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Abstract. A new approach to solving terminal control problems with
phase constraints, based on saddle-point sufficient optimality conditions,
is considered. The basis of the approach is Lagrangian formalism and
duality theory. We study linear controlled dynamics in the presence of
phase constraints. The cross section of phase constraints at certain points
in time leads to the appearance of new intermediate finite-dimensional
convex programming problems. In fact, the optimal control problem,
defined over the entire time interval, is split into a number of indepen-
dent intermediate subproblems, each of which is defined in its own sub-
segment. Combining the solutions of these subproblems together, we can
obtain solutions5 to the original problem on the entire time interval. To
this end, a gradient flow is launched to solve all intermediate problems at
the same time. The convergence of computing technology to the solution
of the optimal control problem in all variables is proved.

Keywords: Optimal control · Lagrange function · Duality · Saddle
point · Iterative solution methods · Convergence

1 Introduction

Dynamic problems of terminal control under state constraints are among the
most complex in optimal control theory. For quite a long time, from the moment
of their occurrence and the first attempts at practical implementation in tech-
nical fields, these problems have been studied by experts from different angles.
Much attention is traditionally paid to the development of computational meth-
ods for solving this class of problems in a wide area of applications [9,13]. At the
same time, directions are being developed related to further generalizations and
the development of the Pontryagin maximum principle [7,10], as well as with
the extension of the classes of problem statements [8,12,14]. The questions of
the existence, stability, optimality of solutions are studied in [11] and others.
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In our opinion, one of the most important areas of the theory of solving
optimal control problems is the study of various approaches to the development
of evidence-based methods for solving terminal control problems. The theory of
evidence-based methods is currently an important tool in various application
areas of mathematical modeling tools. In this theory, emphasis is placed on the
ideas of proof, validity, and guarantee of the result. The latter assumes that the
developed computing technology (computing process) generates a sequence of
iterations that has a limit point on a bounded set, and this point is guaranteed
to be a solution to the original problem with a given accuracy.

In this paper, we consider the problem of terminal control with phase con-
straints and their cross sections at discretization points. Intermediate spaces
are associated with sampling points, the dimension of which is equal to the
dimension of the phase trajectory vector. The sections of the phase trajectory
in the spaces of sections form a polyhedral set. On this set, we pose the problem
of minimizing a convex objective function. At each sampling point, we obtain
some finite-dimensional problem. To iteratively proceed to the next phase tra-
jectory, it is enough to take a gradient-type step in the section space for each
intermediate problem. These steps together on all intermediate problems form
a saddle-point gradient flow. This computational flow with an increase in the
number of iterations leads us to the solution of the problem.

2 Statement of Terminal Control Problem
with Continuous Phase Constraints

We consider a linear dynamic controlled system defined on a given time interval
[t0, tf ], with a fixed left end and a moving right end under phase constraints on
the trajectory. The dynamics of the controlled phase trajectory x(t) is described
by a linear system of differential equations with an implicit condition at the right
end of the time interval. A terminal condition is defined as a solution to a linear
programming problem that is not known in advance. In this case, it is necessary
to choose a control so that the phase trajectory satisfies the phase constraints,
and its right end coincides with the solution of the boundary value problem. The
control problem is considered in a Hilbert function space.

Formally, everything said in the case of continuous phase constraints can
be represented as a problem: find the optimal control u(t) = u∗(t) and the
corresponding trajectory x(t) = x∗(t), t ∈ [t0, tf ], that satisfy the system

d

dt
x(t) = D(t)x(t) + B(t)u(t), t0 ≤ t ≤ tf , x(t0) = x0, x(tf ) = x∗

f ,

G(t)x(t) ≤ g(t), x(t) ∈ Rn ∀ t ∈ [t0, tf ],
u(t) ∈ U = {u(t) ∈ Lr

2[t0, tf ] | u(t) ∈ [u−, u+] ∀ t ∈ [t0, tf ]},

x∗
f ∈ Argmin{〈ϕf , xf 〉 | Gfxf ≤ gf , xf ∈ Rn}, (1)

where D(t), B(t), G(t) are continuous matrices of size n×n, n×r, m×n respec-
tively; g(t) is a given continuous vector function; Gf = G(tf ), gf = g(tf ),



