficient β0 is

nonzero, i.e., the function S(x) is defined by (6.6). In this case, the Laurent expansion of the function
S(x) at x = ∞ is

S(x)
∣∣
x=∞ ≈ − 3

16x2
+O

(
1

x3

)
.

All initial preparations necessary for the application of the Kovacic algorithm have been performed.

Direct application of the algorithm to Eq. (6.5) yields the following result.

Theorem 14. If the function S(x) is defined by the formula (6.6), then the differential equation (6.5)
has no Liouville solutions for all physically admissible values of parameters.

Proof. First, we search for a solution of Eq. (6.5) of the form (2.4), i.e., a solution described in Case 1

of Theorem 1. Note that the function S(x) has five second-order finite poles: x = 1, x = 1/2, x = 3/2,
x = x1, and x = x2, the first-order pole at x = 0, and a second-order pole at x = ∞. Therefore, the
necessary conditions for the existence of a solution of the form (2.4) for the differential equation (6.5),

are fulfilled (see Theorem 4). Now we apply the Kovacic algorithm as described in Sec. 2.3.1.
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Step 1. Let us calculate the following values:

[
√
S]1 = 0, α+

1 =
3

4
, α−

1 =
1

4
,

[
√
S]x1 = 0, α+

x1
=

3

4
, α−

x1
=

1

4
,

[
√
S]x2 = 0, α+

x2
=

3

4
, α−

x2
=

1

4
,

[
√
S]1/2 = 0, α+

1/2 =
3

2
, α−

1/2 = −1

2
,

[
√
S]3/2 = 0, α+

3/2 =
3

2
, α−

3/2 = −1

2
,

[
√
S]0 = 0, α+

0 = 1, α−
0 = 1,

[
√
S]∞ = 0, α+

∞ =
3

4
, α−

∞ =
1

4
.

Step 2. Since the number ρ of the finite poles of the function S(x) is equal to 6, we have 2ρ+1 =

27 = 128 tuples of signs

s =
(
s(∞), s(1), s(x1), s(x2), s(1/2), s(3/2), s(0)

)
.

For each tuple, we calculate d by (2.19):

d = αs(∞)
∞ − α

s(1)
1 − αs(x1)

x1
− αs(x2)

x2
− α

s(1/2)
1/2 − α

s(3/2)
3/2 − α

s(0)
0 .

According to the algorithm, d must be a nonnegative integer. Further, we analyze all possible tuples

of signs s and the corresponding values α. It is easy to verify that the unique tuple for which d is a
nonnegative integer is

α =
(
α+
∞, α−

1 , α−
x1
, α−

x2
, α−

1/2, α−
3/2, α−

0

)
=

(
3

4
,
1

4
,
1

4
,
1

4
, −1

2
, −1

2
, 1

)
,

and d = 0. The corresponding function θ = θ(x) calculated by (2.20) has the form

θ =
1

x
+

1

4(x− 1)
− 1

2x− 1
− 1

2x− 3
+

1

4(x− x1)
+

1

4(x− x2)
.

Step 3. For the set of values α obtained on Step 2, we search for a polynomial P of degree d = 0,

which is a solution of the differential equation (2.21). Since the polynomial P has a zero degree, we
substitute P ≡ 1 to Eq. (2.21). As a result, Eq. (2.21) takes the form

(4x1x2 − x1 − x2)(2x− 3)2

16x(x − 1)(2x − 1)(x − x1)(x− x2)
= 0.

Therefore, 4x1x2 − x1 − x2 = 0. For the initial parameters, this condition takes the form

4A3B

A1A3 + 4B(A1 −A3)
= 0.

Obviously, this condition does not hold for any physically admissible values of parameters. Thus,

Eq. (6.5) has no Liouville solutions of the form (2.4).

Now we search for a solution of the form (2.9) for Eq. (6.5), i.e., a solution described in Case 2 of
Theorem 1. The necessary conditions for the existence of such a solution are fulfilled (see Theorem 4).
Now we apply the Kovacic algorithm as was described in Sec. 2.3.3.

Step 1. Let us define the following sets of integers:

E1 = {1, 2, 3}, Ex1 = {1, 2, 3}, Ex2 = {1, 2, 3},
E1/2 = {−2, 2, 6}, E3/2 = {−2, 2, 6}, E0 = {4}, E∞ = {1, 2, 3}.

Step 2. Consider all possible sets

s =
(
e∞, e1, ex1 , ex2 , e1/2, e3/2, e0

)
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of elements from E∞, E1, Ex1 , Ex2 , E1/2, E3/2, and E0; at least one element in each set must be odd.

Using (2.28), for each set s we obtain

d =
1

2

(
e∞ − e1 − ex1 − ex2 − e1/2 − e3/2 − e0

)
.

