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A B S T R A C T   

This paper describes the effect of urbanization on soil organic carbon (SOC) stocks by projecting the main urban 
land cover classes over the initial pre-urban soil maps. Two cities different in climate and soil conditions as well 
as in availability of SOC data were chosen as the case studies. Rostov-on-Don is the center of Russian South, 
where croplands and natural steppes have been conventionally thoroughly studied by soil scientists. In contrast, 
soils of Murmansk located in Russian Arctics have always been overlooked due to low suitability for agriculture. 
Global, national and regional soil maps and databases were used to estimate pre-urban SOC stocks in the areas. 
The outcomes based on Harmonized World Soil Database were highly uncertain, underestimating 0-100 cm SOC 
stocks in the polar region and overestimating them in the steppe region, whereas the results based on Digital Soil 
Map of Russia and regional maps were comparable. Land cover structures of Rostov-on-Don and Murmansk were 
mapped based on the stepwise per-pixel and sub-pixel classification algorithms applied to Sentinel-2 and 
included the following classes: sealed soils, green lawns, trees and shrubs, bare soils and water. Murmansk was 
dominated by trees and shrubs (58.1%) with the proportion of area 17.5% covered by sealed soils. In Rostov-on- 
Don, less than 30% of the total area was covered by trees and shrubs which is also comparable with bare soils 
(19.6%)_and lawns (23.4%), whereas almost one third of the territory was sealed (27.6%). These land cover 
structures had a different impact on the topsoil SOC stocks: a 30-50% increase in Murmansk compared to the 
18% decrease in Rostov-on-Don. An increase of the 0-100 cm SOC stocks was shown for both regions, however in 
the polar conditions it was two times higher compared to the steppe. In polar conditions, conversion of natural 
soils into urban non-sealed soils increased SOC stocks from 30% to more than 4 times in 0-10 cm layer and from 
47% to almost 3 times in the 0-100 cm layer. The highest increase was reported for the lawns, whereas SOC 
under trees and shrublands were considerably lower. In Rostov-on-Don , sealed and bare soils stored less SOC 
compared to the initial natural soils. The conversion of natural areas into urban green infrastructure increased 
SOC up to 50-70%. Although the absolute SOC values based on the global and national legacy data are highly 
uncertain, especially for the polar areas, the research outcomes clearly reveal possible patterns in SOC changes 
induced by different urbanization pathways in contrast climatic conditions and highlight the complexity of the 
urbanization effect on soils   

1. Introduction 

Environmental impacts and consequences of urbanization are among 

the main challenges of the 21st century (Sharma et al., 2016; UN, 2018). 
Conversion of natural and arable lands into urban coincides with sub-
stantial and often irreversible changes in vegetation and soils (Pickett 
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et al., 2011). As a result, urban areas are dominated by man-changed 
and man-made soils, which are very specific in properties, processes, 
and functions (Lehmann and Stahr, 2007). Carbon (C) sequestration and 
accumulation is widely recognized as a key soil function (Blum, 2005; 
Dobrovolskiy and Nikitin, 2012). Soil capacity to accumulate and store C 
distinguishes provisioning of such ecosystem services as climate miti-
gation, nutrient supply and biodiversity (Dominati et al., 2014; Vasenev 
et al., 2018). Although the considerable effect of urbanization on soil 
organic carbon (SOC) stocks has been previously reported (Lorenz and 
Lal, 2015, 2009; Vasenev et al., 2018, 2013) the existing estimates of 
SOC stocks in urban soils vary from negligible to substantial (Raciti 
et al., 2011; Schulp and Verburg, 2009; Vasenev and Kuzyakov, 2018). 
In fact, urbanization has a multiple impact on SOC stocks and trigger 
mechanisms, which can enhance SOC accumulation or results in SOC 
depletion. 

Soil sealing for building construction and infrastructural develop-
ment results in cutting and translocation of topsoil layer and therefore in 
a considerable depletion of SOC stocks (Romzaykina et al., 2020; Tao 
et al., 2015; Villa et al., 2018). Although soil sealing is among the main 
environmental impacts in cities, the effect of urbanization on soil C 
stocks in not limited to sealing only. Landscaping and greenery practices 
have a considerable and versatile effect on soil C stocks. Implementation 
of C-rich substrates (e.g., composts, organic wastes and sewage) for 
urban soils’ construction can result in fast growth of topsoil SOC stocks. 
However in longer perspective this effect is questionable due to inten-
sive mineralization rate of the substrates in warm urban climate 
(Brianskaia et al., 2020; Shchepeleva et al., 2017; Smagin et al., 2018). 
Development and maintenance of urban green infrastructures, including 
irrigation, cutting, pruning and fertilization has a long-term positive 
effect on SOC stocks by stimulation root and aboveground biomass 
growth with further humification into soil (Selhorst and Lal, 2012; Zirkle 
et al., 2011). 

The variability of SOC between and within cities are affected by 
regional bioclimatic conditions and land use / land cover structure. For 
example, a review based on the data analysis from more than 100 cities 
highlighted the capacity of urban soils at high latitudes to store SOC, 
explained by slow mineralization hampered by low temperatures 
(Vasenev and Kuzyakov, 2018). In dryland cities of US, SOC stocks were 
significantly smaller compared to the humid cities due to a more 
intensive mineralization and a limited carbon input with biomass 
(Pouyat et al., 2006). Within cities, land-use zoning is one of the key 
factors of SOC stocks’ spatial distribution (Vasenev et al., 2017; Weissert 
et al., 2016). Soils of industrial areas and roadsides are often anthro-
pogenically disturbed and store less SOC compared to residential and 
recreational zones (Ivashchenko et al., 2019; Sarzhanov et al., 2017). 
Spatial analysis and mapping land-use zoning is needed to project the 
effect of urbanization on soil SOC stocks in different climate zones. In 
condition of scarcity and limited access to legacy inventory data on land- 
use zoning in many cities, remote sensing provides an alternative 
solution. 

In last decades, a considerable progress was achieved in mapping 
land-use zoning and soil sealing in urban areas based on land use / land 
cover classification (Weng, 2012). This progress was possible due to 
substantial improvements in data quality of the satellite images (i.e. 
spatial, radiometric and spectral resolution) and significantly developed 
pixel-, subpixel- and object-based classification algorithms. Recently, 
the data from newly launched Sentinel-2A,B satellites have been suc-
cessfully tested for mapping urban land-use zoning and land cover cat-
egories (Xian et al., 2019; Xu et al., 2018). Per-pixel and sub-pixel 
algorithms have shown a robust (>80 % accuracy) results in extract-
ing such categories as sealed soils, bare soils and vegetation within the 
urban landscape (Xu et al., 2018). 