Saddle-Point Method in Terminal Control 19

xf = x(tf ) are the values at the right-hand end of the time interval; ϕf is the
given vector (normal to the linear objective functional), x(t0) = x0 is the given
initial condition. The inclusion x(t) ∈ Rn means that the vector x(t) for each t
belongs to the finite-dimensional space Rn. The controls u(t) for each t ∈ [t0, tf ]
belong to the set U, which is a convex compact set from Rr. Problem (1) is
considered as an analogue of the linear programming problem formulated in a
functional Hilbert space.

To solve the differential system in (1), it is necessary to use the initial con-
dition x0 and some control u(t) ∈ U. For each admissible u(t), in the framework
of the classical theorems of existence and uniqueness, we obtain a unique phase
trajectory x(t). The right end of the optimal trajectory must coincide with the
finite-dimensional solution of the boundary value problem, i. e. x∗(tf ) = x∗

f . An
asterisk means that x∗(t) is the optimal solution; in particular, x∗

f is a solution
to the boundary value optimization problem. The control must be selected so
that phase constraints are additionally fulfilled. The left end x0 of the trajectory
is fixed and is not an object of optimization.

The formulated problem with phase constraints from the point of view of
developing evidence-based computational methods is one of the difficult prob-
lems. Traditionally, optimal control problems (without a boundary value prob-
lem) are studied in the framework of the Hamiltonian formalism, the peak of
which is the maximum principle. This principle is a necessary condition for opti-
mality and is the dominant tool for the study of dynamic controlled problems.
However, the maximum principle does not allow constructing methods that are
guaranteed to give solutions with a predetermined accuracy. In the case of con-
vex problems of type (1), it seems more reasonable to conduct a study in the
framework of the Lagrangian formalism. Moreover, the class of convex prob-
lems in optimal control is wide enough, and almost any smooth problem can be
approximated by a convex, quadratic, or linear problem.

Problem (1) without phase restrictions was investigated by the authors in
[1–5]. In the linear-convex case, relying on the saddle-point inequalities of the
Lagrange function, the authors proved the convergence of extragradient and
extraproximal methods to solving the terminal control problem in all solution
components: weak convergence in controls, strong convergence in phase and
conjugate trajectories, and also in terminal variables of intermediate (bound-
ary value) problems. This turned out to be possible due to the fact that the
saddle-point inequalities for the Lagrange function in the case under consid-
eration represent sufficient optimality conditions. These conditions, in contrast
to the necessary conditions of the maximum principle, allow us to develop an
evidence-based (without heuristic) theory of methods for solving optimal control
problems, which was demonstrated in [1–5].

3 Phase Constraints Sections and Finite-Dimensional
Intermediate Problems Generated by Them

In statement (1), we presented the phase constraints G(t)x(t) ≤ g(t), t ∈ [t0, tf ],
of continuous type. An approach will be described below, where instead of con-
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tinuous phase constraints their sections Gsxs ≤ gs are considered at certain
instants of time ts on a discrete grid

Γ = {t0, t1, ..., ts−1, ts, ts+1, ..., tf}.

At these moments of time, finite-dimensional cross-section problems are formed,
and between these moments (on the discretization segments [ts−1, ts], s = 1, f)
intermediate terminal control problems arise. Thus, the original problem for-
mulated on the entire segment [t0, tf ] is decomposed into a set of independent
problems, each of which is defined on its own sub-segment. The obtained inter-
mediate problems no longer have phase constraints, since the phase constraints
on the sub-segments have passed to the boundary value problems at the ends of
these sub-segments. This approach does not require the existence of a functional
Slater condition. In fact, the existence of finite-dimensional saddle points in the
intermediate spaces Rn (that are generated by sections of phase constraints at
given moments ts) is sufficient. Each section has its own boundary-value prob-
lem, and then through all these solutions (like a thread through a coal ear),
the desired phase trajectory is drawn over the entire time interval. In finite-
dimensional section spaces, the Slater condition for convex problems is always
satisfied by definition.

