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Abstract: The liquid and lyophilized blood plasma of patients with benign or malignant thyroid
nodules and healthy individuals were studied by terahertz (THz) time-domain spectroscopy and
machine learning. The blood plasma samples from malignant nodule patients were shown to
have higher absorption. The glucose concentration and miRNA-146b level were correlated
with the sample’s absorption at 1 THz. A two-stage ensemble algorithm was proposed for the
THz spectra analysis. The first stage was based on the Support Vector Machine with a linear
kernel to separate healthy and thyroid nodule participants. The second stage included additional
data preprocessing by Ornstein-Uhlenbeck kernel Principal Component Analysis to separate
benign and malignant thyroid nodule participants. Thus, the distinction of malignant and benign
thyroid nodule patients through their lyophilized blood plasma analysis by terahertz time-domain
spectroscopy and machine learning was demonstrated.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Thyroid nodules are the most widespread among the pathologies of the endocrine system. About
5–15% of them are malignant and require surgical intervention, the decision for which is to be
taken based on a preoperative diagnosis [1,2]. For this purpose, various imaging techniques are
used, including computed [3], magnetic resonance [4,5], and positron emission tomographies
[6]. However, ultrasonography [7] and thyroid nodules biopsy under ultrasonography control
with fine-needle aspiration cytology (FNAC) [8,9] are the most widely used. The latter requires
highly skilled executing personnel and has a risk of errors [10]. Even after adequate sampling,
the conclusion turns out to be indefinite in 15-30% of cases because cytological features are
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insufficient to distinguish between benign and malignant thyroid nodules. In these cases, it is
necessary to carry out lobectomy to establish the concluding diagnosis [11].

Diagnostics accuracy increases when using immunocytochemistry and thyroid cancer’s
molecular biomarker evaluation [12–14]. The latter includes the detection of somatic mutations
and translocations, determination of expression pattern of protein-encoding genes, and specific
micro-RNA (miRNA) [15], as well as oncometabolites [16]. MiRNA is a class of small endogenous
non-coding RNA functioning as the negative regulators of gene expression. These miRNAs may
contribute to major cell processes in carcinogenesis, namely the growth, differentiation, apoptosis,
and adhesion [17]. The miRNA tissue profiles help differentiate benign and malignant thyroid
nodules; however, it uses an invasive biopsy procedure [18,19]. Quite the contrary, analysis of
miRNA [20] and metabolites in body fluids (blood serum or plasma, urine) possess potential in
early cancer detection [21].

Despite a broad list of existing methods, thyroid cancer early detection is not still solved. Optical
spectroscopy allows one to measure molecular biomarkers in various samples of biological origin.
For example, Raman or Fourier-transform infrared spectroscopy combined with multidimensional
analysis distinguished pathologically changed and normal thyroid nodules [22–24].

Terahertz time-domain spectroscopy (THz-TDS) is attractive for designing new noninvasive
or minimally invasive diagnostic tools [25–27]. The THz-TDS gives a possibility of direct
refractive index measurement, in addition to the absorption coefficient. Herewith, the sample’s
dielectric function can be restored [28,29], providing a more informative analysis [30–32]. The
THz-TDS proved to be a sensitive method of determining structural changes in tumor tissues
[33–35], particularly in vivo [36]. The high sensitivity of THz spectroscopy to blood content
was established [37–45]. In particular, the diabetes patients’ blood absorption in the THz range
depends linearly on the glucose level [41,43]. THz spectroscopy distinguished the blood plasma
of healthy and diabetic rats [38,44]. Blood plasma THz absorption was decreased for mice with
grafted Ehrlich’s carcinoma compared to healthy ones [46]. The absorption in the 0.05−1.0
THz range of rat’s blood serum was changed during the hepatic cancer development, correlated
with blood total protein concentration [47]. It confirms that pathologies, including cancer, cause
essential changing blood optical characteristics in the THz range.

