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Abstract: The crystal structure of 9-dibenzylsulfide-7,8-dicarba-nido-undecaborane 9-Bn2S-7,8-C2B9H11

was determined by a single-crystal X-ray diffraction. One of the benzyl groups is located above the
open face of the carborane cage with a short H···H distance (2.29 and 2.71 Å for two symmetrically
independent molecules) between the BHB-bridging hydrogen atom of the carborane fragment and the
ortho-CH group of the aromatic ring. Topological analysis has revealed the existence of a critical bond
point with a calculated energy of −0.8 kcal/mol in accordance with an X-ray diffraction molecular
geometry. The crystal packing analysis revealed that this benzyl group is also involved in π-stacking
interactions, while another benzyl group participates in numerous weak H···π, H···H and van der
Waals interactions.

Keywords: nido-carborane; sulfonium derivatives; single-crystal X-ray diffraction; quantum-
chemical calculations

1. Introduction

nido-Carborane derivatives bearing sulfonium and ammonium substituents are widely
used for the synthesis of π-complexes of transition metals or metallacarboranes [1–6],
as well as various neutral functional derivatives of nido-carboranes [7–13]. A single-
crystal X-ray diffraction study of asymmetrically substituted dialkylsulfonium derivatives
of nido-carborane 9-R2S-7,8-C2B9H11 [8,9,14] as well as their C- and B-substituted ana-
logues [15–20], revealed that the SR2 group in all cases is turned in such way, that the
lone pair of the sulfur atom is antiperiplanar to the B(9)–B(10) bond, while their 1H and
13C-NMR spectra indicate the absence of free rotation around the B(9)–S bond.

Analysis of the 1H-NMR spectrum of the previously synthesized 9-dibenzylsulfonium
derivative of nido-carborane 9-Bn2S-7,8-C2B9H11 [21] revealed the nonequivalence of the
benzyl groups: the signal of the CH2 protons of one benzyl group appears as a singlet,
while the signal of the CH2 protons of the other group appears as two doublets. Taking
into account the achirality of the sulfur atom in this compound, it can be assumed that
there is an interaction between the carborane cage and one of the benzyl groups, which
hinders its rotation resulting in non-equivalence of the benzyl protons. To shed light on
this issue, we carried out a detailed study of the structure of 9-Bn2S-7,8-C2B9H11 using a
single-crystal X-ray diffraction and quantum-chemical calculations.

2. Results and Discussion

The molecular crystal structure of 9-Bn2S-7,8-C2B9H11 was determined by a single-
crystal X-ray diffraction study. An asymmetric unit cell contains two molecules (A and
A′) which differ slightly in the orientation of the SBn2 substituent. As mentioned in the
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introduction, in the nido-carboranes substituted with the S(CH2R′)CH2R” groups at position
B(9), the orientation of the substituent is such that one C(8)-B(9)-S-C angle is in the range of
85–115◦ and the other in the range of 170–140◦. In 9-Bn2S-7,8-C2B9H11, the corresponding
torsion angles for both symmetrically independent molecules are characterized by expected
values (Table 1).

Table 1. Selected torsion angles which define molecular conformation of the titled compound.

Torsion Angle Molecule A Molecule A′ Calculation

C(8)-B(9)-S(1)-C(1) 91.2(2) 113.4(2) 112.9
C(8)-B(9)-S(1)-C(10) −163.5(2) −140.7(2) −141.0
B(9)-S(1)-C(1)-C(2) −65.8(2) −84.2(2) −77.8

B(9)-S(1)-C(10)-C(11) −165.0(2) 179.7(2) −177.2

At the same time, according to the literature data, no regularities in the orientation
of the R′ and R” groups were observed. For example, in recently studied 9-ClCH2(Me)S-
7,8-C2B9H11 [9], three conformers with respect to rotation around the S–C bond were
found by quantum-chemical calculations and intramolecular noncovalent attractive H···Cl
contacts were observed in two of them. Due to the relatively low rotation barrier, all three
conformers can exist in solution; however, no conformer with intramolecular noncovalent
contacts was observed in the crystal structure.

In the case of 9-Bn2S-7,8-C2B9H11, the benzyl group directed downwards relatively to
the open pentagonal face of the nido-carborane ligand does not form any intramolecular
contacts, while the aromatic ring of the other benzyl group is located above the open
face, which might imply intramolecular interactions. We found that the H(9A)···H(12)
distance (shown by a dashed line in Figure 1) is 2.29 and 2.71 Å in two symmetrically
independent molecules. It is interesting to note here that, in the recently studied 9-Bn(Me)S-
7,8-C2B9H11 [8], no intramolecular shortened contacts were observed between the benzyl
group and the carborane cage; as a consequence, the aryl ring is involved in extensive
intermolecular bonding.
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Figure 1. A general view of 9-Bn2S-7,8-C2B9H11 showing atomic numbering. Only the first indepen-
dent molecule (A) is presented. Thermal ellipsoids are drawn at a 50% probability level. Noncovalent
C-H···H-B interaction is shown by a dashed line.