Except for discrete phase constraints, the rest of problem (1) remains contin-
uous. The combination of the trajectories and other components of the problem
over all time sub-segments results in the solution of the original problem over the
entire time interval [t0, tf ]. The approach based on sections can be interpreted
as a method of decomposing a complex problem into a number of simple ones.

Thus, on each of the segments [ts−1, ts], a specific segment xs(t) of the phase
trajectory of differential equation (1) is defined. At the common point of the
adjacent segments [ts−1, ts] and [ts, ts+1] the values xs(ts) and xs+1(ts) coincide
in construction: xs(ts) = xs+1(ts), i.e. on each segment of the partition, the right
end of the trajectory coincides with the starting point of the trajectory in the
next segment.

As a result of discretization based on (1), the following statement of the
multi-problem is obtained:

d

dt
xs(t) = D(t)xs(t) + B(t)us(t), t ∈ [ts−1, ts],

xs(ts−1) = x∗
s−1(ts−1), xs(ts) = x∗

s, us(t) ∈ U,

x∗
1 ∈ Argmin{〈ϕ1, x1〉 | G1x1 ≤ g1, x1 ∈ Rn}, x∗

1 ∈ X1,

x∗
2 ∈ Argmin{〈ϕ2, x2〉 | G2x2 ≤ g2, x2 ∈ Rn}, x∗

2 ∈ X2,

..........................................................................................

x∗
f ∈ Argmin{〈ϕf , xf 〉 | Gfxf ≤ gf xf ∈ Rn}, x∗

f ∈ Xf . (2)

Here xs(ts) is the value of the function xs(t) at the right end of segment [ts−1, ts],
x∗
s is the solution of sth intermediate linear programming problem; ϕs is the

normal to the objective function; Xs is an intermediate reachability set; Gs =
G(ts), gs = g(ts), s = 1, f . If we combine all parts of the trajectories xs(t) then
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we get the full trajectory on the entire segment x(t), t ∈ [t0, tf ]. In other words,
we “broke” the original problem (1) into f independent problems of the same
kind.

For greater clarity, imagine system (2) in an expanded form. Discretization
of Γ generates time intervals [ts−1, ts], on which functions xs(t) are defined for
all s = 1, f . Each of these functions is the restriction of the phase trajectory x(t)
to the segment [ts−1, ts]. In this model, for each sth time interval [ts−1, ts], the
sth controlled trajectory xs(t) and the sth intermediate problem are defined:

d

dt
x1(t) = D(t)x1(t) + B(t)u1(t), t ∈ [t0, t1],

x1(t0) = x0, x1(t1) = x∗
1, u1(t) ∈ U,

x∗
1 ∈ Argmin{〈ϕ1, x1〉 | G1x1 ≤ g1, x1 ∈ Rn}, x∗

1 ∈ X1, x1(t1) = x1,

..............................................................................................................
d

dt
xs(t) = D(t)xs(t) + B(t)us(t), t ∈ [ts−1, ts],

xs(ts−1) = x∗
s−1, xs(ts) = x∗

s, us(t) ∈ U,

x∗
s ∈ Argmin{〈ϕs, xs〉 | Gsxs ≤ gs, xs ∈ Rn}, x∗

s ∈ Xs, xs(ts) = xs, (3)
..............................................................................................................

d

dt
xf (t) = D(t)xf (t) + B(t)uf (t), t ∈ [tf−1, tf ],

xf (tf−1) = x∗
f−1, xf (tf ) = x∗

f , uf (t) ∈ U,

x∗
f ∈ Argmin{〈ϕf , xf 〉 | Gfxf ≤ gf , xf ∈ Rn}, x∗

f ∈ Xf , xf (tf ) = xf .

So, within the framework of the proposed approach, the initial problem with
phase constraints (1) is split into a finite set of independent intermediate termi-
nal control problems without phase constraints. Each of these problems can be
solved independently, starting with the first problem. Then, conducting a phase
trajectory through solutions of intermediate problems, we find a solution to the
terminal control problem over the entire segment [t0, tf ]. To solve any of the
subproblems of system (3), the authors developed methods in [1,2].