According to the algorithm, dmust be a nonnegative integer. Analyzing all possible sets s, we conclude

that the unique set with nonnegative d is

e =
(
e∞, e1, ex1 , ex2 , e1/2, e3/2, e0

)
=
(
3, 1, 1, 1, −2, −2, 4

)
,

and d = 0.

Step 3. Using (2.29), we construct the rational function θ for the chosen set e obtained on Step 2.
We get

θ =
2

x
+

1

2(x− 1)
+

1

2(x− x1)
+

1

2(x− x2)
− 1

x− 1/2
− 1

x− 3/2
.

A polynomial of degree d = 0 (P ≡ 1) should satisfy Eq. (2.30). We substitute P ≡ 1 to this equation

and obtain

− 3(4x1x2 − x1 − x2)(2x− 3)2

8x2(2x− 1)2(x− 1)(x− x1)(x− x2)
= 0.

Hence, as in the previous case, we get

4x1x2 − x1 − x2 = 0.

Thus, Eq. (6.5) has no Liouville solutions of the form (2.9) for all physically admissible values of the
parameters of the problem.

Now we search for a solution of the form (2.13) for Eq. (6.5), i.e., a solution described in Case 3
of Theorem 1. First, let us verify the necessary conditions for its existence (see Theorem 4). The

function S(x) has no poles of order greater than 2. The order of the pole at x = ∞ is greater than 1.
The partial fraction expansion of S(x) is (6.6). It can be easily shown that the remaining conditions
of Theorem 4 hold:

√
1 + 4αi =

1

2
∈ Q (i = 1, 4, 5),

√
1 + 4αj = 2 ∈ Q (j = 2, 3),

5∑
i=0

βi = 0,
√

1 + 4γ =
1

2
∈ Q, γ = − 3

16
.

Now we apply the Kovacic algorithm as described in Sec. 2.3.5.

Step 1. Let us define the following sets of integers:

E∞ = {3, 4, 5, 6, 7, 8, 9}, E1 = {3, 4, 5, 6, 7, 8, 9},
Ex1 = {3, 4, 5, 6, 7, 8, 9}, Ex2 = {3, 4, 5, 6, 7, 8, 9},
E1/2 = {−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18},
E3/2 = {−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18},

E0 = {12}.

Step 2. Consider all possible sets

s =
(
e∞, e1, ex1 , ex2 , e1/2, e3/2, e0

)
of elements from E∞, E1, Ex1 , Ex2 , E1/2, E3/2, and E0. By the formula (2.41), we calculate d:

d = e∞ − e1 − ex1 − ex2 − e1/2 − e3/2 − e0;
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d must be nonnegative integer. Analyzing all possible sets of elements from E∞, E1, Ex1 , Ex2 , E1/2,

E3/2, and E0, we conclude that the unique set with a nonnegative d is

e =
(
e∞, e1, ex1 , ex2 , e1/2, e3/2, e0

)
=
(
9, 3, 3, 3, −6, −6, 12

)
,

and d = 0.

Step 3. By the formula (2.42), we construct the function θ, using the set e obtained on Step 2.
Then we get

θ =
12

x
+

3

x− x1
+

3

x− x2
− 6

x− 1/2
− 6

x− 3/2
+

3

x− 1
.

Using (2.43), we construct the polynomial

W = x(x− 1)(x− x1)(x− x2)(x− 1/2)(x − 3/2).

Further, the recursive formulas (2.44) are required:

P12 = −P, Pi−1 = −WP ′
i + ((12 − i)W ′ −Wθ)Pi − (12− i)(i + 1)W 2S(x)Pi+1, P−1 = 0,

where P12 = −P ≡ −1 is a polynomial of degree d = 0. According to the algorithm, P−1 is identically

zero; therefore, all its coefficients must be equal to zero. From this condition one can derive, using a
computer algebra system, that 4x1x2 − 3x1 − 3x2 + 2 = 0. It is easy to check that this condition is
invalid for all physically admissible values of parameters.

Thus, we have proved that Eq. (6.5) with the coefficient S(x) defined by (6.6) has no Liouville

solutions for all physically admissible values of parameters of the problem. The theorem is proved. �

6.3. Special case A1A3 + 4B(A1 −A3) = 0. Now we assume that the parameters of the problem
satisfy the condition (6.7). Then Eq. (6.3) has the form

d2r

dx2
+ d1(x)

dr

dx
+ d2(x)r = 0, (6.10)

where

d1(x) =
18− 53x+ 48x2 − 12x3

2x(1 − x)(1 − 2x)(3− 2x)
− 3(x− 2x0)

2x(x− x0)
,

d2(x) = − (4x0 − 3)(1 − 2x)2

16x(1 − x)(3− 2x)(x− x0)
, x0 =

A1

4(A1 −A3)
= −mλ2

A3
.

