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Although carbon is the central element of organic chemistry, oxygen is the central element of

stereoelectronic control in organic chemistry. Generally, a molecule with a C-O bond has both a strong

donor (a lone pair) and a strong acceptor (e.g., a o*c o orbital), a combination that provides opportunities to

influence chemical transformations at both ends of the electron demand spectrum. Oxygen is a stereoelec-

tronic chameleon that adapts to the varying situations in radical, cationic, anionic, and metal-mediated trans-

formations. Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), ie,
) the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed
to hyperconjugative interactions of o-acceptors with a lone pair at oxygen {negative hyperconjugation),
recent literature reports suggested altemative explanations. In this context, it is timely to evaluate the funda-
mental connections between the AE and a broad variety of O-functional groups. Such connections illustrate
the general role of hyperconjugation with oxygen lone pairs in reactivity. Lessons from the AE can be used as
the conceptual framework for organizing disjointed observations into a logical body of knowledge. In con-
trast, neglect of hyperconjugation can be deeply misleading as it removes the stereoelectronic comerstone
on which, as we show in this review, the chemistry of organic oxygen functionalities is largety based. As nega-
tive hyperconjugation releases the “underutilized” stereoelectronic power of unshared electrons (the lone
pairs) for the stabilization of a developing positive charge, the role of orbital interactions increases when the
electronic demand is high and molecules distort from their equilibrium geometries. From this perspective,
hyperconjugative anomeric interactions play a unique role in guiding reaction design. In this manuscript, we
discuss the reactivity of organic O-functionalities, outline variations in the possible hyperconjugative patterns,
and showcase the vast implications of AE for the structure and reactivity. On our joumey through a variety of
O-containing organic functional groups, from textbook to exotic, we will illustrate how this knowledge can
predict chemical reactivity and unlock new useful synthetic transformations.
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photosynthesis, and biosynthesis. Furthermore, in combination
with carbon, oxygen is also an essential architectural component

Organic chemistry of oxygen-containing

functional groups through the prism of
the anomeric effect

Oxygen is one of the key elements of the chemical universe with
many important biological functions including respiration,
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for the construction of organic molecules. Like a sprinkle of
spice, incorporation of oxygen adds many useful properties
including polarity, H-bond formation, hydrophilicity, Lewis
basicity etc. that help to convert-plain hydrocarbon molecules
into medicinally active molecular entities. Not surprisingly, the
O-containing functional groups, from ethers and alcohols to
ketones and carboxylic acid derivatives, define much of under-
graduate chemistry.

The role of oxygen in organic synthesis is equally profound.
The reactivity patterns of O-functionalities are diverse with
much of this diversity traceable to the chameleonic properties
of this element, as oxygen combines high electronegativity
with Lewis basicity. This combination is essential for creating
controlled charge separation in nucleophilic and electrophilic
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fragmentations or an unexpected facilitating role of “bystander”
substituents.

When needed, anomeric delocalization can be controlled.
For example, H-bonding to oxygen can moderate its donor ability,
while deprotonation of OH groups can dramatically activate
negative hyperconjugation. Amplification of anomeric effects at
anionic oxygen compounds is assisted by “stereoelectronic pro-
miscuity” of negatively charged oxygen leading to cascade C-C
fragmentations or unexpected roles of “bystander” substituents.

It is also important to say that, although our focus is on orbital
interactions, one should not underestimate the importance of
electrostatic, steric, dispersive interactions. They are also essential
parts of the overall molecular puzzle. In particular, charges
certainly matter. However, their influence generally comes,
especially in neutral systems, from a combination of several
components. In contrast, the predictive power of stereoelectronic
analysis can often be traced down to a single dominant effect.

We hope that this review will be useful to a broad chemical
audience - from theoretical physical chemists to industrial
practitioners - because it can serve as the conceptual bridge
between fundamental stereoelectronic interactions and the
practical reactivity trends in omnipresent O-containing com-
pounds. The stereoelectronic give-and-take of oxygen lone pairs
and C-O orbitals with the neighboring functionalities can
induce new reactivity features, define physical properties, and
even serve as the main reason for certain oxygen-containing
compounds to exist at the practical timescales.
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