УДК 544.476.2:544.723.54

ОСОБЕННОСТИ ХЕМОСОРБЦИИ КРЕЗОЛА НА ПОРИСТОМ ЖЕЛЕЗОСОДЕРЖАЩЕМ АДСОРБЕНТЕ, ПОЛУЧЕННОМ ИЗ УГЛЕРОДНОГО ОСТАТКА ПЕРЕРАБОТКИ ЛИГНИНА СООБЩЕНИЕ II. ВЛИЯНИЕ ХЕМОСОРБЦИИ *м*-КРЕЗОЛА НА СТРУКТУРНЫЕ ОСОБЕННОСТИ ЖЕЛЕЗОСОДЕРЖАЩИХ КОМПОНЕНТОВ

© 2021 г. С. А. Николаев^{1,*}, Ю. В. Максимов², О. В. Бухтенко³, В. И. Пасевин⁴, М. В. Цодиков³

¹ Московский государственный университет имени М.В. Ломоносова, Москва, 119991 Россия ² Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН, Москва, 119991 Россия ³ Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, 119991 Россия ⁴ ООО «СОРБИС ГРУПП», Москва, 119361 Россия *E-mail: tsodikov@ips.ac.ru

> Поступила в редакцию 22 июля 2020 г. После доработки 7 сентября 2020 г. Принята к публикации 18 сентября 2020 г

В статье представлены результаты исследования структуры Fe-содержащих компонентов углеродного адсорбента, полученного из остатка углекислотного риформинга лигнина, стимулированного микроволновым излучением, до и после сорбции *м*-крезола. С помощью рентгеновской фотоэлектронной спектроскопии (РФЭС) установлено, что основное состояние железа в образцах – Fe³⁺. Выявлен эффект «кажущегося снижения содержания железа» после обработки адсорбента крезолом, что объясняется образованием поверхностных комплексов, поглощающих часть испускаемых образцом фотоэлектронов. С помощью мессбауэровской спектроскопии установлено, что в состав железосодержащей фазы исходного адсорбента входит фракция атомов Fe⁰ (\approx 7%), которые в процессе адсорбции *м*-крезола меняют свою степень окисления с 0 до 3+. Полученный результат можно объяснить протеканием реакций с образованием поверхностных алкоголятов железа.

Ключевые слова: железосодержащий углеродный остаток переработки лигнина, *м*-крезол, рентгеновская фотоэлектронная спектроскопия, мессбауэровская спектроскопия, микроволновое излучение, валентное состояние железа, центры хемосорбции

DOI: 10.31857/S002824212101010X

Ранее был разработан метод формирования пористого адсорбента из железосодержащего остатка углекислотного риформинга лигнина в плазменно-каталитическом режиме, стимулированным микроволновым излучением (МВИ) [1–4]. Образцы адсорбентов, полученные разработанным методом, обладают удельной поверхностью 580–620 м²/г. Состав пор адсорбентов характеризуется узким распределением их объема по эффективным размерам с максимумом в области 3.8 нм, что свидетельствует о формировании в адсорбенте микро- и мезо пор [4].

В сообщении I [1] представлены результаты по исследованию пористой структуры железосодержащего адсорбента, полученного из остатка углекислотного риформинга лигнина, стимулированного МВИ. С помощью ИК-спектроскопии и просвечивающей электронной микроскопии (ПЭМ) установлено, что поверхность адсорбента содержит нанофазы железа, которые принимают непосредственное участие в формировании пористой структуры [4]. Там же было выдвинуто предположение о том, что наряду с карбонильной группой в качестве центров сорбции *м*-крезола могут выступать и железосодержащие компоненты. Для проверки этой гипотезы в настоящей работе проведено изучение структуры поверхности адсорбента (до и после модификации крезолом) методами РФЭС и мессбауэровской спектроскопии.

Рис. 1. Микрофотография ПЭМ исходного адсорбента [2].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеновские фотоэлектронные спектры металлов в восстановленных образцах регистрировали на спектрометре AxisUltra DLD (Kratos) с использованием монохроматического Al K_{α} излучения (1486.6 эВ). Съемку производили с применением электронной пушки для компенсации статического заряда на гранулах катализаторов. Спектры регистрировали с энергией пропускания анализатора 40 эВ с шагом 0.1 эВ. Для калибровки шкалы энергии использовали внешний стандарт – золотую фольгу с энергией связывания электронов Au 4f_{5/2} = (83.96 ± 0.03) эВ.