After the change of variables (2.2), Eq. (6.10) can be rewritten as follows:

d2y

dx2
= S1(x)y, (6.11)

where

S1(x) =
β0
x

+
β1

x− 1
+

α1

(x− 1)2
+

β2
x− 1/2

+
α2

(x− 1/2)2
+

β3
x− 3/2

+
α3

(x− 3/2)2
+

β4
x− x0

+
α4

(x− x0)2
,

α1 = α4 = − 3

16
, α2 = α3 =

3

4
,

β0 = −4x0 − 3

48x0
, β1 =

4x0 − 9

16(x0 − 1)
, β2 =

3

2(2x0 − 1)
, β3 = − 8x0 − 15

6(2x0 − 3)
,

β4 =
32x40 − 144x30 + 204x20 − 100x0 + 3

16x0(x0 − 1)(2x0 − 1)(2x0 − 3)
, x0 =

A1

4(A1 −A3)
.

The Laurent expansion of S1(x) in a neighborhood of x = ∞ is

S1(x)
∣∣
x=∞ ≈ 4x0 − 3

8x2
+O(

1

x3
).
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Note that the explicit expression for x0 implies that x0 < 0. Thus, all poles of the function S1(x)

are distinct, β0 �= 0, and the Laurent series of S1(x) at x = ∞ has order no greater than 2. Direct
application of the Kovacic algorithm to the differential equation (6.11) yields the following result.

Theorem 15. The differential equation (6.11) has no Liouville solutions for all physically admissible
values of parameters.

Proof. First, we search for a solution of the form (2.4) of Eq. (6.11), i.e., a solution described in Case 1
of Theorem 1. Note that the function S1(x) has four second-order finite poles, one first-order pole,

and a second-order pole at x = ∞. Therefore, all conditions of Theorem 4 are fulfilled. Now we apply
the Kovacic algorithm as was described in Sec. 2.3.1.

Step 1. Calculate the following values:

[
√

S1]1 = 0, α+
1 =

3

4
, α−

1 =
1

4
,

[
√

S1]x0 = 0, α+
x0

=
3

4
, α−

x0
=

1

4
,

[
√

S1]1/2 = 0, α+
1/2 =

3

2
, α−

1/2 = −1

2
,

[
√

S1]3/2 = 0, α+
3/2 =

3

2
, α−

3/2 = −1

2
,

[
√

S1]0 = 0, α+
0 = 1, α−

0 = 1,

[
√

S1]∞ = 0, α±
∞ =

1±√
2x0 − 0, 5

2
.

Step 2. Since x0 < 0, we have 2x0 − 0.5 < 0 and hence α±∞ are complex numbers. Therefore, d

calculated by (2.19) is also a complex number and it cannot be a nonnegative integer, as the algorithm
requires. Therefore, Eq. (6.11) has no Liouville solutions of the form (2.4).

Now we search for a solution of the form (2.9) for Eq. (6.11), i.e., a solution described in Case 2
of Theorem 1. The necessary conditions of the existence of such a solution to Eq. (6.11) are satisfied
(see Theorem 4). Now we apply the Kovacic algorithm as was described in Sec. 2.3.3.

Step 1. Let us define the following sets of integers:

E1 = {1, 2, 3}, Ex0 = {1, 2, 3}, E1/2 = {−2, 2, 6}, E3/2 = {−2, 2, 6}, E0 = {4}, E∞ = {2}.

Step 2. Consider all possible sets

s =
(
e∞, e1, ex0 , e1/2, e3/2, e0

)
of elements from E∞, E1, Ex0 , E1/2, E3/2, and E0 with at least one odd element in each set. We
calculate d for each set s by (2.28):

d =
1

2

(
e∞ − e1 − ex0 − e1/2 − e3/2 − e0

)
.

According to the algorithm, d must be nonnegative integer. Analyzing all possible sets of elements
taken from E∞, E1, Ex0 , E1/2, E3/2, and E0, we see that the unique set with nonnegative d is

e =
(
e∞, e1, ex0 , e1/2, e3/2, e0

)
=
(
2, 1, 1, −2, −2, 4

)
,

and d = 0.

Step 3. By (2.29), we construct the function θ using the set e obtained on Step 2. Then we have

θ =
2

x
+

1

2(x− x0)
− 2

2x− 1
− 2

2x− 3
+

1

2(x− 1)
.

A polynomial of degree d = 0 (P ≡ 1) must satisfy Eq. (2.30). Substituting P ≡ 1 into (2.30) we
obtain

3(4x0 − 1)(2x − 3)2

8x2(2x− 1)2(x− 1)(x− x0)
= 0.
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Thus, we get 4x0 − 1 = 0, which contradicts the inequality x0 < 0. Therefore, Eq. (6.11) has no

solutions of the form (2.9).