This paper aims to project the effect of urbanization on SOC stocks in 
polar and arid conditions of the European Russia. Based on the two 
urban case studies contrasting in climate, soils and land-use structure as 
well as in availability of SOC data we explored the applicability of 

remote sensing techniques based on utilization of the optical Sentinel-2 
MSI data to map land-use zoning and estimate changes in SOC stocks 
induced by different urbanization pathways. 

2. Material and methods 

2.1. Research area 

The region of European Russia is very diverse in vegetation and soil 
conditions ranging from tundra on Podzols in the North to steppes on 
Chernozems in the South. The region is also the most populated and 
urbanized with 55% of total population settling on 20% of the total 
territory of Russia. Nine of total thirteen cities with population above 1 
million locate in the region. Two cities selected as case studies represent 
the regional diversity in climate, soils and vegetation and at the same 
time vividly illustrate different availability of soil data needed for SOC 
assessments. 

Murmansk (68◦58′ N 33◦05′ E) lies over the polar circle on the Kola 
Peninsula and with the population above 250 thousand it is the largest 
polar city in the world. The regional subarctic climate in the city is 
strongly influenced by the proximity to the Barents Sea. In result, the 
area is not underlain by permafrost and dominated by Podzols in com-
parison to the areas to in the northeast of European Russia where Cry-
osols are widely spread (Table 1, Fig. 1). The area belongs to the forest 
tundra zone, which stretches in a narrow strip about 50 km wide parallel 
to the coast of the Barents Sea. Murmansk is a perfect case study to 
analyze the urbanization effect on SOC in polar climate, considering that 
the absence of permafrost excludes the cryoturbation mixing of SOC 
within the soil profile, which is a typical source of uncertainties in SOC 
estimates in the North (Goryachkin, 2010). Murmansk is a relatively 
modern city dating back to the beginning of 20th century. City area of 
171 km2 is mainly comprised from residential areas dominated by five- 
ten floor apartment buildings, wide industrial zones and a large peri- 
urban (71.7 km2) uninhabited area. Green areas are limited and are 
mainly represented by urban parks, community gardens and preserved 
natural forest-tundra sites in uninhabited area. 

Rostov-on-Don (47◦14′ N, 39◦42′ E) is located 3000 km to the South 
from Murmansk along the Don river. The area has an arid climate, and 
the natural areas are dominated by dry steppe vegetation on Cherno-
zems (Table 1, Fig. 1). Historically, the territory was actively involved in 
agriculture and croplands occupied up to 80% of the region. The set-
tlement foundation dates back to the middle 18th century, when an in-
dustrial and commercial town was developed in an area historically 
dominated by agricultural land-use. During 20th century, Rostov expe-
rienced continuous urbanization, which mainly occurred on the former 
croplands. In result, the Rostov agglomeration, including the Rostov-on- 
Don and several satellite towns, with the total area of 356 km2 and 
population over 1.1 million is one of the largest cities of the Russian 
South. Today, Rostov-on-Don is a multifunctional city with vast resi-
dential, industrial, and public zones, unevenly distributed between city 
districts. Green zones are spacious and include an artificial protective 

Table 1 
Environmental characteristics of studied cities.   

Murmansk Rostov-on-Don 
Climate (updated Köppen- 

Geiger classes), (Beck 
et al., 2018) 

Subarctic, Dfc (Cold, no 
dry season, cold 
summer) 

Arid, Dfa (Cold, no dry 
season, hot summer) 

Topography Hilly terrain, elevation 
ranges from 0 to 420 n a. 
s.l. 

Flat terrain, highly 
dissected, elevation up to 
120 m a.s.l. 

Parent materials Moraine deposits on 
massive-crystallic 
granites and gneisses 

Loess lime loams 

Vegetation zone Forest tundra Steppe 
Dominating soil type Podzols Chernozems 
Main type of land use Industry, marine port Agriculture, croplands  
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“forest belt” located in the East of the city, as well as urban and district 
parks, botanic and community gardens, sport grounds and stadiums. 

2.2. Soil data 

The aim of the research was to project the effect of urbanization on 
SOC stocks in polar and steppe conditions. To estimate the initial (pre- 
urban) SOC stocks, severalopen source maps and databases were utilized 
due to the scarcity of the field data, especially with the accuracy needed 
for spatial analysis and mapping in a very heterogeneous urban envi-
ronment (Vasenev et al., 2014). Data from several global and regional 
sources were used: i) Harmonized World Soil Database v 1.2 (Fischer 
et al., 2008) and WISE soil property database (Batjes, 2016); ii) Digital 
Soil Map of Russia (Shoba, 2011) and iii) soil maps of Rostov and 
Murmansk regions. Harmonized World Soil Database (HWSD) is an 
open-source global facility developed by FAO in collaboration with 
different international and national institutions. The HSWD v 1.2 is a 30 
arc-second raster database with the information corresponding to 
1:5,000,000 FAO-UNESCO soil map. WISE database (v. 1.1, 30 arc- 
second) comprises data collected from about 21,000 soil profiles glob-
ally. Digital Soil Map of Russia (DSMR) is an open-source feature class, 
based on the 1:2,500,000 soil map, which comprises the outcomes of 
several decades of soil survey campaigns and soil mapping efforts 
(Dobrovolsky and Urussevskaya, 2004; Fridland, 1988; Rozov, 1960; 
Shoba, 2011). Unfortunately, the collected materials are not fully digi-
tized and data just on 800 of soil profiles are available, whereas the 
mapping units were based on a much bigger amount of soil data. The 
regional soil maps were developed based on the regional soil surveys 

and illustrate the bias existing in soil data for different regions. The soil 
map for the Rostov region was digitized by the Dokuchaev Soil Science 
Institute based on the 1:300,000 map developed by Southern state 
design Institute for land management of the USSR in 1985. The map and 
corresponding database comprised field data collected at 1045 farms by 
the soil agricultural service in 1960s-1990s. The legend of the map 
contains 51 classification units at the level of soil type and subtype, 
according to the soil classification of the USSR (1977). The database 
includes information on soil texture, topsoil organic matter content, 
depth of the organic layer and stoniness. Information on profile distri-
bution of organic matter and bulk density for each subtype was derived 
from the independent soil survey (Gorbov and Bezuglova, 2019). The 
soil map of the Murmansk region was digitized from the regional soil 
map 1:1,000,000 developed by Kola research center (1955), which was 
the only soil map available for the region. The legend includes 15 soil 
types and subtypes. The dataset for the map was not available and 
therefore an alternative dataset was developed based on the few avail-
able literature sources (Goryachkin, 2010; Korneykova et al., 2020; 
Nikonov and Pereverzev, 1989; Pereverzev, 2011, 2007, 1987; Per-
everzev et al., 2000). The dataset comprises field data from 40-50 soil 
pits described in tundra and forest-tundra areas of Murmansk region and 
includes thickness of horizon, organic matter content, bulk density and 
stoniness. 