This work investigates the abilities of THz-TDS and machine learning in differentiating
malignant and benign thyroid nodules by analyzing blood plasma. The liquid and lyophilized
blood plasma were studied. The spectral data analysis was conducted by the Kernel Principal
Component Analysis (PCA), multidimensional scaling, and Uniform Manifold Approximation
and Projection (UMAP) methods. The prognostic models were developed by the linear kernel
Support Vector Machine (SVM). The spectral data were also compared with a biochemical
composition of blood and the tissue’s miRNA profile.

2. Material and methods

2.1. Sample preparation

The study was conducted following the Russian Federation’s legislation; each patient signed
informed consent; the clinical data were depersonalized. The Ethics Committee of Municipal
Clinical Hospital No.1 (Novosibirsk, Russia) approved the study protocol.

Healthy volunteers (n= 6) and patients with thyroid nodules (n= 10), provided by the Municipal
Clinical Hospital No. 1 of Novosibirsk, were recruited. Peripheral blood samples were collected
in vacutainers with EDTA (Sarstedt AG & Co. KG, Germany). The plasma was separated by
centrifugation at 2800 g for 15 min at +4 °C. Blood plasma samples were frozen and stored at
-80 °C. Standard biochemical blood tests were conducted at the Municipal Clinical Hospital No.1
(Novosibirsk).

For all patients with thyroid nodules, FNAC was performed, and molecular markers in the
biopsy material were determined. Histological examination was carried out for 5 samples. We
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ranked the importance of these methods (from more reliable to least) as follows: histological,
molecular, and cytological analysis. A minimum set of markers was extracted (levels of HMGA2
mRNA and miR-375, -221, and -146b combined with the mitochondrial-to-nuclear DNA ratio)
and yielded highly accurate discrimination between benign and malignant thyroid nodules [19].
The final clinical diagnoses were made by combining FNAC with histological examination,
analysis of molecular markers, and clinical data. Based on this, patients with thyroid nodules
were divided into two groups: group 1, with benign thyroid nodules (1b – 5b), and group 2, with
malignant thyroid nodules (1m –5m) (Table 1). The detailed patients’ description is shown in
Table S1.

Table 1. Characteristics of patientsa

Name G Age The final clinical diagnoses Glucose, mM Total protein, g/L miRNA-146b

1b F 37 toxic goiter 5.03 61 -2.32

2b F 63 FTA 5.8 82.4 -32.51

3b F 34 FTA 5.64 72.3 -1.57

4b F 57 diffuse non-toxic goiter 6.07 80 -9.24

5b F 71 Hürthle cell adenoma 5.74 72.2 -3.32

1m F 66 PTC 4.8 74.9 17.44

2m F 66 FTC 4.47 69.6 1.40

3m F 32 PTC 4.52 83.8 3.01

4m F 64 Follicular variant of PTC 5.2 75 18.89

5m M 59 Hürthle cell carcinoma 5.2 70.8 -1.67

aG- Gender, b – benign, m – malignant, follicular thyroid adenoma (FTA), papillary thyroid carcinoma (PTC), follicular
thyroid carcinoma (FTC).

The blood plasma was lyophilized by freeze-drying VaCo 2 (ZirBus, Germany) at -50°C and
a pressure of 3 Pa. Pellets with a diameter of 5 mm had been made from lyophilized plasma
samples using laboratory press «Specac, GS15011 (Great Britain)» at the pressure of 1 ton. Two
variants of the pellets of different thickness («thick» and «thin») from each sample were made.
The pellets’ weight and thickness were measured by analytic scales «A&D, GR-200 (Japan)» and
micrometer «MK-25 0.01(Russia)». The thick pellets’ weight and thickness were in the range
of 21.1-26.2 mg and 0.75-1.11 mm, respectively, and of the thin pellets were 9.3-13.2 mg and
0.385-0.565 mm, respectively. The density of pellets was in the range of 1.128-1.562 mg/mm3.