Now we search for a solution of the form (2.13) for Eq. (6.11), i.e., a solution described in Case 3 of

Theorem 1. Direct calculations show that not all necessary conditions (see Theorem 4) are satisfied.
In particular, the value √

1 + 4γ =
√
2x0 − 0.5

is pure imaginary since x0 < 0. Consequently, this value is not real and rational, as the algorithm
requires. This means that Eq. (6.11) has no Liouville solutions of the form (2.13). Finally, Eq. (6.11)

has no Liouville solutions for all physically admissible parameters of the problem. The theorem is
proved. �

6.4. Special case B =
9A1A3

4(3A3 − 4A1)
. Assume that

A1A3 + 4B(A1 −A3) �= 0

and the equation (
A1A3 + 4B(A1 −A3)

)
x2 − 4B(A1 −A3)x+A1B = 0

has the root x = 3/2. This means that the poles x1 and x = 3/2 coincide (see (6.4)). We substitute
x = 3/2 into the last equation and express the parameter B via other parameters. Then we get

B =
9A1A3

4(3A3 − 4A1)
. (6.12)

Equation (6.12) has a physical sense if the inequalities 3A3 > 4A1 and 2A1 ≥ A3 hold. In the case
considered, Eq. (6.3) takes the following form:

d2r

dx2
+ d1(x)

dr

dx
+ d2(x)r = 0, (6.13)

where

d1(x) =
18− 53x+ 48x2 − 12x3

2x(1− x)(1− 2x)(3 − 2x)
− 27(A1 − 2(A1 −A3)x)

xΔ
,

d2(x) =
9(3A3 − 2A1)(1− 2x)2

4x(1− x)(3 − 2x)Δ
,

Δ = 4(5A1 − 6A3)x
2 − 36(A1 −A3)x+ 9A1.

After the change of variables (2.2), Eq. (6.13) can be written as follows:

d2y

dx2
= S2(x)y, (6.14)

where

S2(x) =
β0
x

+
β1

x− 1
+

α1

(x− 1)2
+

β2
x− 1/2

+
α2

(x− 1/2)2
+

β3
x− 3/2

+
α3

(x− 3/2)2
+

β4
x− x0

+
α4

(x− x0)2
, (6.15)

α1 = α4 = − 3

16
, α2 =

3

4
, α3 =

5

16
,

β0 = −2x0 − 3

48x0
, β1 = −3(2x0 + 1)

16(x0 − 1)
, β2 =

3(2x0 + 1)

4(2x0 − 1)
, β3 = − 8x0 − 15

12(2x0 − 3)
,
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β4 = − 3(8x30 − 24x20 + 20x0 − 1)

16x0(x0 − 1)(2x0 − 1)(2x0 − 3)
, x0 =

3A1

2(5A1 − 6A3)
.

The Laurent expansion of S2(x) in a neighborhood of x = ∞ is

S2(x)
∣∣
x=∞ ≈ − 3

16x2
+O

(
1

x3

)
.

Applying the Kovacic algorithm to Eq. (6.14), we arrive at the following result.

Theorem 16. The differential equation (6.14) has no Liouville solutions for all physically admissible

values of parameters.

Proof. First, we search for a solution of Eq. (6.14) of the form (2.4), i.e., a solution described in Case 1
of Theorem 1. Note that the function S2(x) has four finite second-order poles, one first-order pole,
and a second-order pole at x = ∞. Consequently, all conditions of Theorem 4 hold. Now we start to

apply the Kovacic algorithm step by step to search for the solution of form (2.4) for the differential
equation (6.14) as described in Sec. 2.3.1.

Step 1. Let us calculate the following values:

[
√

S2]1 = 0, α+
1 =

3

4
, α−

1 =
1

4
,

[
√

S2]x0 = 0, α+
x0

=
3

4
, α−

x0
=

1

4
,

[
√

S2]1/2 = 0, α+
1/2 =

3

2
, α−

1/2 = −1

2
,

[
√

S2]3/2 = 0, α+
3/2 =

5

4
, α−

3/2 = −1

4
,

[
√

S2]0 = 0, α+
0 = 1, α−

0 = 1,

[
√

S2]∞ = 0, α+
∞ =

3

4
, α−

∞ =
1

4
.

Step 2. Since number ρ of the finite poles of the function S2(x) is equal to 5, then we have
2ρ+1 = 26 = 64 tuples of signs

s =
(
s(∞), s(1), s(x0), s(1/2), s(3/2), s(0)

)
.

For each tuple we calculate d by the formula (2.19):

d = αs(∞)
∞ − α

s(1)
1 − αs(x0)

x0
− α

s(1/2)
1/2 − α

s(3/2)
3/2 − α

s(0)
0 .

According to the algorithm, d must be a nonnegative integer. Further, we analyze all possible tuples
of signs s and the corresponding values α. It is easy to verify that the unique tuple such that d is a

nonnegative integer is

α =
(
α+
∞, α−

1 , α−
x0
, α−

1/2, α−
3/2, α−

0

)
=

(
3

4
,
1

4
,
1

4
, −1

2
, −1

4
, 1

)
,

and d = 0. The function θ = θ(x), defined by (2.20), for the chosen set of values α has the form

θ =
1

x
+

1

4(x− 1)
− 1

2x− 1
− 1

4x− 6
+

1

4(x− x0)
.