The regional soil maps were considered to illustrate the pre-urban 
SOC stocks at the areas currently occupied by Rostov-on-Don and 
Murmansk. For these areas, soil C stocks (kg m-2) in the 0-10 cm and 0- 
100 cm layers were estimated and mapped by extrapolation of the 
average SOC stocks per soil unit (i.e., soil type or subtype) to the 

Fig. 1. Location of studied cities placed over the World Soil Resources Map.  
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corresponding polygons on the soil maps. The following equation was 
used to estimate and map SOC stocks based on the previous studies 
(Minasny et al., 2013; Poeplau et al., 2017; Wang and Dalal, 2006): 

SOC = SOCconc × BD × H × (1 − RF)

where SOC – SOC stock (kg m-2), SOCconc – SOC concentration in fine 
soil (%), BD – bulk density of the fine soil (g cm-3), H – soil layer depth 
(cm), RF – rock fragment fraction (%). 

The resulting maps were used to estimate total soil C stocks (Tg) in 
the areas and were considered as the basis for projecting the urbaniza-
tion effects. 

2.3. Remote sensing data processing 

We used cloud-free Sentinel-2A MSI (level 2A) optical satellite im-
ages availably at ESA Copernicus Scientific Data Hub () for the terri-
tories of the two cities to assess the areas covered by sealed soils and to 
divide the urban green area into landcover classes. Two acquisitions 
were used for Murmansk and one – for Rostov-on-Don (Table 2). The 
image pre-processing included resampling to 10-m spatial resolution of 
10 bands with initial 10 and 20 m spatial resolution and mosaicking 
(Fig. 2). 

We have applied stepwise sub-pixel and per-pixel classification 
procedure in order to divide the entire surface of the city areas into six 
land cover classes (endmembers): sealed surface, water, bare soil, urban 
forests and green stands, shrublands and lawns. The procedure consisted 
from several consecutive steps (Fig. 2). Initially, water pixels were 
extracted by applying Linear Spectral Mixture Analysis (LSMA) 
(Keshava and Mustard, 2002), where water, urban (high and low albedo 
surfaces), bare soil, urban forest, shrublands and lawns were used as 
endmembers. For each endmember, four to six regions of interest were 
delineated for which spectral signatures were extracted by averaging 
surface reflectance values of each spectral band. Water was further 
masked by extracting the water fractions more than 80% threshold. 
After masking the water, pixels corresponding to sealed surface were 
extracted as having specific surface reflectance values including i) low 
(< 0.28) values of Soil-Adjusted Vegetation Index (SAVI); ii) < 20% 
reflectance in short-wavelength infrared (SWIR) band (B11); iii) > 10% 
reflectance in the blue band (B2) and iv) reflectance of the near-infrared 
(NIR) band (B8) greater than reflectance of B11. We calculated SAVI by 
applying the following equation: 

(1 + L)*(B8 − B4)/(B8 + B4 + L)

where L = 0.428 is the soil brightness correction factor for Sentinel- 
2, B4 and B8 – surface reflectance in the red and NIR bands respectively. 
The SAVI threshold of 0.28 has been established empirically. The other 
proposed surface reflectance limits of several spectral bands (B2, B8, 
B11) mostly aimed to exclude areas covered by bare anthropogenically- 
transformed soils (agricultural fields, areas under construction etc) 
classified as sealed by the SAVI threshold due to its similar spectral 
signatures as sealed surface (Weng, 2012). At the last step, fractional 
maps of remaining four classes were obtained for all “green” pixels (not 
belonging neither to sealed pixels nor to water pixels) by applying the 
LSMA using existing spectral signatures of bare soils, urban forest and 
green stands, shrublands and lawns. The resulting land cover maps for 

Rostov-on-Don and Murmansk reflected the spatial distribution of water 
bodies (binary), sealed surfaces (binary), and green areas (urban forests 
and green stands, shrubs, green lawns and bare soils as fractional maps). 
The processing of satellite data was performed within ESA SNAP 6.0 
software. 

For the quality assessment, we compared the extracted sealed surface 
with manually mapped sealed surfaces of several small regions scattered 
within cities: 21 for Rostov-on-Don and 25 for Murmansk. These regions 
were extracted from OpenStreetMap as areas with different land use 
(commercial, residential, industrial and military). Within these regions 
with area varying from 0.018 km2 to 1.63 km2 sealed surfaces were 
manually mapped from very high-resolution imagery available through 
Google tiled imagery XYZ in QGIS 3.12.1 and were considered as true 
sealed area. The percentages of sealed surfaces within these regions 
derived from two different sources were statistically compared (Wil-
coxon test) and the root mean square errors (RMSE) calculated within R 
environment (R Core Team, 2017) software. Preliminary, these two data 
arrays were tested for the normality of distribution (Shapiro-Wilk 
normality test) and for homogeneity of variances (Bartlett test). Further, 
linear regression between “true” and Sentinel-2 based proportions of 
sealed surface was produced in order to assess the percentage of 
explained variability by Sentinel-2 data. The complete dataset obtained 
for test areas of Rostov-on-Don and Murmansk (n=46) was analyzed for 
the random effects of land use types on the Sentinel-2 based assessment 
using ‘lmer’ function available within ‘lme4’ package (Bates et al., 2015) 
in R environment. 