2.2. Experiment setup

The measurements were carried out with a THz-TDS spectrometer based on a femtosecond
Spectra Physics Tsunami laser system (λ= 800 nm, τ= 80 fs, 5 nJ, rep. rate is 80 MHz) [48]. A
commercial multi-dipole photoconductive antenna was used as the emitter of THz radiation. The
radiation power of the latter was within 70 ÷ 75 mW, and the bias voltage was 15 V. The detector
was a 4 mm ZnTe crystal. The repetition period of the THz pulses was 12 ns; the THz pulse
energy was 10−13 J. The latter is below a tissue damage threshold [49]. A detailed description of
the spectrometer was presented in our previous works [44,47,48].

Measurements were carried out at a temperature of (21± 1)°C. A temporal averaging over
1024 sample scans with a 25 ps total duration was used. The registered spectral range was from
0.2 to 2 THz for lyophilized samples and from 0.2 to 1.6 THz for liquid plasma samples with a
spectral resolution of 40 GHz. One measurement takes about 3 minutes. For increasing reliability,
each serum sample was analyzed in triplicates, and then all spectral scans were averaged. The
algorithm of the measurements is shown in Fig. 1.
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Fig. 1. The algorithm of the blood plasma sample measurements.

The pellets from lyophilized blood plasma were placed on a holder and measured in a
transmission mode. Liquid plasma analysis was carried out using two identical cells of 120 µl
volume (A145, Bruker Optics) with a spacer of 0.12 mm thickness [50]. One cell was filled
with distilled water, the second one - with blood plasma. The plasma was thawed at 4 °C
and centrifuged at 1000 g for 10 minutes to remove any precipitate. Transmission of the cell
with water was used as a reference signal, making it possible to eliminate water’s dominant
contribution in blood plasma [47]. The cell transmission measurements had been repeated several
times to reduce the influence of laser radiation power temporal drift.

2.3. Methods

2.3.1. Spectral data extraction

The blood plasma transmittance Tw was normalized to air for dry plasma and to water for liquid
plasma:

Tw(f ) =
Esample(f )

Ereference(f )
(1)

where Esample(f ) is the spectrum of the THz wave transmitted through a dry or liquid sample,
Ereference(f ) is the transmission spectrum of the reference THz wave transmitted through an empty
frame for pellets or a cell with water for liquids. The use of water to measure a reference signal
makes it possible to consider the reflection losses and re-reflections on the cell walls.

A plasma sample absorption coefficient and the refractive index were calculated using the
simplified formulas [47]:

α =
− ln(Tw(f )) + ln(1 − R2)

d
, (2)

n = naverage + arg
Ereference(f )
Esample(f )

·
c

2 · π · f · d
, (3)

where naverage =
c·∆t

d + 1 is the averaged refractive index, R = naverage−1
naverage+1 is the reflection loss, ∆t

is the shift of the pulse transmitted through the sample relative to the reference signal, d is the
sample thickness, f is the frequency, c is the speed of light.

We do not consider multiple reflections in thin pellets since this effect is negligible due to
the strong absorption of the pellet material. The absorption coefficient for the field amplitude
and not for the power was used, which is twice as large and generally accepted. Instrumental
errors associated with the accuracy of the cell thickness measurement and the baseline drift
ultimately lead to a total error of up to 5%. The error deteriorates up to 15% for liquid plasma at
the frequency spectrum edges (0.05–0.07 and 1.2–1.6 THz) and lyophilized plasma less than
10% for the total spectral range.
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The approximate formulas (2), (3) cause an error in absorption calculation of less than 1%
for frequencies above 0.05 THz and for liquid plasma layer of at least 0.12 mm and lyophilized
plasma pellets thickness from 0.385 to 1.11 mm. The variation in pellet thickness causes a total
error of optical characteristics below 15%, with the method described above.

2.3.2. Spectral data analysis methods

The following dimensionality reduction methods were used: Kernel PCA, multidimensional
scaling, and UMAP methods [51–53]. We also applied a Composite Multiscale Entropy (CMSE)
method for the THz data cluster analysis [54]. These methods were chosen due to the difference in
respective basic ideas and the application fields’ versatility. Kernel PCA with linear, radial based
function kernel and original kernel, derived from the Green’s function for the Ornstein-Uhlenbeck
(OU) process [55] was used. The latter has the following form:

K(x, y) = exp(−γ · ∥x − y · exp(−λ)∥), (4)

where parameters γ, λ define the shape of the kernel. We used the following values: γ = 0.001,
λ = 0.01, and the pairwise Euclidean distance as a norm ∥ . . . ∥.