Step 3. For the set of values α obtained on the previous step, we search for a polynomial P of
degree d = 0 that satisfy the differential equation (2.21). Substituting P ≡ 1 into (2.21) we get

(10x0 − 3)(2x− 3)

16x(x− 1)(2x − 1)(x− x0)
= 0.

Thus, 10x0 − 3 = 0. Using the explicit expression for x0, we obtain A3 = 0. This contradicts the
assumption that the moments of inertia are positive. Hence Eq. (6.14) has no Liouville solutions of

the form (2.4).
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Now we search for a solution of the form (2.9) for Eq. (6.14), i.e., a solution described in Case 2

of Theorem 1. The necessary conditions of the existence are fulfilled. Now we apply the Kovacic
algorithm (see Sec. 2.3.3).

Step 1. Let us define the following sets of integers:

E1 = {1, 2, 3}, Ex0 = {1, 2, 3}, E1/2 = {−2, 2, 6},
E3/2 = {−1, 2, 5}, E0 = {4}, E∞ = {1, 2, 3}.

Step 2. Consider all possible sets

s =
(
e∞, e1, ex0 , e1/2, e3/2, e0

)
of elements from E∞, E1, Ex0 , E1/2, E3/2, and E0 with at least one odd element in each set. We

calculate d for each set s by the formula (2.28):

d =
1

2

(
e∞ − e1 − ex0 − e1/2 − e3/2 − e0

)
.

According to the algorithm, d must be nonnegative integer. By analyzing all possible sets of elements
taken from E1, Ex0 , E1/2, E3/2, E0, and E∞, we conclude that the unique set with nonnegative d is

e =
(
e∞, e1, ex0 , e1/2, e3/2, e0

)
=
(
3, 1, 1, −2, −1, 4

)
,

and d = 0.

Step 3. Using the set e obtained on Step 2, we construct the function θ by the formula (2.29):

θ =
2

x
+

1

2(x− x0)
− 2

2x− 1
− 1

2x− 3
+

1

2(x− 1)
.

A polynomial of degree d = 0 (P ≡ 1) must satisfy Eq. (2.30). Substituting P ≡ 1 into (2.30) we
obtain

− 3(10x0 − 3)(2x − 3)

8x2(2x− 1)2(x− 1)(x− x0)
= 0.

Hence 10x0 − 3 = 0. This condition was already considered above: we proved that it is invalid for all
physically admissible values of parameters of the problem. Thus, Eq. (6.14) has no Liouville solutions
of the form (2.9).

Now we search for a solution of the form (2.13) for Eq. (6.14), i.e., a solution described in Case 3 of
Theorem 1. First, we verify the necessary conditions of the existence of such a solution (see Theorem 4).

The function S2(x) has no poles of order greater than 2. The order of a pole of S2(x) at x = ∞ is
greater than 1. The partial fraction expansion of S2(x) has the form (6.15). Direct calculations show
that all other conditions of Theorem 4 are satisfied:

√
1 + 4αi =

1

2
∈ Q (i = 1, 4),

√
1 + 4α2 = 2 ∈ Q,

√
1 + 4α3 =

3

2
∈ Q,

4∑
i=0

βi = 0,
√

1 + 4γ =
1

2
∈ Q, γ = − 3

16
.

Now we apply the Kovacic algorithm (see Sec. 2.3.5).

Step 1. Let us define the following sets of integers:

E1 = {3, 4, 5, 6, 7, 8, 9}, Ex0 = {3, 4, 5, 6, 7, 8, 9},
E1/2 = {−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18},

E3/2 = {−3, 0, 3, 6, 9, 12, 15}, E0 = {12}, E∞ = {3, 4, 5, 6, 7, 8, 9}.
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Step 2. Consider all possible sets

s =
(
e∞, e1, ex0 , e1/2, e3/2, e0

)
of elements from E∞, E1, Ex0 , E1/2, E3/2, and E0 and calculate d by the formula (2.41):

d = e∞ − e1 − ex0 − e1/2 − e3/2 − e0.

Analyzing all possible sets of elements taken from E∞, E1, Ex0 , E1/2, E3/2, and E0, we conclude that

the unique set with nonnegative integer d is

e =
(
e∞, e1, ex0 , e1/2, e3/2, e0

)
=
(
9, 3, 3, −6, −3, 12

)
,

and d = 0.

Step 3. By (2.42), we construct the function θ using the set e obtained on the previous step. Then
we get

θ =
12

x
+

3

x− x0
− 6

x− 1/2
− 3

x− 3/2
+

3

x− 1
.

Using (2.43), we construct the polynomial

W = x(x− 1)(x − x0)(x− 1/2)(x − 3/2).