4 Problem Statement in Vector-Matrix Form

For greater clarity, we present the system (2) or (3) in a more compact vector-
matrix form:

dynamics
⎛
⎜⎜⎜⎝

dx1
dt
dx2
dt
...

dxf

dt

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Df

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xf

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bf

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1

u2

...
uf

⎞
⎟⎟⎟⎠

where x(t0) = x0, xs(ts) = x∗
s, xf (tf ) = x∗

f , us(t) ∈ U,
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and intermediate problems
⎛
⎜⎜⎜⎝

x∗
1

x∗
2
...

x∗
f

⎞
⎟⎟⎟⎠ ∈ Argmin

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ϕ1 ϕ2 · · · ϕf

)
⎛
⎜⎜⎜⎝

x1

x2

...
xf

⎞
⎟⎟⎟⎠

∣∣∣∣∣

⎛
⎜⎜⎜⎝

G1 0 · · · 0
0 G2 · · · 0
...

...
. . .

...
0 0 · · · Gf

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2

...
xf

⎞
⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎝

g1
g2
...

gf

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(4)

Recall once again that each function x(t) generates a vector with components
(x(t1), ..., x(ts), ..., x(tf )), and the number of components is equal to the number
of sampling points of the segment [t0, tf ]. Each component of this vector, in turn,
is a vector of size n. Thus, we have a space of dimension Rn×f . In this space, the
diagonal matrix G(ts), s = 1, f , is defined, each component of which is submatrix
Gs(ts) from (4), whose dimension is n × n. We described the matrix functional
constraint of the inequality type at the right-hand side, which is given by vector
g = (g1, g2, ..., gf ). The linear objective function that completes the formulation
of the finite-dimensional linear programming problem in (4) is a scalar product
of vectors ϕ and x.

Thus, in macro format, we can represent problem (4) in the form
⎧⎨
⎩

d

dt
x(t) = D(t)x(t) + B(t)u(t), t0 ≤ t ≤ tf , x(t0) = x0, x(tf ) = x∗

f ,

x∗ ∈ Argmin{〈ϕf , x〉 | Gx ≤ g, x ∈ Rn}, u(t) ∈ U.
(5)

Note that the macro system (5) obtained as a result of scalarization of inter-
mediate problems (3) (or (4)) almost completely coincides with the terminal
control problem with the boundary value problem on the right-hand end sug-
gested and explored in [1,2]. Therefore, the method for solving problem (5) and
the proof of its convergence as a whole will repeat the logic of reasoning.

As a solution to differential system (5), we mean any pair (x(t), u(t)) ∈
Ln
2 [t0, tf ] × U that satisfies the condition

x(t) = x(t0) +
∫ t

t0

(D(τ)x(τ) + B(τ)u(τ))dτ, t0 ≤ t ≤ tf . (6)

The trajectory x(t) in (6) is an absolutely continuous function. The class of
absolutely continuous functions is a linear variety everywhere dense in Ln

2 [t0, tf ].
In the future, this class will be denoted as ACn[t0, tf ] ⊂ Ln

2 [t0, tf ]. For any
pair of functions (x(t), u(t)) ∈ ACn[t0, tf ]×U, the Newton-Leibniz formula and,
accordingly, the integration-by-parts formula are satisfied.

5 Saddle-Point Sufficient Optimality Conditions. Dual
Approach

Drawing the corresponding analogies with the theory of linear programming, we
write out the primal and dual Lagrange functions for the problem (5). To do
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this, we scalarize system (5) and introduce a linear convolution known as the
Lagrange function

L(p, ψ(t);x, x(t), u(t)) = 〈ϕ, x〉 + 〈p,Gx − g〉

+
∫ tf

t0

〈ψ(t),D(t)x(t) + B(t)u(t) − d

dt
x(t)〉dt,

defined for all p ∈ Rm
+ , ψ(t) ∈ Ψn

2 [t0, tf ], x ∈ Rn, (x(t), u(t)) ∈ ACn[t0, tf ] × U.
Here x is a finite-dimensional vector composed of the values of trajectory x(t)
at the sampling points; Ψn

2 [t0, tf ] is a linear manifold of absolutely continuous
functions from an adjoint space. The variety Ψn

2 [t0, tf ] is everywhere dense in
Ln
2 [t0, tf ].