To find the preferred conformation of the isolated molecule of 9-Bn2S-7,8-C2B9H11
for a better understanding of both intra- and intermolecular contacts, we carried out
quantum-chemical calculation using the Gaussian program [22] and PBE0 functional with a
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triple-zeta basis set, which proved to be reliable for studying of molecular geometry [23–26].
To search for noncovalent intramolecular interactions, the AIM topological theory [27] was
utilized. The search for bond critical points was carried out using the AIMAll program [28].
The estimation of the interacting atoms’ energy was based on its correlation with the
potential energy density at the bond critical point E = 1/2V(r) [29,30]. Such correlation is
often utilized for energetic analysis of a variety of organic compounds [24,31–33].

The calculated geometry (Table 1) is close to the geometry of the A′ molecule. Topolog-
ical analysis revealed the presence of the bond critical point between the H(9A) and H(12)
atoms in accordance with our suggestion based on the X-ray geometry of the molecule
(Figure 1). The calculated energy of this contact is −0.8 kcal/mol. The crystal packing
analysis demonstrates that the upwards-directed benzyl group is involved in the π-stacking
interactions (Figure 2), while the other benzyl group participates in numerical weak H···π,
H···H and van-der-Waals interactions.
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Figure 2. Crystal packing fragment of the titled compound showing stacking aggregates. The shortest
intermolecular contacts are denoted by dashed lines. Distances C(3)···C(2′) and C(5′)···C(4′A) are
equal to 3.383(3) and 3.364(3) Å, respectively.

In conclusion, the molecular crystal structure of compound 9-Bn2S-7,8-C2B9H11 was
determined. The observed relative orientation of the benzyl groups allowed the formation
of both intramolecular noncovalent interactions, intermolecular π–π stacking and H···π
interactions in addition to the ordinary van der Waals contacts.

3. Materials and Methods

Synthesis of the 9-dibenzylsulfonium derivative of nido-carborane 9-Bn2S-7,8-C2B9H11
was described in the literature [21]. Its NMR spectral data are as follows: 1H-NMR
(400 MHz, CDCl3), δ: 7.38 (10H, m, Ph), 4.43 (1H, d, CHHPh, J = 13.3 Hz), 4.17 (2H, s,
CH2Ph), 4.13 (1 H, d, CHHPh, J = 13.3 Hz), 1.93 (2H, br.s, CHcarb), −3.31 (1H, br.s,
BHB bridge), 13C{1H}-NMR (100 MHz, CDCl3), δ: 130.34 (Ph), 130.05 (Ph), 129.97 (Ph),
129.76 (Ph), 129.61 (Ph), 129.57 (Ph), 129.52 (Ph), 129.43 (Ph), 52.01 (Ccarb), 47.98 (CH2),
46.10 (CH2), 38.52 (Ccarb), 11B-NMR (128 MHz, CDCl3), δ: −4.0 (1B, d, J = 130 Hz),
−8.1 (1B, s), −11.5 (1B, d, J = 130 Hz), −16.7 (1B, d, J = 116 Hz), −17.8 (1B, d, J = 165 Hz),
−23.3 (1B, d, J = 149 Hz), −26.0 (1B, d, J = 144 Hz), −29.5 (1B, d, J = 109 Hz), −36.5 (1B, d,
J = 144 Hz). MS (EI): found; m/z: 347 (M)−; calculated for C16H25B9S (M)− = 347.

A single-crystal X-ray diffraction experiment was carried out using the SMART APEX2
CCD diffractometer (λ(Mo-Kα) = 0.71073 Å, graphite monochromator,ω-scans) at 120 K.
Collected data were processed by the SAINT and SADABS programs incorporated into
the APEX2 program package [34]. The structure was solved by direct methods and refined
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by the full-matrix least-squares procedure against F2 in anisotropic approximation. The
refinement was carried out with the SHELXTL program [35]. The CCDC number 2083954
contains the supplementary crystallographic data for this paper. These data can be obtained
free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Crystallographic data for 9-Bn2S-7,8-C2B9H11: C16H25B9S are monoclinic, the space
group P21/n: a = 11.4570(6) Å, b = 25.5132(14) Å, c = 13.5873(7) Å, β = 102.813(3)◦,
V = 3872.7(4) Å3, Z = 8, M = 346.71, dcryst = 1.189 g·cm−3, wR2 = 0.0911 calculated on
F2

hkl for all 7507 independent reflections with 2θ < 52.0◦, (GOF = 0.990, R = 0.0416 calcu-
lated on Fhkl for 6230 reflections with I > 2σ(I)).

Supplementary Materials: The following are available online, the NMR spectra X-ray diffraction
data for 9-Bn2S-7,8-C2B9H11.
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