Further, we need the recursive formulas (2.44):

P12 = −P, Pi−1 = −WP ′
i + ((12 − i)W ′ −Wθ)Pi − (12− i)(i + 1)W 2S2(x)Pi+1, P−1 = 0,

where P12 = −P ≡ −1 is a polynomial of degree d = 0. According to the algorithm, P−1 is an
identically zero polynomial; therefore, all its coefficients are equal to zero. From this condition, using
a computer algebra system, we can obtain that 10x0 − 3 = 0. It was proved above that this condition

does not hold for all physically admissible values of parameters.

Thus, we have verified that Eq. (6.14) has no Liouville solutions. The theorem is proved. �

6.5. Special case B =
A2

1

4 (A3 −A1)
. Assume that

A1A3 + 4B(A1 −A3) �= 0, x1 = x2.

From (6.4) we conclude that the poles coincide if

B =
A2

1

4(A3 −A1)
. (6.16)

The condition (6.16) is physically admissible if A3 > A1. In this case, Eq. (6.3) has the following form:

d2r

dx2
+ d1(x)

dr

dx
+ d2(x)r = 0, (6.17)

where

d1(x) =
18− 53x+ 48x2 − 12x3

2x(1− x)(1− 2x)(3 − 2x)
+

3x0
x(x− x0)

,

d2(x) =
x0(2x0 − 3)(1− 2x)2

8x(1− x)(3− 2x)(x − x0)2
, x0 =

A1

2(A1 −A3)
= −2mλ2

A1
.

After the change of variables (2.2), the differential equation (6.17) takes the form

d2y

dx2
= S3(x)y, (6.18)

where
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S3(x) =
β0
x

+
β1

x− 1
+

α1

(x− 1)2
+

β2
x− 1/2

+
α2

(x− 1/2)2

+
β3

x− 3/2
+

α3

(x− 3/2)2
+

β4
x− x0

+
α4

(x− x0)2
, (6.19)

α1 = − 3

16
, α2 = α3 =

3

4
, α4 = −4x20 − 10x0 + 7

8(x0 − 1)
,

β0 = −2x0 − 3

24x0
, β1 =

2x20 − 9x0 + 6

8(x0 − 1)2
, β2 =

3

2x0 − 1
, β3 = − 4x0 − 9

3(2x0 − 3)
,

β4 =
16x50 − 112x40 + 260x30 − 256x20 + 94x0 − 3

8x0(2x0 − 1)(2x0 − 3)(x0 − 1)2
, x0 =

A1

2(A1 −A3)
.

The Laurent expansion of S3(x) at x = ∞ has the form

S3(x)
∣∣
x=∞ ≈ − 3

16x2
+O

(
1

x3

)
.

This special case has the following peculiarity: the coefficient α4 in the partial fraction expansion

of the function S3(x) depends on the parameters. This coefficient has no definite numerical value but
it is determined by the expression

α4 = −4x20 − 10x0 + 7

8(x0 − 1)
.

As a result, the value d can be arbitrarily large. Recall that d is a degree of the polynomial P calculated
in every case of the algorithm. Therefore, we consider only the case where d = 0. Direct application
of the Kovacic algorithm to the differential equation (6.18) yields the following result.

Theorem 17. Assume that d = 0 and the condition (6.9) holds. Then the differential equation (6.18)
has no Liouville solutions for all physically admissible values of parameters.

Proof. First, we search for a solution of Eq. (6.18) of the form (2.4), i.e., a solution described in Case 1

of Theorem 1. Note that the function S3(x) has four second-order finite poles, one first-order pole,
and a second-order pole at x = ∞. Therefore, the conditions of Theorem 4 necessary for the existence
of a solution of the form (2.4) for the differential equation (6.18) are satisfied. Now we apply the
Kovacic algorithm (see Sec. 2.3.1).

Step 1. We introduce the notation b0 = 1 + 4α4 and calculate the following values:

[
√

S3]1 = 0, α+
1 =

3

4
, α−

1 =
1

4
,

[
√

S3]1/2 = 0, α+
1/2 =

3

2
, α−

1/2 = −1

2
,

[
√

S3]3/2 = 0, α+
3/2 =

3

2
, α−

3/2 = −1

2
,

[
√

S3]0 = 0, α+
0 = 1, α−

0 = 1,

[
√

S3]x0 = 0, α+
x0

=
1

2
+

1

2

√
b0, α−

x0
=

1

2
− 1

2

√
b0,

[
√

S3]∞ = 0, α+
∞ =

3

4
, α−

∞ =
1

4
.

