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Abstract—The phase structures of internal gravity waves in the ocean are investigated. Wave fields are gener-
ated by a moving source of disturbances. The main dispersion dependences determining the properties of the
generated far wave fields are studied numerically. The properties of internal waves inferred from the numerical
simulations of the amplitude-phase structures of the far fields of internal gravity waves generated by moving
sources of disturbances are presented. The simulations were carried out for the example of the distributions
of the buoyancy frequency characteristic of the North Atlantic.
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Internal gravity waves (IGWs) in the ocean can be
induced by any perturbation of the stratified medium
[13, 15, 16]. However, the strongest generators of
internal waves are tides and wind. When a tidal current
runs onto the underwater slope, it generates tidal
IGWs, which then propagate as free waves. IGW fields
near the source are described by beams or sets of
modes, with the high modes rapidly decaying and the
waves of the lower modes propagating further [13, 16].
Wind action on the ocean surface practically does not
generate IGWs directly: it generates inertial oscilla-
tions, which, as they collapse, generate wave packets of
a wide frequency range [15, 18]. Generation of IGWs
by meteorological disturbances was considered in [9,
10, 18]. Typhoons and hurricanes are the strongest
generators of inertial oscillations: a typhoon can move
along the surface of the ocean at a speed of several
meters per second, which, as a rule, is higher than the
phase velocities of IGWs in the ocean [2, 7, 9, 15, 18].
A wave wake resembling a Mach cone is formed
behind the typhoon. In this wake the first inertial
oscillations are excited and then a wide range of inter-
nal waves [9, 10, 18]. Such waves excited in the ocean
have an actual period on the order of one hour,
depending on the depth of the ocean [2, 6, 7, 15].
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Internal waves can also be generated by other strong
disturbances in the ocean, e.g., unstable currents,
fronts, or vortices [2–4, 8, 20]. Wave fields excited
through this generation mechanism can also be pro-
duced by other strong perturbations that play a signif-
icant role in various mechanisms of energy transfer in
the ocean [13, 15, 16]. The propagation of dispersive
IGWs in the ocean has features associated with the
dependence of the propagation velocity on the wave-
length. The structure of wave patterns at large dis-
tances from a moving source is practically indepen-
dent of its shape and is mainly determined by the dis-
persion law and the velocity of the source. Modern
approaches to the description of linear IGWs are based
on representing wave fields by Fourier integrals, ana-
lyzing their asymptotics, and constructing phase
structures within the framework of the kinematic the-
ory of dispersive waves [3, 7, 11].

This paper considers the features of the phase and
amplitude structures of the far fields of IGWs, using
the distributions of the buoyancy frequency character-
istics of the North Atlantic water body [5, 12, 17, 19].
Taking into account the actual stratification of tem-
perature and salinity makes it possible to depict the
patterns of wave dynamics depending on the variable
density of the marine environment observed during
field measurements of IGWs in the World Ocean. The
North Atlantic area was chosen because this part of the
ocean often experiences strong winds. The western
tropical Atlantic region, located along the route of
major autumn hurricanes was also considered. A sim-
ilar situation is observed in the northern part of the
9
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Table 1. Väisälä–Brent frequencies at the characteristic depths of the seasonal thermocline of 100 m and the main thermo-
cline of 1000 m for the regions of the North Atlantic considered

Buoyancy (Brunt–Väisälä) frequency values for the North Atlantic regions are given in cycles per hour.

Depth, m Western tropical Atlantic 
10° N, 43° W

Northeastern tropical 
Atlantic 20° N, 37° W

North Atlantic 
60° N, 20° W

North Atlantic 
74° N, 15° E

100 8 5 2 3
1000 2 1.5 1.5 0.8
Pacific Ocean and in other areas of the ocean with
strong winds; therefore, there is no fundamental dif-
ference in the physical features of wave processes. Cer-
tain differences in the numerical values in the solu-
tions are, however, possible.

The Väisälä–Brent frequency at the characteristic
depths of the seasonal 100-m thermocline and the
main 1000-m thermocline for the regions of the North
Atlantic considered, where domestic measurements
were carried out [5, 6, 12, 17, 18], is presented below in
Table 1.

In the coordinate system moving with the source,
the steady field of linear IGW elevations 
excited in an inviscid, incompressible, vertically strat-
ified medium of finite depth at  is determined
by solving the problem [3, 11]

(1)

where  is the velocity of the source, ,  is
the depth of the source, , , ,  =

 is the Brunt–Väisälä frequency,  is

the density of the unperturbed medium, and function
 describes the distribution of the source

density in a moving coordinate system. At large dis-
tances, real sources of IGW disturbances allow for a
physically justified approximation by a certain system of
point sources taken with certain weights [3, 4, 7, 20]. The
solution to problem (1) describes a steady-state wave
regime in the coordinate system moving with velocity

 together with the source of disturbances and has the
form of the sum of wave modes [3, 11]
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where  is an eigenvalue of the main vertical spec-
tral problem of the IGW [3, 15]. As was shown in [3],
the contribution of the addends describing the tran-
sient regime and depending on time in explicit form at

 and fixed values of  is exponentially
small.