2.4. Mapping soil organic carbon stocks 

The vector maps representing initial SOC stocks in the current areas 
of Murmansk and Rostov-on-Don prior to urbanization were converted 
to the raster format and resampled to the 10-m spatial resolution which 
corresponds to the Sentinel-2 based data and were further overlaid with 
the developed land cover maps, representing current land cover of the 
urban areas as one of the five classes: sealed areas, urban forests and 
green stands, shrubs, green lawns and bare soils. Water bodies were 
excluded from the analysis and zero SOC stocks were considered for 
these areas. Each of the remaining land cover classes evidences con-
version of initial natural areas into one of the urban land-use types with 
a corresponding effect on SOC stocks. Possible effects of urbanization 
pathways on SOC stocks in 10 cm and 100 cm layer were determined by 
correction coefficients, estimated based on the independent soil surveys. 
For Rostov-on-Don, field soil data was derived from (Bezuglova et al., 
2018; Gorbov, 2018; Gorbov et al., 2017; Tagiverdiev et al., 2020). For 
Murmansk, soil properties and descriptions were derived from (Poly-
akov et al., 2018). For the cases, where the legacy data for the research 
areas were not available, the literature data describing similar land 
conversion pathways were used instead. For example, no data on SOC 
stocks in the sealed soils were found for Murmansk and the coefficients 
were estimated based on the reviews of soil sealing effect on SOC stocks 
in different climates (Richter et al., 2020; Szatmári et al., 2019; Vasenev 
and Kuzyakov, 2018). To quantify the post-urbanization SOC stocks, the 
initial SOC stocks were re-calculated using the obtained correction co-
efficients in QGIS 3.12. 

3. Results 

3.1. Initial C stock in soils of Rostov-on-Don and Murmansk territories 

Estimates of SOC stocks in the research areas prior to urbanization 
based on global, Russian and regional soil maps showed a significant 
difference of the initial SOC stocks between the research areas and be-
tween the considered soil maps. On the HSWD map, the total Murmansk 
area corresponded to one soil unit – Albic / Entic Podzols. The average 
SOC stocks for the unit recalculated to 0-10 and 0-100 cm were corre-
spondingly 2.73 and 14.11 kg C m-2. The major part (311 km2) of the 

Table 2 
Sentinel-2 data acquisitions used in the analysis.  

Acquisition ID City Date 

S2A_MSIL2A_20190829T081601_N0213_ 
_R121_T37TEN_20190829T110625 

Rostov-on-Don August 29, 2019 

S2A_MSIL2A_20190724T094041_N0213_ 
_R036_T36WVB_20190724T101017 

Murmansk July 24, 2019 

S2A_MSIL2A_20190724T094041_N0213_ 
_R036_T36WWB_20190724T101017  
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terrestrial territory currently occupied by Rostov-on-Don was covered 
by Eutric Fluvisols, whereas Haplic Chernozems covered 32 km2 in the 
northern part. The average SOC stocks in 0-10 and 0-100 cm layers of 
Chernozems were 2.88 and 19.99 kg C m-2 that was two times higher 
than in Eutric Fluvisols (1.17 and 7.11 kg C m-2). DSMR provided more 
details on soil complexity. Murmansk area was mostly comprised from 
combinations of Albic Podzols (~82%) and Dystric Histosols (~18%). 
SOC stocks for Albic Podzols were estimated to 2.29 and 11.25 kg C m-2 

for 0-10 and 0-100 cm layers correspondingly. Dystric Histosols stored 
4.00 kg C m-2 in 0-10 cm and 20.00 kg C m-2 in 0-100 cm. Zero SOC 
stocks were considered in rock outcrops (Leptosols and soloids) which 
are often exposed in the peri-urban area of Murmansk. Soil of the ter-
ritory currently occupied by Rostov-on-Don was comprised from 
different subtypes of Calcic Chernozems (~59%), Eutric Fluvisols 
(~29%) and Pellic Vertisols (~0.3%). The highest SOC stocks were 
estimated in Pellic Vertisol – 4.75 and 32.82 kg C m-2 in 0-10 and 0-100 
cm layers correspondingly. SOC stocks in Calcic Chernozems and Eutric 
Fluvisols were in average 25 and 35% less for both layers. Rock outcrops 
(Leptosols and soloids) not covered by soils accounting 10% of the ter-
ritory and zero SOC stocks were considered for these areas. According to 
the 1:1,000,000 soil map of Murmansk region, the territory of Mur-
mansk city was dominated by different subtypes of Albic Podzols. 
However, Dystric Histosols were not included, that resulted in smaller 
SOC stocks compared to estimates based on DSMR. The regional soil 
map of Rostov-on-Don showed the area currently occupied by the city as 
a combination of Haplic Chernozems (~65%), Eutric Calcaric Fluvisols 
(Humic) (~34%) and Calcaric Cambisols (Colluvic, Humic) (~1%). The 
average SOC stocks in 0-10 and 0-100 cm layers of Haplic Chernozems 
were 3.26 and 16.0 kg C m-2, which was comparable to the global and 
Russian databases. Calcic Gleysols stored in average 3.03 and 13.28 kg C 
m-2 in 0-10 and 0-100 cm, which was comparable to Haplic Chernozems, 

whereas SOC stocks in Calcaric Cambisols (Colluvic, Humic) were 
almost 70% higher. The total pre-urban SOC stocks (Tg) estimates are 
summarized in Table 3. 

3.2. Changes in SOC stocks for different urbanization pathways 

Conversion of natural areas into sealed surfaces, urban forests and 
green stands, shrubs, green lawns or into bare soils were the urbaniza-
tion pathways changing SOC stocks. Comparative analysis of urban and 
natural soils based on the independent soil surveys and literature data 
allowed estimating changes in SOC for each pathway by correction co-
efficients, which differed between the urban land use / land cover cat-
egories and between the regions. In Murmansk, conversion of natural 
soils into urban non-sealed soils increased SOC stocks from 30% to more 
than 4 times in 0-10 cm layer and from 47% to almost 3 times in the 0- 
100 cm layer. The highest increase was reported for the lawns, whereas 
the increase of SOC in urban soils under trees and shrubs was the lowest 
compared to the natural soils. We didn’t find any legacy data on SOC in 
sealed soils of Murmansk or other towns located in similar climate. 
Existing publications for various climatic zones report a decrease from 
50% to several times, mainly caused by translocation of the topsoil 
layer. The depth of the translocated layer depends on the type of the 
built infrastructure and climatic conditions. Building construction re-
sults in removal of the whole soil profile, therefore SOC stocks under 
build-up areas are considered zero. Construction of the federal roads 
affects in average top 80-100 cm that also means a complete removal of 
the Podzol profile. However, construction of the regional and local roads 
and walking paths results in translocation of in average top 40 cm. 
Therefore, topsoil SOC stocks are lost and SOC stocks in 0-100 cm are 
reduced almost 10 times compared to the initial natural soils (Fig. 3). In 
Rostov-on-Don, the conversion of natural areas into urban green 

Fig. 2. Workflow for Sentinel-2 data processing. LSMA – linear spectral mixture analysis; B2, B8, B11 – reflectance at blue, NIR and SWIR bands, SAVI - Soil-Adjusted 
Vegetation Index, WF – water fraction. 