The UMAP method was applied with the number of neighbors 4, minimal distance 0.7.
Multidimensional scaling was used with the default set of parameters. CMSE has the embedded
dimension 2, threshold value 0.15, and scale numbers were assigned to 10 because we have lower
spectral resolution than in the reference work. All these computations were conducted in Python
3.8.2 and Scikit-learn package 0.23.2.

The amount of the data is not large, and the classification could suffer overfitting. Here, we
used Supervised Learning methods to estimate the linear separability of the data, for example, by
using linear kernel SVM [56]. To validate estimation of the data separability, we used a standard
approach for Supervised Learning: initial data were randomly divided into 3 splits with the same
distribution of the data among classes as in the original dataset. Linear SVM was trained on
each split with class weight balancing. Obtained quality metrics such as sensitivity, specificity,
accuracy, and precision were averaged. Also, Receiver Operating Characteristic (ROC) and Area
Under the Curve (AUC) analyses were performed for each data split and the averaged ones.

A two-stage ensemble scheme was proposed for the data analysis (see Fig. 2). The first
stage aims to separate healthy and thyroid nodules, enabling to estimate of the potential of
sensitivity. The second stage was aimed to separate benign and malignant thyroid nodules,
allowing evaluating the potential of specificity. By applying them consequently, the possibility of
constructing a good prediction model arises.

Fig. 2. The two-stage scheme of the data separation.
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2.3.3. Statistical data analysis

The OriginLab Corp. statistical software package was used to process the data. Mann–Whitney
test was used for paired comparisons. The Pearson correlation coefficient was used to estimate
linear relations between biochemical parameters and THz optical characteristics. The null
hypothesis feasibility was taken at 5% of significance.

3. Results and discussions

3.1. Liquid blood plasma

Liquid blood plasma samples were analyzed without additional processing. Their absorption
coefficient and refractive index spectra are shown in Fig. 3.

Fig. 3. Average absorption coefficient a) and refractive index b) spectra of water (1, blue),
healthy individuals (2, green), and patients with thyroid nodules (3, red) with error bars.
Averaging was carried out over 30 measurements for blood plasma of patients with thyroid
nodules, over 15 measurements for both blood plasma healthy individuals and water.

The absorption coefficient and refractive index values of blood plasma from patients with
thyroid nodules are slightly higher than those from healthy individuals, but there are no statistically
significant differences.

The shapes of blood plasma spectra and the water spectrum are the same; however, the
amplitude of blood plasma absorption and refractive index spectra is much less than that of water.
We observed a similar phenomenon in human and animal blood plasma [38,44,47,57]. The
coincidence of blood plasma and water spectra shape is explained by the fact that water makes up
more than 90% of blood plasma. At the same time, such blood plasma components as glucose,
proteins, and various salts have a significant effect on the structure of water (it mainly bind water
molecules to a state with a lower THz absorption) and change its THz response [29,48,50,58–60].
Despite the high absorption of THz radiation by water, the THz TDS is sensitive to small
variations of the liquid blood plasma component concentrations in the low-frequency range
[40,41,43,47].

It is convenient using spectra subtraction to visualize the differences between the optical
characteristics of the blood plasma:

αdif = αplasma − αwater (5)

ndif = nplasma − nwater (6)
where αdif , ndif - difference of absorption and refraction values spectra of liquid plasma,
αplasma, nplasma− plasma spectrum values for the case when the reference signal Ereference(f ) is
air, αwater, nwater− spectral characteristics of water.
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Fig. 4. Average difference spectra of absorption coefficient a) and refractive index b) of
blood plasma healthy individuals (green squares) and patients with thyroid nodules (red
squares) with error bars. Averaging was carried out over 30 measurements for blood plasma
of patients with thyroid nodules and over 15 measurements for healthy individuals’ blood
plasma (each measurement with an independent reference signal obtained by passing through
a cell with water).