The saddle point (p∗, ψ∗(t);x∗, x∗(t), u∗(t)) of the Lagrange function is
formed by primal (x∗, x∗(t), u∗(t)) and dual (p∗, ψ∗(t)) solutions of problem (5)
and, by definition, satisfies the system of inequalities

〈ϕ, x∗〉 + 〈p,Gx∗ − g〉 +
∫ tf

t0

〈ψ(t),D(t)x∗(t) + B(t)u∗(t) − d

dt
x∗(t)〉dt

≤〈ϕ, x∗〉 + 〈p∗, Gx∗ − g〉 +
∫ tf

t0

〈ψ∗(t),D(t)x∗(t) + B(t)u∗(t) − d

dt
x∗(t)〉dt

≤ 〈ϕ, x〉 + 〈p∗, Gx − g〉 +
∫ tf

t0

〈ψ∗(t),D(t)x(t) + B(t)u(t) − d

dt
x(t)〉dt

for all p ∈ Rm
+ , ψ(t) ∈ Ψn

2 [t0, tf ], x ∈ Rn, (x(t), u(t)) ∈ ACn[t0, tf ] × U.
If the original problem (5) has a primal and dual solution, then this pair is

a saddle point of the Lagrange function. Here, as in the finite-dimensional case,
the dual solution is formed by the coordinates of the normal to the supporting
plane at the minimum point.

The converse is also true: the saddle point of the Lagrange function consists
of the primal and dual solutions to original problem (5).

Using formulas to go over to conjugate linear operators

〈ψ,Dx〉 = 〈DTψ, x〉, 〈ψ,Bu〉 = 〈BTψ, u〉

and the integrating-by-parts formula on segment [t0, tf ]

〈ψ(tf ), x(tf )〉 − 〈ψ(t0), x(t0)〉 =
∫ tf

t0

〈 d

dt
ψ(t), x(t)〉dt +

∫ tf

t0

〈ψ(t),
d

dt
x(t)〉dt,

we write out the dual Lagrange function and saddle-point system in the conjugate
form:

LT (p, ψ(t);x, x(t), u(t)) = 〈ϕ + GT p − ψf , x〉 − 〈g, p〉 + 〈ψ0, x0〉

+
∫ tf

t0

〈DT (t)ψ(t) +
d

dt
ψ(t), x(t)〉dt +

∫ tf

t0

〈BT (t)ψ(t), u(t)〉dt
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for all p ∈ Rm
+ , ψ(t) ∈ Ψn

2 [t0, tf ], x ∈ Rn, (x(t), u(t)) ∈ ACn[t0, tf ] × U, x0 =
x(t0), ψ0 = ψ(t0), ψf = ψ(tf ).

The dual saddle-point system has the form

〈ϕ + GT p − ψf , x∗〉 + 〈−g, p〉 + 〈ψ0, x
∗
0〉

+
∫ tf
t0

〈DT (t)ψ(t) + d
dtψ(t), x∗(t)〉dt +

∫ tf
t0

〈BT (t)ψ(t), u∗(t)〉dt ≤

≤ 〈ϕ + GT p∗ − ψ∗
f , x∗〉 + 〈−g, p∗〉 + 〈ψ∗

0 , x
∗
0〉

+
∫ tf
t0

〈DT (t)ψ∗(t) + d
dtψ

∗(t), x∗(t)〉dt +
∫ tf
t0

〈BT (t)ψ∗(t), u∗(t)〉dt ≤

≤ 〈ϕ + GT p∗ − ψ∗
f , x〉 + 〈−g, p∗〉 + 〈ψ∗

0 , x0〉

+
∫ tf
t0

〈DT (t)ψ∗(t) + d
dtψ

∗(t), x(t)〉dt +
∫ tf
t0

〈BT (t)ψ∗(t), u(t)〉dt

for all p ∈ Rm
+ , ψ(t) ∈ Ψn

2 [t0, t1], x ∈ Rn, (x(t), u(t)) ∈ ACn[t0, tf ] × U.
Both Lagrangians (primal and dual) have the same saddle point (p∗, ψ∗(t);x∗,