The asymptotics of integrals (2) describing the field
of an individual IGW mode far from sources of distur-
bances can be calculated by the stationary phase
method. Stationary points of the phase function are
determined from the solution of the equation

. The asymptotics of the stationary phase
cease to work in the vicinity of the wave fronts, that is,
in the case when the stationary points tend to each
other and . Wave fronts are defined by 
values such that , and the asymptotics of the
wave field near each of the wave fronts can be
expressed in terms of the Airy function and its deriva-
tives [3, 11]. In the vicinity of wave fronts, stationary
points tend to zero, that is, to the edge of the integra-
tion region and, at the same time, to the singularity of
the integrand . In this case, the stationary
phase method is inapplicable; therefore, in order to
construct local asymptotics using an appropriate
transformation/substitution, the original integral
should be presented as a more complex reference inte-
gral. The choice of the reference integral is determined
by the distribution of stationary points of the phase
function and singular points of the integrand

 [14].
Far from sources of disturbances, the qualitative

behavior of the wave field is determined by the pres-
ence or absence of extrema of the function , cor-
responding to the respective stationary points of the
phase functions in (2) [3, 11]. Due to the peculiarities
of the distribution of the buoyancy frequency in differ-
ent areas of the World Ocean, the dispersion depen-
dences and the corresponding phase functions can
have several stationary points. Below, all numerical
results for the second wave mode are given without
loss of generality. Figure 1 shows the calculated disper-
sion surfaces . Figure 2 shows the calculated
lines of equal phases (solid lines) and the correspond-
ing wave fronts (dashed lines). Figure 3 shows the cal-
culated elevation. Numerical calculations for different
wave modes show that the dispersion pattern may have
from one to several extrema of the function ,
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Fig. 1. Dispersion surfaces  of internal waves. 
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Fig. 2. Lines of equal phase during the propagation of
internal waves at  m/s. 
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Fig. 3. Elevations during the propagation of internal waves
at  m/s. 
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depending on distributions of the buoyancy frequency
and velocity of the source. The number of extrema of
the function , as a rule, increases with the wave
mode number, which means that several wave trains
contribute to the far field of the IGW.

The results of numerical calculations show that the
topology of dispersion surfaces  can have a
rather complex structure, depending both on the strat-
ification of the medium and on the parameters of wave
generation. In addition, numerical calculations show
that a change in the wave generation parameters (an
increase in the velocity of the source of disturbances)
results in a noticeable rearrangement of the phase pat-
terns of the wave field. In particular, the characteristic
phase pattern of the “dovetail” (Fig. 2) type can be
observed [1]. In this case, a qualitative restructuring of
simultaneously arriving wave fronts occurs at a fixed
observation point. Then the total IGW field is a com-
plex picture of wave beats, when several wave trains
with different amplitudes and phases arrive simultane-
ously at a certain point in space.

The complex topology of the calculated dispersion
characteristics requires special mathematical methods
for a correct asymptotic study of the far fields of the
IGWs. Singular points of phase functions in integrals (2)
can approach other singular points or the points with
some peculiarity (pole, branch point) of the integrand

. In this case, the standard methods for
studying the asymptotics of IGW fields become inap-
plicable. It is important to note that the most interest-
ing from a practical point of view are the local extrema
of dispersion surfaces , since the asymptotics
of the IGW field in the vicinity of the corresponding
wave fronts and caustics corresponding to these
extrema can be described using the method of refer-
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DOKLADY EARTH SCIENCES  Vol. 501  Part 1  2021
ence integrals. For example, when two stationary
points merge, the asymptotics of integrals (2) is
expressed through the Airy function, and when sta-
tionary point merge with a pole, it is expressed
through the Fresnel integral. The merging of three sta-
tionary points can be described by the Pearcey func-
tion, which is often used in the theory of singularities
and catastrophes [14]. If two of the three merging sta-
tionary points are strictly symmetric with respect to
the third, then the asymptotics of the corresponding
integral can be expressed in terms of the Hankel func-
tion. If the integrand  has a root singularity
near the edge of the integration domain, then the
asymptotics of the solutions are described using the
square of the Airy function [3].

ν0( , , )nD z z
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Numerical calculations of the dispersion charac-
teristics, phase surfaces, and amplitude–phase char-
acteristics of IGW fields show that physically interest-
ing cases of the generation of wave structures that are
not described by the well-known reference integrals
can arise for actually observed vertical stratifications
of the World Ocean [1, 3, 14].
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