The difference of absorption coefficient and refractive index values spectra of blood plasma of
healthy individuals (green squares) and patients with thyroid nodules (red squares) are shown in
Fig. 4. Spectral differences of liquids are small compared to the total error.

Figure 5 shows the difference in absorption coefficient and refractive index values spectra for
blood plasma from group 1 (purple squares) and 2 (orange squares).

Fig. 5. Averaged difference spectra of absorption coefficient and refractive index for
the liquid plasma of two groups: malignant thyroid nodules (purple squares) and benign
thyroid nodules (orange squares) normalized to water. Averaging was carried out over 15
measurements (each measurement with an independent reference signal obtained by passing
through a cell with water).

Group 1 is characterized by significantly higher blood glucose levels than group 2 (5.66± 0.17 mM
versus 4.84± 0.16 mM, p <0.05) and 1.2 times higher protein levels. The absorption coefficient
and refractive index, normalized to water, are lower for group 1 than group 2. The differences are
most significant at 0.2 THz. Earlier, the most reliable transmission spectral range of 0.07 to 0.5
THz for blood serum was found for rat experimental liver cancer [47].
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3.2. Lyophilized blood plasma

Since the water contribution to the THz blood plasma spectrum dominates over the other
components, lyophilization was used to increase THz spectroscopy’s informativity. Figure 6 (a,
b) shows the THz absorption coefficient of lyophilized blood plasma pellets.

Fig. 6. The absorption coefficient of thick (a) and thin (b) pellets of lyophilized human
blood plasma: green line - a group of healthy individuals, 1h-6h; orange line - group 1,
1b-5b; purple line - group 2, 1m-5m.

Using pellets of various thicknesses improves the optical parameters evaluation accuracy and
expands the data’s spectral range. Thus, when thickness increases, the transmitted pulse is
more attenuated, and the error in thickness determining affects less. But at high frequencies,
the spectral intensity is attenuated below the noise level. The advantage of thin pellets is more
transparency at the high-frequencies of the THz spectral range and the additional ability to
determine the pellet’s thickness and the average refraction through internal re-reflections.

Figure 6 shows that the absorption coefficient is the same for both types of pellets independently
of the sample type. Moreover, “thick” pellets expand the reliable spectral range to the region
from 0.04 to 0.1 THz, and “thin” ones to the region from 1.5 to 2 THz. Note that no difference
was found in the refractive index between thick and thin pellets. It allows us to average each
sample over two pellet types. The resulting spectra are shown in Fig. 7.

Fig. 7. The absorption coefficient (a) and refractive index (b) with each sample averaging
over thick and thin pellets: green line - a group of healthy individuals, 1h-6h; orange line -
group 1, 1b-5b; purple line - group 2, 1m-5m.



Research Article Vol. 12, No. 2 / 1 February 2021 / Biomedical Optics Express 1028

The absorption is higher in blood plasma from healthy individuals up to a frequency of 0.4
THz. In the range of 0.4-0.6 THz, there is a change in the dynamics of absorption. Samples from
individuals with thyroid nodules exhibit stronger absorption, which is higher from 0.6 THz and
more. The same trend was observed in the absorption spectra of liquid samples (see Fig. 3 and
Fig. 4).

The pellet spectra do not have any prominent features. Glucose has phonon lines at 1.45, 2.12,
2.5 THz [50]. However, there is evidence that, upon lyophilization of liquid samples containing
proteins and sugars, bonds are formed between them, and resonances disappear [61]. The
refractive index spectrum does not change, but the absolute values correlate with the disease’s
presence (see Fig. 7(b)).

The spectra were averaged over groups 1 and 2 to identify spectral differences depending on
benign or malignant thyroid nodules (see Fig. 8). The samples from malignant nodule patients
had higher absorption compared with that of benign nodule patients. The same trend was
observed when studying liquid samples (see Fig. 5). However, spectral differences in liquids are
small compared to the total error.

Fig. 8. The absorption coefficient of lyophilized blood plasma of two groups with malignant
thyroid nodules (purple squares) and benign thyroid nodules (orange squares).