Table 3 
SOC stocks (Tg) at the research areas prior urbanization estimated based on the global, Russian and regional soil maps.  

Soil map Murmansk Rostov-on-Don 

Soil units SOC 
(0–10) 

SOC 
(0–100) 

Soil units SOC 
(0–10) 

SOC 
(0–100) 

HSWD Albic / Entic Podzols  0.40  2.07 Haplic Chernozems, Eutric Fluvisols  0.46  2.85 
DSMR Albic Podzols, Dystric 

Histosols  
0.42  2.05 Haplic Chernozems, Eutric Fluvisols, Pellic Vertisol  1.08  7.15 

Regional 
maps 

Albic Podzols  0.41  1.13 Haplic Chernozems, Eutric Calcaric Fluvisols (Humic), Calcaric Cambisols 
(Colluvic, Humic)  

1.12  5.24  
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infrastructure also resulted in considerable changes in SOC with the 
maximal 50-70% increase reported for the soils under trees and shrubs. 
In contrast, SOC stocks in 0-10 cm of bare soils were only half from those 
in natural soils. Similarly to Murmansk, soil sealing resulted in complete 
loss of SOC stocks under buildings and federal roads. Construction of 
regional and local roads and walking paths also affected top 40 cm of soil 
profile and decreased the SOC stocks in 0-100 cm by 30% (Fig. 4). 

3.3. Spatial structure of land cover in Murmansk and Rostov-on-Don 

The distinguished changes in SOC caused by different urbanization 
pathways were extrapolated to the areas of Murmansk and Rostov-on- 
Don based on the land cover structure obtained from remote sensing 
data analysis. According to Sentinel-2A data, 17.5% of the entire Mur-
mansk area was sealed with the highest percentage of the sealed areas 
reported for the see port, city center and industrial parcels in the North 
and South. Only one fifth of the total sealed areas was built-up or 

Fig. 3. Correction coefficients estimating the urbanization effect on SOC stocks in Murmansk (0–10 cm/ 0–100 cm) (derived from (Korochkin and Kostsov, 2018; 
Pereverzev, 1987; Pereverzev et al., 2000; Polyakov et al., 2018); black line refers to 0–20 cm layer). 

Fig. 4. Correction coefficients estimating the urbanization effect on SOC stocks in Rostov-on-Don (0–10 cm/ 0–100 cm) (derived from (Bezuglova et al., 2018; 
Gorbov, 2018; Gorbov et al., 2017; Tagiverdiev et al., 2020) black line refers to 0–40 cm layer). 
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occupied by federal / main roads with zero SOC stocks underneath. 
Murmansk had a low percentage of bare soils (less than 3%) which were 
evenly distributed within the city. Lawns covered around 8% of the city 
area, however this value could be overestimated due to overlapping with 
open tundra plots abundant to the East of Murmansk. The mixture of 
trees and shrubs was the largest land cover class covering more than 
58% of the area. These patches were concentrated in green zones within 
the city as well as in the peri-urban areas in the West and East (Fig. 5). 

In Rostov-on-Don, almost one-third (27.6%) of the city area was 
sealed with the largest percentage of the sealed areas close to the river 
port. Only 25% of the sealed area belonged to built-up areas and federal 
/ main roads. The sealing fraction ranged from 48% in the central part to 
less than 13% in the suburbs. In contrast to Murmansk, the percentage of 
bare soils was almost 20%, which could be considered a typical feature 
for an urban area in arid climate. Lawns covered more than 23% of the 
total area and were the most spread land cover class. The combination of 
bare soils and lawns was very typical for a major part of the city. Urban 
forests and green stands covered 15% of the area and were mostly 
concentrated in parks, court yards and along the roadsides. Around 10% 
of Rostov-on-Don were covered by shrublands randomly distributed 
within the area with the highest density within the floodplain of the Don 
river (Fig. 6). 

3.4. Quality assurance of the remote sensing results 

Soil sealing fraction of test polygons identified by remote sensing in 
both cities was considered for the validation and quality assurance of the 

analysis. In Murmansk, true sealed fraction within test areas of indus-
trial, commercial, residential and military land use (n=25) varied be-
tween 19.6% and 90.8%. The normal distribution was confirmed by 
Shapiro-Wilk normality test (p = 0.75, Table 4). For these test sites, 
sealed fraction extracted from Sentinel-2 processed image varied be-
tween 10.7% and 91.0% having the normal distribution, too (p = 0.75). 
Sentinel-2 based algorithm has also explained more than 80% of the true 
values (R2 = 0.84) with the homogeneous variances (Bartlett test, p =
0.9). No statistically significant differences between two datasets were 
found (Wilcoxon rank sum test with continuity correction, p = 0.76). 

In Rostov-on-Don, true sealed fraction within test areas of commer-
cial, industrial and residential functional purposes (n=21) varied be-
tween 16.9% and 92.3% with the normal distribution shown by Shapiro- 
Wilk normality test (p = 0.12, Table 4). For these test sites, sealed 
fraction extracted from Sentinel-2 processed image varied between 
25.1% and 89.5% having the normal distribution, too (p = 0.23). In 
general, Sentinel-2 based algorithm explained more than 80% of the true 
values (R2 = 0.81) with the homogeneous variances (Bartlett test, p =
0.47). No statistically significant differences between two datasets were 
found (Wilcoxon rank sum test with continuity correction, p = 1). The linear 
regression model with Sentinel-2 based sealing assessment as predictor 
for the complete dataset explained 82% of the variance of the real sealed 
fractions within 46 test polygons. The one-way ANOVA test didn’t show 
significant statistical differences between linear (variation that is 
explained by Sentinel-2 based sealed fraction only) and linear mixed 
(variation that is explained by Sentinel-2 based sealed fraction with 
random effects of land use type) models, which may indicate no 

Fig. 5. Land-cover classification of Murmansk: grey – sealed surface, black – water, Red – Green – Blue – color coded bare soils, urban forest / shrublands and green 
lawns. Cumulative bar chart indicates the proportion of areas occupied by each land-cover class. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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influence of the nature of urban development on the accuracy of 
Sentinel-2 based sealing assessment. The total RMSE of Sentinel-2 esti-
mations was 9%. 