Step 2. Since the number ρ of finite poles of the function S3(x) is equal to 5, we have 2
ρ+1 = 26 = 64

tuples of signs

s =
(
s(∞), s(1), s(1/2), s(3/2), s(0), s(x0)

)
.
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Choose signs in the tuples s in such a way that the value

d = αs(∞)
∞ − α

s(1)
1 − α

s( 1
2
)

1/2 − α
s( 3

2
)

3/2 − α
s(0)
0 − αs(x0)

x0
,

calculated by (2.19), is equal to zero for some b0. Note that since α+
0 = α−

0 = 1, the tuple with the

sign + chosen for s(0) and the tuple with the sign − chosen for s(0) are equal if all remaining signs in
these tuples are the same. The tuples of signs s and the corresponding values b0 with d = 0 are listed
below. In all tuples the sign + is chosen for s(0):

s1 = (+,−,−,−,+,+), b0 = 0; s10 = (+,+,+,−,+,−), b0 = 25;

s2 = (+,−,−,−,+,−), b0 = 0; ,s11 = (+,+,−,+,+,−), b0 = 25;

s3 = (−,−,−,+,−,−), b0 = 1; s12 = (−,+,+,−,+,−), b0 = 36;

s4 = (+,+,−,−,+,−), b0 = 1; s13 = (−,+,−,+,+,−), b0 = 36;

s5 = (−,+,−,−,+,−), b0 = 4; s14 = (+,−,+,+,+,−), b0 = 64;

s6 = (+,−,+,−,+,−), b0 = 16; s15 = (−,−,+,+,+,−), b0 = 81;

s7 = (+,−,−,+,+,−), b0 = 16; s16 = (+,+,+,+,+,−), b0 = 81;

s8 = (−,−,−,+,+,−), b0 = 25; s17 = (−,+,+,+,+,−), b0 = 100.

s9 = (−,−,+,−,+,−), b0 = 25;

Similarly, one can list 17 other tuples with the sign − chosen for s(0). Let us consider in more detail
the case where the tuple s1 is chosen; the remaining cases can be examined similarly. Further, using

the formula (2.20), we construct the function θ using the values α±
c corresponding to the signs chosen

for the tuple s1. Then the function θ has the form

θ =
1

4(x− 1)
− 1

2x− 1
− 1

2x− 3
+

1

x
+

1

2(x− x0)
.

Step 3. A polynomial of degree d = 0 (P ≡ 1) must satisfy Eq. (2.21). We substitute P ≡ 1 into
(2.21) and get

x0(2x0 − 1)(2x − 3)2

8x(x− 1)(2x − 1)(x− x0)2
.

Since x0 �= 0 and 2x0 − 1 �= 0, this condition cannot be satisfied identically. Hence, the tuple s1 does
not give a solution of the form (2.4) for the differential equation (6.18). Similarly, one can consider
all remaining tuples of signs and ascertain that Eq. (6.18) does not possess any Liouville solution of
the form (2.4).

Now we search for a solution of the form (2.9) for the differential equation (6.18), i.e., a solution
described in Case 2 of Theorem 1. The necessary conditions for the existence of such a solution hold

(see Theorem 4). Now we apply the Kovacic algorithm (see Sec. 2.3.3).

Step 1. Let us define the following sets of integers:

E1 = {1, 2, 3}, E1/2 = {−2, 2, 6}, E3/2 = {−2, 2, 6}, E0 = {4},
Ex0 =

{
(2 + k

√
b0) ∩ Z, k = 0,±2

}
, E∞ = {1, 2, 3}.

Step 2. Consider all possible sets

s =
(
e∞, e1, e1/2, e3/2, e0, ex0

)
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of elements from E∞, E1, E1/2, E3/2, E0, and Ex0 and in each set at least one element is odd. For

each set s, we calculate d by (2.28):

d =
1

2

(
e∞ − e1 − e1/2 − e3/2 − e0 − ex0

)
.

As above, we assume that d = 0. Execution of this step of the algorithm is concerned with a large
number of possible sets s. Thus, we present here a detailed investigation for only one case; all remaining

cases can be examined similarly. Choose the set

s1 =
(
e∞, e1, e1/2, e3/2, e0, ex0

)
=
(
3, 1, −2, −2, 4, 2

)
.

Step 3. By (2.29), we construct the function θ using elements of the set s1. Hence, θ has the form

θ =
1

2(x− 1)
− 2

2x− 1
− 2

2x− 3
+

2

x
+

1

x− x0
.

A polynomial of degree d = 0 (P ≡ 1) must satisfy Eq. (2.30). We substitute P ≡ 1 into (2.30) and
obtain

− 3x0(2x0 − 1)(2x − 3)2

4x2(x− x0)2(2x− 1)2(x− 1)
= 0.

Hence, this condition is valid if x0 = 0 or 2x0 − 1 = 0. As was shown above, none of these conditions
hold.

Thus, we have proved that for the set s1 of elements from E∞, E1, E1/2, E3/2, E0, and Ex0 , the
differential equation (6.18) has no Liouville solutions of the form (2.9). Note that a similar analysis

was performed for all other sets s with d = 0. As a result, we proved the nonexistence of solutions of
the form (2.9) for the differential equation (6.18) for any set s.