Thus, both liquid and lyophilized blood plasma samples with malignant thyroid nodules have
higher absorption than samples with benign thyroid nodules. For dry pellets, the differences are
significant. The shapes of the spectra showing the increase in absorption with frequency are the
same for all samples.

3.3. Correlation of spectral data and blood plasma composition

The absolute value of the Pearson correlation coefficient |R| is a measure of the strength of the
linear relationship between the values of a data pair. A value of |R| equal to 1 means that there is
a perfect linear relation; |R|>0.5 represents a moderate to a strong relationship, 0.3< |R| <0.5
represents a weak to reasonable relationship, and |R|<0.3 represents a weak relationship [41].

The Pearson correlation coefficient was applied to study the relationship between the blood
plasma THz absorption spectra and glucose or protein concentrations. We used the two-tail test,
which allots half of the α in one direction (r>0 side) and half of the α in the other direction (r<0
side). We used p=0.05 as a threshold of significant correlation. If p <0.05 was true, we took an
|R| to indicate their correlation strength. If p> 0.05, no correlation was found. The strength of
the linear correlation between glucose concentration and the absorption at 1 THz is shown in
Fig. 9.

For glucose, the calculated Pearson’s correlation coefficient is R=-0.84, p=0.0047 in liquid
blood plasma (Fig. 9(a)) and R=-0.79, p=0.01 in lyophilized blood plasma (Fig. 9(b)), which
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Fig. 9. Dependence of the absorption coefficient of liquid a) and lyophilized b) blood
plasma of two groups with malignant thyroid nodules (purple squares) and benign thyroid
nodules (orange squares) at a frequency of 1 THz on the concentration of glucose in the
samples.

means the correlation is high and negative. Correlation dependencies for total protein and miRNA
are presented in Table 2.

Table 2. The correlations between the absorption coefficients at 1 THz and the examined variables.
R is the Pearson correlation coefficient; p is the two-tail p-value

Examined Variables Liquid blood plasma Lyophilized blood plasma

Glucose R=-0.84, p=0.0047 R=-0.79, p=0.01
Proteins R=-0.1, p=0.79 R=-0.34, p=0.368

miRNA-146b R=0.41, p=0.23 R=0.63, p=0.049

Notably, the THz response change depending on glucose concentration is more significant than
expected from an effective medium parameters model at such a low volume fraction of glucose.
It can be presumably caused by rebuilding protein structure due to glucose presence during
lyophilization [61]. Probably, for this reason, no correlation between protein concentration and
the absorption coefficient was found. A strong correlation was observed between the absorption
coefficient and glucose concentration both for liquid and lyophilized samples. Glucose and
protein make the most significant contribution to the blood plasma absorption in the THz range
[41,43,44,47].

The dependence of the malignancy degree of thyroid nodules on the several miRNAs content
in tissue and blood plasma has been established [18–20]. Overexpression of miRNA-146b in
papillary and follicular thyroid carcinoma compared to levels in normal thyroid tissues was
reported [19]. This upregulation was positively correlated with tumor aggressiveness. Essential
miR-146b content differences between groups (p<0.05) were observed. Group 2 had higher
miRNA-146b values compared to Group 1 (see Table 1). The level of miRNA 146 had a positive
correlation with the lyophilized plasma absorption at 1 THz (R= 0.63, two-tail p-value= 0.049)
(see Table 2).

3.4. Machine learning application

For the first stage of the ensemble scheme (Fig. 2), kernel PCA, multidimensional scaling, and
UMAP showed the best results (see Fig. 10). The exception was CMSE, which produced features
with a dimension of scale number (10 in our case), and additional dimensionality reduction was
required.
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Fig. 10. Visualization of linear kernel PCA (a), multidimensional scaling (b), UMAP (c),
and CMSE with linear PCA (d).

Linear separability of the healthy versus benign and malignant thyroid nodules classes was
verified by linear SVM, which was applied to the data, preliminary transformed by the linear
kernel PCA (see Fig. 11 (a)). The averaged quality metrics: sensitivity was equal to 0.92± 0.04;
specificity was equal to 0.85± 0.05 accuracy was equal to 0.88± 0.04; precision was equal to
0.80± 0.03. The mean ROC curve and AUC analysis for the linear SVMs is shown in Fig. 11
(b). The results demonstrate the potential of developed models for the separation of healthy and
thyroid nodules groups.