Мессбауэровские спектры ⁵⁷Fe получали на спектрометре электродинамического типа Wissel (Германия) при температуре 300 К с использованием гелиевого криостата фирмы Janis (CCS-850) с температурным контроллером фирмы LakeShoreCryotronics (332). Точность поддержания температуры была не менее 0.1 К. В качестве источника излучения использовали ⁵⁷Co(Rh) активностью 1.1 ГБк. Изомерные сдвиги отсчитывали от центра линий магнитной сверхтонкой структуры металлического железа. Спектры обрабатывали по стандартным программам МНК (LOREN-ИХФ РАН, NORMOS-Германия) в предположении лоренцевой формы линии [5].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Ранее методом ПЭМ было установлено, что железо в углеродном остатке лигнина после рифор-

Рис. 2. РФЭ-спектры высокого разрешения Fe 2p исходного адсорбента и исходного адсорбента после взаимодействия с крезолом.

минга, стимулированного МВИ и приготовленном из него исходном адсорбенте (ИА), присутствует в виде частиц FeO_x и частиц ядро (FeO_x)-оболочка (С). На рис. 1 представлен общий вид таких частиц, из которого следует, что после высокотемпературной обработки остатка переработки лигнина диоксидом углерода, стимулированного МВИ, большая часть наноразмерных частиц представлена в конфигурации ядро-оболочка [4].

Ключевые результаты РФЭ-исследования ИА и адсорбента после взаимодействия с крезолом (ИАК) показали, что в РФЭ-спектрах энергия связи Fe $2p_{3/2}$ равна 711 эВ (рис. 2). Наблюдаемое в настоящей работе значение энергии связи Fe $2p_{3/2}$ и наличие сателлита в области 719 эВ позволяют сделать вывод о том, что основным состоянием железа в образцах является Fe³⁺ [5]. Данные РФЭС настоящей работы согласуются с опубликованными ранее данными ПЭМ и энергодисперсионного анализа (ЭДА) [3, 4].

В обзорном РФЭ-спектре ИА (рис. 3) наблюдаются линии С, О, N, Fe, Si и Cl.

Концентрации элементов в поверхностном слое адсорбента, рассчитанные по обзорным РФЭ-спектрам, приведены в табл. 1.

Из табл. 1 видно, что элементы С и О составляют основу исходного углеродсодержащего адсорбента (82 и 15 ат. % соответственно). Помимо углерода и кислорода, ИА содержит незначительное количество Si, N и Cl. Наличие Si и N обусловлено примесями исходного лигнина, наличие Cl объ-

	-	-	-			
Образец	С	0	Ν	Fe	Cl	Si
ИА	81.73	15.00	0.66	1.01	0.07	1.53
ИАК	81.49	15.40	1.40	0.38	_	1.33

Таблица 1. Содержание элементов (ат. %) в исходном адсорбенте (ИА) и адсорбенте после взаимодействия с *м*-крезолом (ИАК). Данные получены из обзорных РФЭ-спектров

Образец	Форма Fe	 δ, изомерный сдвиг относительно α-Fe 		$H_{\rm in}$, внутренне-	А, относительное
			а, квадрупольное	магнитное поле на	содержание формы
			расщепление	ядре ⁵⁷ Fe	железа
		±0.03 мм/с		±0.5T	±0.05
ИА	Fe ⁰ -монолиния	-0.0	-	-	0.07
ИАК Н Н	Fe ³⁺ -парамагное	0.31	0.80	_	0.93
	Fe ³⁺ -парамагное	0.35	0.75	_	0.88
	Fe ³⁺ -магнитное	0.39	0.15	50.4	0.12

Таблица 2. Параметры мессбауэровских спектровобразцов ИА и ИАК

ясняется стадией кислотного травления лигнина [4].

Полученная из обзорных спектров РФЭС, концентрация поверхностного железа в исходном адсорбенте, составляющая примерно 1 ат. %, после обработки крезолом уменьшается примерно в 2 раза (табл. 1). Аналогичный вывод следует из анализа РФЭ-спектров высокого разрешения, приведенных на рис. 2. Из рис. 2 видно, что интенсивность сигнала Fe2p образца ИАК примерно в 2 раза ниже, чем интенсивность сигнала Fe 2p образца ИА. Этот результат становится объяснимым, если предположить, что крезол взаимодействует с атомами Fe³⁺, например за счет образования известных комплексов Fe[(OPh)₆]³⁺. В этом случае сорбированный на поверхности фаз железа м-крезол будет поглощать часть испускаемых образцом фотоэлектронов Fe 2p и приводить к снижению интенсивности аналитического сигнала (рис. 2), а при расчете поверхностных содержаний элементов приводить к заниженным значениям концентрации железа в образце (см. табл. 1).

Основные результаты исследования образцов ИА и ИАК с помощью мессбауэровской спектроскопии приведены в табл. 2.