x∗(t), u∗(t)), which satisfies the saddle-point conjugate system.
From the analysis of the saddle-point inequalities, we can write out mutually

dual problems:

the primal problem:

x∗ ∈ Argmin{〈ϕ, x〉 | Gx ≤ g, x ∈ Rn,

d
dtx(t) = D(t)x(t) + B(t)u(t), x(t0) = x0, u(t) ∈ U};

the dual problem:

(p∗, ψ∗(t)) ∈ Argmax{〈−g, p〉 + 〈ψ0, x
∗
0〉 +

∫ tf
t0

〈ψ(t), B(t)u∗(t)〉dt
∣∣∣

DT (t)ψ(t) + d
dtψ(t) = 0, ψf = ϕ + GT p,

p ∈ Rm
+ , ψ(t) ∈ Ψn

2 [t0, tf ]},

∫ tf
t0

〈BT (t)ψ∗(t), u∗(t) − u(t)〉dt ≤ 0, u(t) ∈ U.

6 Method for Solving. Convergence Technique

Replacing the variational inequalities in the above system with the correspond-
ing equations with the projection operator, we can write the differential system in
operator form. Then, based on this system, we write out a saddle-point method of
extragradient type to calculate the saddle point of the Lagrange function. The two
components of the saddle point are the primal and dual solutions to problem (5).
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The formulas of this iterative method are as follows:

1) predictive half-step

d
dtx

k(t) = D(t)xk(t) + B(t)uk(t), xk(t0) = x0,

p̄k = π+(pk + α(Gxk − g)),

d
dtψ

k(t) + DT (t)ψk(t) = 0, ψk = ϕ + GT pk,

ūk(t) = πU (uk(t) − αBT (t)ψk(t));

2) basic half-step

d
dt x̄

k(t) = D(t)x̄k(t) + B(t)ūk(t), x̄k(t0) = x0,

pk+1 = π+(pk + α(Gx̄k − g)),

d
dt ψ̄

k(t) + DT (t)ψ̄k(t) = 0, ψ̄k = ϕ + GT p̄k,

uk+1(t) = πU (uk(t) − αBT (t)ψ̄k(t)), k = 0, 1, 2, ...

Here, at each half-step, two differential equations are solved and an iterative
step along the controls is carried out. Below, a theorem on the convergence of
the method to the solution is formulated.

Theorem 1. If the set of solutions (p∗, ψ∗(t);x∗, x∗(t), u∗(t)) for prob-
lem (5) is not empty, then sequence {(pk, ψk(t);xk, xk(t), uk(t))} gener-
ated by the method with the step length α ≤ α0 contains subsequence
{(pki , ψki(t); xki , xki(t), uki(t))}, which converges to the solution of the prob-
lem, including: weak convergence in controls, strong convergence in trajectories,
conjugate trajectories, and also in terminal variables.

The proof of the theorem is carried out in the same way as in [6]. The
computational process presented in this paper implements the idea of evidence-
based computing. It allows us to receive guaranteed solutions to the problem
with a given accuracy, consistent with the accuracy of the initial information.

Conclusions. In this paper, we study a terminal control problem with a finite-
dimensional boundary value problem at the right-hand end of the time interval
and phase constraints distributed over a finite given number of points of this
interval. The problem has a convex structure, which makes it possible, within the
duality theory, using the saddle-point properties of the Lagrangian, to develop
a theory of saddle-point methods for solving terminal control problems. The
approach proposed here makes it possible to deal with a complex case with
intermediate phase constraints on the controlled phase trajectories. The conver-
gence of the computation process for all components of the solution has been
proved: namely, weak convergence in controls and strong convergence in phase
and dual trajectories and in terminal variables.
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