Finally, we search for a solution of the form (2.13) for the differential equation (6.18), i.e., a solution

described in Case 3 of Theorem 1. First, check whether the necessary conditions for its existence hold
(see Theorem 4). The function S3(x) has no poles of order greater than 2. The order of pole of S3(x)
at x = ∞ is greater than 1. The partial fraction expansion of S3(x) is (6.19). The following conditions

hold: √
1 + 4α1 =

1

2
∈ Q,

√
1 + 4αi = 2 ∈ Q (i = 2, 3),

4∑
i=0

βi = 0,
√

1 + 4γ =
1

2
∈ Q, γ = − 3

16
.

Assume that the condition √
1 + 4α4 =

3− 2x0√
2(1 − x0)

∈ Q,

is valid; otherwise, Eq. (6.18) obviously has no Liouville solutions of the form (2.13). Now we apply
the Kovacic algorithm (see Sec. 2.3.5).

Step 1. Let us define the sets

E1 = {3, 4, 5, 6, 7, 8, 9}, E0 = {12},
E1/2 = {−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18},
E3/2 = {−6,−4,−2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18},
Ex0 =

{
(6 + k

√
b0) ∩ Z, k = 0,±1, . . . ,±6)

}
,

E∞ = {3, 4, 5, 6, 7, 8, 9}.
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Step 2. Consider all possible sets

s =
(
e∞, e1, e1/2, e3/2, e0, ex0

)
of elements from E∞, E1, E1/2, E3/2, E0, and Ex0 and calculate d by (2.41):

d = e∞ − e1 − e1/2 − e3/2 − e0 − ex0 .

Step 3. As above, we assume that d = 0. Among all sets s, we choose those with d = 0. Considering
quantities of elements of sets E∞, E1, E1/2, E3/2, E0, and Ex0 introduced on the first step, we can

estimate that even if we fix one element of Ex0 , we must examine 7 ·7 ·13 ·13 = 8281 sets s, for each of
which d = 0. Therefore, we illustrate the analysis on a typical example instead of listing all possible
cases. Choose the set s1 with d = 0:

s1 =
(
e∞, e1, e1/2, e3/2, e0, ex0

)
=
(
9, 3, 0, 0, 12, −6

)
.

By the formula (2.42), we construct the function θ using the set s1. The function θ has the form

θ =
3

x− 1
+

12

x
− 6

x− x0
.

According to (2.43), we construct the polynomial

W = x(x− 1)(x − 1

2
)(x− 3

2
)(x− x0).

Further, the recursive formulas (2.44) are required:

P12 = −P, Pi−1 = −WP ′
i + ((12 − i)W ′ −Wθ)Pi − (12− i)(i + 1)W 2S3(x)Pi+1, P−1 = 0,

where P12 = −P = −1 is a polynomial of degree d = 0. According to the algorithm, P−1 is a
polynomial that must be identically zero. Therefore, all its coefficients are equal to zero. These
coefficients include one unknown variable x0. The corresponding system of equations is inconsistent.

All other sets s can be considered similarly. This means that Eq. (6.18) has no Liouville solutions of
the form (2.13) in the case d = 0. The theorem is proved. �

A similar analysis was conducted for all sets with d = 1, 2, 3, 4. In all these cases, the differential
equation (6.18) has no Liouville solutions. In summary, in the problem of the motion of a spindle-

shaped body on a fixed, perfectly rough horizontal plane we have found a unique case where the
second-order linear differential equation (6.2) has a Liouville solution. This is the case where Mushtari’s
condition (6.1) hold.

7. Conclusion

Application of the Kovacic algorithm to the problem of motion of a heavy, rotationally symmetric
rigid body on a perfectly rough horizontal plane allows one to prove the nonexistence of Liouville
solutions in the case where the moving body is an infinitely thin round disk or a disk of finite thickness.

In the case where the moving body is a dynamically symmetric torus, the Kovacic algorithm allows one
to prove the nonexistence of Liouville solutions for almost all values of parameters of the problem. On
the contrary, if the moving body is a dynamically symmetric paraboloid, the corresponding second-

order linear differential equation possesses Liouville solutions for all physically admissible values of
parameters of the problem. The explicit form of these solutions is obtained. Using these Liouville
solutions, we give a qualitative description of the motion of a paraboloid on a plane. The trajectory

of the contact point M on the surface of the paraboloid is a curve consisting of periodically repeating
waves and tangent to two parallels of the paraboloid. The trajectory of the contact point on the
supporting plane has the same pattern and it lies between two concentric circles. During the motion

of the paraboloid, the contact point M touches these two circles in turn. Steady motions of the
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paraboloid on a perfectly rough plane are found and their stability is investigated. In the problem

of the motion of a spindle-shaped body on a perfectly rough horizontal plane, the Kovacic algorithm
allows one to prove the nonexistence of Liouville solutions for almost all values of parameters of the
problem, except for the case where these parameters satisfy the Mushtari condition (see [35]).
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