3.5. Urbanization effect on SOC stocks in polar and steppe conditions 

The effect of urbanization on SOC stocks was driven by the land use / 
land cover structure within the city and was distinctively different be-
tween polar and steppe zones. Moreover, the final estimates and some 
spatial patterns depended on the initial soil maps. The estimated SOC 
stocks in Murmansk ranged from 0.56 to 0.62 Tg in 0-10 cm and from 
1.54 to 2.8 Tg in 0-100 cm. Related to the initial SOC stocks, urbani-
zation in polar conditions increased SOC stocks on 34-38 % in 0-100 cm 
layer and 46-50% in topsoils. The lowest SOC stocks were shown for the 
area near the sea port, where soil sealing was the highest. Higher SOC 
stocks were projected in the East part of the city and on the left bank of 
the Kola gulf with hotspots in residential zones and district parks. The 

distribution of SOC stocks in 0-100 cm layer had similar patterns but was 
more homogeneous (Fig. 7 A and B). 

In steppe conditions, urbanization decreased topsoil SOC stocks 13 
by 18% but increased the stocks in 0-100 cm layer on 21-16% in com-
parison to the initial soils. The average topsoil SOC stocks in Rostov-on- 
Don were 2.6 kg C m-2 which was 40% less than in Murmansk. The 
highest topsoil SOC stocks were shown in the North part, where low 
level of soil sealing coincided with the areas initially covered by Calcic 
Chernozems. Several hotspots in the south-western part corresponded to 
green stands and district parks. The average SOC stocks in 0-100 cm 
layer were 22.1 kg C m-2, which was 40% higher than in Murmansk. The 
distribution was rather heterogeneous with the highest values in the 
suburbs and several residential and recreational areas within the city 
(Fig. 7 C and D). 

In polar condition, topsoil SOC stocks increased on 0.18-0.2 Tg as a 
result of urbanization in Murmansk area. The outcomes were very 
similar for HSWD and regional map, whereas the results based on DSMR 
were 20% higher. In contrast, urbanization of the Rostov-on-Don area 
decreased topsoil SOC stocks on 0.17-0.20 Tg based on the DSMR and 
regional soil maps. The decrease of topsoil SOC stocks on 0.06 Tg based 
on HSWD was likely an underestimation since the map underestimated 
the initial area covered by Chernozems more than 5 times compared to 
DSMR and the regional soil map. An increase of SOC stocks in 0-100 cm 
was reported for both polar and steppe conditions. In steppe condition, 
the highest increase on 1.64 Tg was estimated based on the DSMR, 
whereas the estimates based on HSWD and regional map were respec-
tively 50 and 30% lower. In polar conditions, an increase in SOC stocks 
was 0.71 Tg predicted based on HSWD, whereas DSMR and the regional 
map showed 0.75 and 0.41Tg increase correspondingly (Fig. 8). 

Fig. 6. Land-cover classification of Rostov-on-Don: grey – sealed surface, black – water, Red – Green – Blue – color coded bare soils, urban forest / shrublands and 
green lawns. Cumulative bar chart indicates the proportion of areas occupied by each land-cover class. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 4 
Validation of the soil sealing assessment (real and Sentinel-2 based estimations).   

Rostov-on-Don Murmansk 

N 21 21 25 25 

Method Manual 
delineation 

Sentinel- 
2 

Manual 
delineation 

Sentinel- 
2 

p-value (Shapiro-Wilk 
normality test) 

0.12 0.23 0.75 0.75 

p-value (Bartlett test) 0.47 0.9 
Mean value 59.2 60.2 55.8 57.5 
p-value 

(Mann–Whitney U 
test) 

1 0.76 

R-squared 0.81 0.84  
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4. Discussion 

4.1. Urban spatial structure analyzed by remote sensing: estimates, 
algorithms and uncertainties 

The information on sealed area in Russian cities is extremely sparse. 
Data for Moscow, Volgograd and Rostov-on Don exist as revealed from 
the literature, wherein the sealing fractions is usually calculated for 

functional areas (i.e., residential, recreational, industrial etc). As a rule, 
the highest sealing fraction is reported for the industrial areas (more 
than 75% in Moscow (Ermakova and Martynenko, 2011; Hai-
brakhmanov et al., 2017), 80 - 90% in Volgograd (Gordienko et al., 
2019; Kosheleva, 2019), 75 - 90% in Rostov-on-Don (Gorbov and 
Bezuglova, 2019), whereas recreational areas are the least sealed. Soil 
sealing fraction in the residential areas varies in a wide range, especially 
in smaller regional towns where the low-story buildings and private 

Fig. 7. SOC stocks in Murmansk (0–10 cm -A; 0–100 cm – B) and in Rostov-on-Don (0–10 cm -C; 0–100 cm –D) projected based on the regional soil maps.  

Fig. 8. Delta in SOC stocks (difference between SOC stocks after and before urbanization) in steppe (Rostov-on-Don) and tundra (Murmansk) bioclimatic zones 
estimated for 0–10 cm (left) and for 0–100 cm (right). 
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houses prevail in most of the parts in the city (Gordienko et al., 2019; 
Kosheleva, 2019). 

Assessment of soil sealing with remote sensing data is a common 
issue in land use / land cover mapping (Weng, 2012). In the urban 
landscape, sealed surface is one of the main land cover classes within the 
V-I-S concept: vegetation – impervious surface – soil (Ridd, 1995). And 
optical remote sensing data is considered as most powerful tool in the 
assessment of sealed soils. Studies have also shown, that the spatial 
resolution of optical remote sensing data of 10-20 meters can be 
considered as optimal (Xian et al., 2019) given the numerous un-
certainties in extraction impervious surface area (e.g. shadows from 
buildings) that are still persistent on data with higher spatial resolution 
(QuickBird, Worldview-2,3) and high costs of data itself. 