Из данных мессбауэровской спектроскопии следует, что основное состояние железа в исходном образце представлено парамагнитным оксидом трехвалентного железа (табл. 2), что хорошо согласуется с данными РФЭС настоящего исследования (рис. 2). В силу высокой чувствительности, методом мессбауэровской спектроскопии удалось зафиксировать наличие в образце ИА наличие атомов Fe⁰ (табл. 2, ИА). По-видимому, эти атомы в небольшом количестве (порядка 7%) входят в состав наноразмерных кластеров железа, стабилизированных включениями атомарного углерода [6–8]. После адсорбции крезола все железо присутствует

НЕФТЕХИМИЯ том 61 № 1 2021

в окисленном трехвалентном состоянии (табл. 2, ИАК). При этом большая часть относится к парамагнитным высокодисперсным частицам оксида железа и небольшая часть (12%) – к достаточно крупным магнитноупорядоченным частицам оксида α -Fe₂O₃ (табл. 2). Переход атомов Fe⁰ в Fe³⁺ после адсорбции крезола можно объяснить протеканием реакции с образованием поверхностных алкоголятов крезола, например по уравнению:

 $6R-OH + 2Fe \rightarrow 2(R-O)_3-Fe + 3H_2$.

ЗАКЛЮЧЕНИЕ

На основании полученных результатов можно заключить, что атомы Fe, содержащиеся в высоко-

Рис. 3. Обзорные РФЭ-спектры образцов ИА и ИАК.

дисперсных кластерах, наряду с карбонильными группами поверхности адсорбента, являются центрами хемосорбции *м*-крезола. Это, в свою очередь, приводит к повышению общей сорбционной способности адсорбента и делает его перспективными для разработки новых технологий удалении вредных ароматических техногенных выбросов, аналогом которых является крезол.

БЛАГОДАРНОСТИ

Авторы выражают благодарность Маслакову К.И., Максимову С.В. и Дворяку С.В. (ЦКП МГУ «Нанохимия и наноматериалы») за помощь в изучении образцов с использованием РФЭС.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках Государственного задания ИНХС РАН по теме № 47.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СВЕДЕНИЯ ОБ АВТОРАХ

Николаев Сергей Александрович, ORCID – 0000-0002-9091-3537

Цодиков Марк Вениаминович, д.х.н., зав. лаб.; ORCID – 0000-0002-8253-2945

Максимов Юрий Васильевич, г.н.с.

Бухтенко Ольга Владимировна, с.н.с.

Пасевин Вячеслав Иванович, главный инженер ООО «Сорбис групп»

СПИСОК ЛИТЕРАТУРЫ

1. Бондаренко Г.Н., Колбешин А.С., Либерман Е.Ю., Чистяков А.В., Пасевин В.И., Цодиков М.В. Пористая структура и адсорбционная способность сорбента // Нефтехимия. 2021. Т. 61. № 1. С. 92–98.

- Арапова О.В., Цодиков М.В., Чистяков А.В., Курдюмов С.С., Гехман А.Е. Переработка лигнина в водородсодержащий газ под воздействием микроволнового излучения. // ДАН, 2017, Т. 475, № 4, С. 405–409.
- Tsodikov M.V., Ellert O.G., Nikolaev S.A., Arapova O.V., Bukhtenko O.V., Maksimov Yu.V., Kirdyankin D.I., Vasil'kov A.Yu. Fe-Containing nanoparticles used as effective ccatalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation // J. of Nanoparticle Research. 2018. V. 20. № 3. P. 86–101. https://doi.org/10.1007/s11051-018-4185-7.
- Tsodikov M.V., Nikolaev S.A., Chistyakov A.V., Bukhtenko O.V., Fomkin A.A. Formation of adsorbents from fecontaining processing residues of lignin // Microporous and Mesoporous Materials. 2020. № 298. P. 110089. doi.org/10.1016/j.micromeso.2020.110089
- Голубьев А.В., Нищев К.Н., Беглов В.И., Кяшкин В.М., Бродская И.Г., Максимов В., Имшенник В.К, Новичихин С.В. Структурные превращения наносистемы (1-x)Fe₂O₃-хRuO₂ при различных температурах восстановления // Журн. технической физики. 2020. Т. 90. № 5. С. 841–849.
- Biesinger M.C., Payne B.P., Grosvenor A.P., Lau L.W.M., Gerson A.R., Smart R.St.C. Resolving surface chemical states in xps analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni // Appl. Surf. Sci. 2011. V. 257. P. 2717–2730.
- David B., Pizurova N., Schneeweiss O., Kudrle V., Jašek O., Synek P. Iron-based nanopowders containing α-Fe, Fe₃C, and γ-Fe particles synthesised in microwave torch plasma and investigated with mossbauer spectroscopy // Japan J. Appl. Phys. 2011. V. 50. ID 08JF11.
- Yamada Y., Yoshida H., Kouno K., Kobayashi Y. Iron carbide films produced by laser deposition // J. Phys: Conf Series. 2010. V. 217.