Also, linear SVM allows obtaining the most informative features, based on the proximity
of the feature vector to the separating hyperplane. An averaged relative features’ importance
was estimated for the three train/test splits and linear SVMs. The most significant absorption
frequency for group separating was 1.11095 THz; relative importance was 0.008. The latter was
low due to the normalization of a large number of the feature vector components. Figure 12
illustrates the downfall of relative features importance and most informative THz absorption
frequencies.

Next, we developed a method to test the separability of the benign and malignant groups. The
thick and thin blood plasma pellets were found to give different information for malignant and
benign thyroid nodules distinguishing. For example, data after multidimensional scaling and
linear kernel PCA are not linearly separable; UMAP performs well on both data. We suppose
that it can be related to the high complexity of the UMAP model and the low data volume.

The OU Kernel PCA provided explicit separability of groups of benign and malignant thyroid
nodules when lyophilized blood plasma pellets with a thickness of 0.385-0.565 mm had been
used (see Fig. 13(a)). We believe that it relates to their “transparency” in the THz high-frequency
range, as was mentioned earlier. That is why the thickness of the pellets should be taken into
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Fig. 11. Linear separability of the healthy, benign, and malignant thyroid nodus data by the
SVM with a linear kernel. Regularization parameter C=1 (a); Mean ROC curve for linear
SVMs for the 3 splits (b).

Fig. 12. Feature IDs sorted by relative features importance (a). Feature ID corresponds to a
specific THz absorption frequency. The first most informative THz absorption frequencies
(b).

account: thin ones are more suitable for the groups under study distinction. This result is
consistent with the established spectral data and blood plasma composition correlations.

The benign and malignant groups’ size is small. Therefore, the creation of a predictive model
cannot be reliable. Still, the confirmed separability of these groups is very promising.
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Fig. 13. Thin (a) and thick (b) benign and malignant thyroid nodules plasma pellets
transformed by the OU kernel PCA. The numbers show the sample ID.

4. Conclusion

We investigated blood plasma samples of healthy individuals and patients with benign and
malignant thyroid nodules by THz-TDS. A strong correlation between the glucose concentration
and the absorption for liquid and lyophilized blood plasma samples was established. We also
demonstrated the correlation between miRNA-146b level and the absorption at 1 THz for the
lyophilized blood plasma samples.

In total, THz spectra differences of liquid blood plasma samples were comparable with the
experimental error value. The study of lyophilized blood plasma, pressed into pellets, showed
a reliable separation of healthy individuals and patients with thyroid nodules and separation
of patients with benign and malignant thyroid nodules through THz absorption coefficient and
refractive index values. This separation was confirmed by machine learning as follows. The raw
data were projected to the lower-dimensional space by kernel PCA, multidimensional scaling,
and UMAP methods. All these methods give similar results except CMSE. Linear separability
between healthy and thyroid nodules classes was demonstrated by the linear SVM with 92%
sensitivity, 85% specificity, and 88% accuracy. The informative feature histogram was obtained
to show the most informative frequencies for the classification.

In our case, an individual algorithm was not sufficient to distinguish patients with benign and
malignant thyroid nodules using THz spectra of lyophilized blood plasma samples. A two-stage
ensemble scheme was proposed. On a first step corresponded to a sensitivity estimation, the
thyroid nodule group is separated from the healthy one. On a second step corresponded to a
specificity estimation, benign and malignant groups are separated.

The current number of blood plasma samples from patients with benign and malignant thyroid
nodules is not enough to create a robust predictive model. Still, the confirmed separability of
these groups is very promising. Thus, we proved that THz TDS could be sensitive to blood
composition changes, depending on the thyroid nodule malignancy degree. Collecting enough
samples can give an opportunity for differential diagnosis of thyroid nodules through blood
plasma analysis by THz spectroscopy and machine learning.
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