Regression / decision trees, artificial neural networks and LSMA (Li, 
2020 and references therein) are among the most often used techniques 
applied for such assessments. In this research we applied an algorithm, 
that considers specific spectral properties of urban surface, commonly 
used spectral index (SAVI) and LSMA to divide the urban area of two 
different cities into six main classes: sealed surface, water, bare soil, 
urban forest, shrublands and lawns. To achieve this, different spectral 
indices including Normalized Difference Vegetation Index (NDVI), 
Normalized Built-Up Index (NDBI) (Zha et al., 2003), index-based built- 
up index (Xu, 2008) and LSMA with built-up endmembers were tested at 
the preliminary stages of the study and considered for developing the 
final algorithm with the best performance for the research areas (Fig. 2). 
The Sentinel-2 based overall accuracy of the presented algorithm 
applied to Rostov-on-Don and Murmansk was comparable with other 
studies that used Sentinel-2 or similar sensors for assessments of sealed 
surface areas or sealed surface fraction in other regions and, by applying 
different algorithms (Table 5). 

The obtained total RMSE in this study of 9% and R2 of 0.82 can be 
considered as sufficient. Although the pixel-based algorithms seem not 
to perform well at resolutions more than 30 m, the spatial resolution of 
Sentinel-2 (10 m) still allows the pixel-based assessments of impervi-
ousness (Xian et al., 2019). Herewith, some uncertainties may appear in 
case if built-up objects are small enough even for 10-m resolution. In our 
case, garages within industrial zones of Murmansk have shown the 
largest residuals in Sentinel-2 assessments. However, the area of this 
land use type doesn’t exceed 2% as revealed from the OpenStreetMap, 
and therefore cannot largely contribute to the overall uncertainty of 
Sentinel-2 based estimations. For better assessments of areas containing 
such objects, sub-pixel classifications are preferable as many mixed 
pixels may potentially appear. Another issue in mapping soil sealing is 
the similar spectral properties with anthropogenically-transformed open 
soils (e.g. agricultural fields, burned areas etc) (Weng, 2012). To address 
these issues, we empirically established additional thresholds for blue 
and SWIR bands (B2, B11) for pixels that are included into the sealed 
class. These thresholds were first established for Rostov-on-Don and 
used in case of Murmansk without any empirical tests. However, we 
cannot exclude that some pixels related to open soil might be mis-
classified as sealed. Finally, distinguishing between natural and artificial 
areas with similar spectral characteristics is always challenging. For 
example, vast areas on the left bank of Don river in Rostov-on-Don were 

classified as green lawns, whereas a considerable part of the area are 
covered by natural meadows. Similarly, it was difficult to distinguish 
between urban trees, shrubs and natural forest-tundra vegetation in the 
peri-urban areas of Murmansk due to similar spectral signatures of these 
land cover classes. However, classes urban forest and shrublands were 
later combined as having similar effect on SOC stocks due to 
urbanization. 

4.2. Urban SOC stocks in polar and steppe conditions 

Although C sequestration is widely considered a key soil function, 
urban SOC stocks and the patterns of their spatial distribution within 
cities remain overlooked. Recent research estimated and mapped SOC 
stocks in Moscow (Vasenev et al., 2019), Berlin (Richter et al., 2020), 
Paris and New York (Cambou et al., 2018). The estimates were based on 
abundant legacy data (environmental monitoring services, soil archives, 
citizen science) and extensive soil surveys including 100 to 400 samples 
per city collected in different times and by different method (e.g., 
sampling depth ranged from 30 cm in Paris to 150 cm in Moscow). This 
approach can be applicable for megacities where soil data from different 
sources are available, but it can be hardly recommended for the smaller 
regional cities where such data are scarce. Moreover, the estimates ob-
tained for the megacities were still quite uncertain (with variance co-
efficients above 100% and validation R2 below 30%) due to limitation in 
sampling design and very high short-distance variability. In this regard, 
an approach used in our study, projecting urban SOC stocks from pre- 
urban soil maps based on the combination of medium resolution im-
ages’ analysis and correction coefficients for different urbanization 
pathways seems relevant for the areas where the legacy data is limited, 
including cities in polar and steppe zones of Russia. 

The comparison between the case studies clearly revealed the 
bioclimatic aspect of the urbanization effect on SOC stocks but it also 
highlighted the scarcity and bias of the digital soil data available for the 
Russian regions. The estimates based on the HWSD were highly uncer-
tain, SOC stocks in polar region and overestimated those in steppe 
conditions. It is not a surprise considering that HWSD was mainly 
developed for the global implementations. It illustrates the general zonal 
patterns in SOC stocks but has clear limitations in analyzing the land 
management and especially the urbanization effect. The reliability of the 
DSMR is also questionable due to a dataset limitation. Although over 
70% of the total 800 profiles locate in European Russia, they are still not 
enough to give an accurate estimate of the SOC stocks. The reliability of 
the regional maps differed between the case studies. In steppe zone, the 
regional map was much more detailed in scale (1:300,000), number of 
polygons and attribute information in comparison to DSMR, whereas in 
polar region the regional map didn’t improve the DSMR outcomes. It can 
be explained by different land use dominating in the regions and 
correspondingly different demand in high-quality soil data. The Rostov 
region is one of the agricultural centers in the Russian South, therefore 
soil data support is critical for the regional economy, whereas in the 
Murmansk region, where agriculture is limited by severe climatic con-
ditions, detailed soil surveys were never made. Scarcity of soil data is a 
key limitation for environmental surveys and assessment in Russian 

Table 5 
Algorithms applied to Sentinel-2 and other sensors for assessment of sealed soils. * - as it is described in the source, ** - for comparison, we included Sentinel-2 data 
from studies only, *** - included are only those close to RMSE for comparison. LULC – land-use and land-cover, MAE – mean absolute error.  

Parameter assessed* Method Satellite data** Resolution, m Accuracy***:method / value Reference 

Impervious surface fraction Modified LSMA Sentinel-2A 10 RMSE, R2/ 14%, 0.86 (Xu et al., 2018) 
Impervious surface area Regression tree Sentinel-2 10 RMSE / 9.05–15.66% (Xian et al., 2019) 

20 RMSE / 10.59 – 15.18% 
30 RMSE / 13.34 – 20.10% 

LULC incl. built-up Support vector machine Sentinel-2A 10 Overall (built-up) / 77.19) (Cavur et al., 2019) 
Impervious surface NDVI, NDBI Sentinel-2A 10 – (Kuc and Chormański, 2019) 
Impervious surface fraction LSMA with spectral indices as input Landsat-TM 30 MAE / − 10.13 – 12.48% (Li, 2020) 
Sealed area Reflectance thresholds, SAVI, LSMA Sentinel-2A 10 RMSE / 9% This study  
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North (Goryachkin, 2010). 
The comparison of urban SOC stocks in Rostov-on-Don and Mur-

mansk revealed mechanisms of C accumulation and mineralization in 
the cities under different climate conditions. Urbanization coincides 
with soil transformation, patrial translocation of organic layers and their 
substitution by artificial substrates (e.g., peat, composts and soil mix-
tures) (Brianskaia et al., 2020; Vasenev et al., 2017). In the Murmansk 
region, peat and soil-peat mixtures are the most widely used materials 
for urban soil construction (Vikhman et al., 2008). Compared to the 
natural soils with relatively low SOC contents, especially in subsoils, any 
urbanization pathway (excluding soil sealing) increases SOC stocks. 
Moreover, due to cold climatic conditions hampering mineralization, 
SOC stocks in polar cities are more stable compared to temperate and 
arid climates (Karelin et al., 2020; Slukovskaya et al., 2020). In Rostov- 
on-Don, in contrast, urban soils are formed from topsoils translocated 
from croplands or fallow lands and placed on the technogenic sediments 
or buried horizons of natural soils (Gorbov and Bezuglova, 2014; Isaev 
and Zelenskii, 1973; Kazeev et al., 2018). The resulting urban SOC 
stocks can be less compared to Chernozems dominating areas being 
recognized among the most fertile world soils. The mineralization rate of 
urban SOC in Chernozemic region is very high, especially in bare soils, 
where CO2 emissions are not compensated by C uptake (Sarzhanov et al., 
2017). Therefore, a negative urbanization effect on topsoil SOC stocks is 
expected in the steppe conditions. Urban subsoils are less exposed to 
mineralization and contain C-rich materials and artifacts (e.g., buried 
soil horizon, wood remains and cultural layers) (Vasenev et al., 2017), 
that explains an increase of SOC stocks in 0-100 cm by urbanization. 

The average topsoil SOC stocks in Rostov-on-Don were close to Paris 
and New York (2.7, 3.3 and 3.8 kg C m-2 correspondingly) and less than 
in Murmansk, Berlin and Moscow (4.1, 5.5 and 6.0 kg C m-2 corre-
spondingly), which confirms the regional trend with higher SOC stocks 
in colder climates (Pouyat et al., 2006; Vasenev and Kuzyakov, 2018). 
The opposite was shown for the subsoils, where the lowest values were 
reported in Murmansk. It can be explained by a younger age of the city 
(104 years compared to 213 years for Rostov-on-Don or over 800 years 
for Berlin and Moscow) and C-poor natural subsoils, partly inherited in 
urban soil horizon. The overall SOC estimates for Rostov-on-Don and 
Murmansk are comparable to the values obtained for natural biomes in 
Russia (Mikhailova and Post, 2006; Nilsson et al., 2000; Romanovskaya 
and Karaban, 2008) and are clearly higher than urban SOC stocks esti-
mated by global models (Khaledian et al., 2017; Schulp and Verburg, 
2009). One of the reasons is a deeper insight into the urban spatial 
structure and, first of all, into the distribution of the sealed soils obtained 
from the medium-resolution imagery and OpenStreetMap data. Many 
global and regional assessments consider urban areas sealed to at least 
50% (Schaldach and Alcamo, 2007) and assign zero SOC stocks to the 
sealed areas. In our study, it was shown that the actual percentage of the 
sealed areas was much less. Moreover, only one fourth or even less of the 
sealed areas were comprised by buildings and federal / main roads. The 
remaining part covered by local roads and walking pathways contained 
considerable SOC stocks even though they were lower compared to the 
unsealed areas. Ignorance of these “hidden” SOC stocks underestimated 
the role of urban soils in C sequestration (Dolgikh and Aleksandrovskii, 
2010; Piotrowska-Długosz and Charzyński, 2015). 

5. Conclusion 

Urbanization has a considerable impact on soil resources, changing 
soil functions and ecosystem services. Changes of soil organic carbon 
(SOC) stocks by urbanization arises attention of scientist, policy makers 
and urban planners. Considering high heterogeneity of urban soils and 
multiple factors influencing C stocks and fluxes in cities, spatial analysis 
and mapping of urban SOC stocks is highly relevant. Conventional 
digital soil mapping of SOC stocks in cities is limited by legacy data, 
which is scarce for many regional cities. In the research we implemented 
an alternative approach and projected urban SOC stocks based on the 

medium-resolution (10 m) land cover map derived from the Sentinel-2 
images and correction coefficients estimated for different urbanization 
pathways based on the literature data and independent soil surveys. This 
approach was implemented for the two cities located in polar and steppe 
conditions of European Russia and based on the global, national and 
regional soil maps. The results revealed the urbanization effect on SOC 
in different bioclimatic regions, but also highlighted the limitations of 
the available soil data. In Murmansk SOC stocks increased on 35-50%, 
whereas in Rostov-on-Don SOC stocks in 0-100 cm increased on 21-16%, 
whereas the topsoil SOC stocks decreased on 18%. The difference can be 
explained by slower mineralization of SOC stocks in colder conditions as 
well as by higher initial SOC stocks in Chernozems dominating soils of 
the Rostov region. Soil sealing had the most negative effect, however the 
actual level of build-up and main road areas resulting to complete loss of 
SOC stocks turned to be less than 10%, showing that regional and global 
models likely underestimate the negative effect of soil sealing. A 
considerable decrease of SOC stocks was obtained for the bare soils in 
Rostov-on-Don, whereas development of green infrastructures (e.g., 
district parks and green lawns) had a clear positive effect on SOC stocks 
in both cities. Data scarcity was a limitation for the accurate estimation 
of the SOC stocks. Only the regional soil map of Rostov was a sufficient 
source of the pre-urban SOC stocks, whereas the soil map of the Mur-
mansk region didn’t allow improving estimated based in the national 
and even global sources. Although, the absolute values of SOC stocks 
were likely uncertain, the outcomes clearly show the patterns in SOC 
transformations induced by different urbanization pathways and in 
different regions. The research also confirms the possibility of the pos-
itive effect on urbanization on SOC stocks, which can be considered as a 
target for sustainable development strategies aiming to enhance 
ecosystem services of urban soils among which C sequestration is one of 
the most important. 
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