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Abstract In perturbation theory, the spectral densities of two-point functions develop non-
integrable threshold singularities at higher orders. In QCD, such singularities emerge when
calculating the diagrams in terms of the pole quark mass, and they become stronger when
one rearranges the perturbative expansion in terms of the running quark mass. In this paper,
we discuss the proper way to handle such singularities.

1 Introduction

The correlation function of two currents defined as

�(q) = i
∫

dxeiqx 〈T {�̄(x)O1ψ(x), ψ̄(0)O2�(0)}〉, (1.1)

where ψ and � denote fermion fields (which may be identical) and O1,2 are Dirac matrices,
is one of the basic objects in quantum field theory. For instance, in QCD, two-point functions
with an appropriate choice of the Dirac matrices provide the basis for the extraction of masses
and couplings of mesons with the corresponding quantum numbers within the method of QCD
sum rules [1,2]. In general, the two-point function contains a number of independent Lorentz
structures Li (q) and the corresponding invariant amplitudes Fi (q2). We shall discuss here
spectral representations for the invariant amplitudes Fi (q2) and omit throughout the paper
the subscript i .

As follows from the general properties of the time-ordered product, the function F(q2)

is an analytic function in the complex q2-plane with the cut along the real axis [3,4] from a
threshold sth to +∞ and satisfies the spectral representation with an appropriate number n
of subtractions:

F(q2) = F(0) + F ′(0)q2
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+ · · · + (q2)n

π

∞∫

sth

ds

sn(s − q2 − i0)
ρ(s), (1.2)

where ρ(s) = Im F(s + i0). The subtractions are performed in order to provide the conver-
gence of the spectral integral or to satisfy constraints imposed by symmetries of the theory.

In QCD, one makes use of several expansions of the two-point functions. Important
examples of such expansions are listed below: (i) perturbative expansion in powers of αs

of the elastic correlation function [5–10]; (ii) rearrangement of the perturbation theory for
the heavy-light correlation functions [11,12] via a replacement of the pole mass by the running
mass of the heavy quark [13–15] to gain better convergence of the perturbation series; (iii)
expansion of the heavy-light correlation functions in the light-quark mass [16,17]. In all these
cases, higher-order spectral densities exhibit the appearance of nonintegrable divergences at
the threshold.

Reference [10] gave a detailed analysis of the dispersion representations in the presence
of threshold singularities, with the emphasis on vacuum polarization in QED: The authors
made use of the known analytic results for the elastic QED two-point function (including the
contributions of the continuum and the positronium poles) and its expansion in perturbation
theory, in order to demonstrate their equivalence in the framework of dispersion relations.

The novel feature of this paper is the procedure for handling nonintegrable threshold
singularities in a more general case when only the discontinuity of the analytic function on
the cut, but not the function itself, is known. We formulate an algorithm for solving the integral
equation for the analytic function which arises when its discontinuity contains nonintegrable
threshold singularities. Our analysis covers all three cases (i)–(iii) mentioned above and may
be easily generalized to a nonintegrable threshold singularity of any form.

2 Threshold singularities in perturbation theory

As an example consider radiative QED corrections to vacuum polarization in the vicinity
of the e+e− threshold. The continuum contribution to the spectral density of the vacuum
polatization is known exactly and is given by the so-called Sommerfeld factor [2]:

ρ(s) = πα

2

1

1 − exp(−πα/v)
, v =

√
1 − 4m2

s
, (2.1)

m the electron mass and α the electromagnetic coupling. Expanding this factor in powers of
α yields

ρ(s) = v

2
+ πα

4
+ 1

2

∑
n=2,4...

Bn

n! (πα)n
1

vn−1 , (2.2)

where Bn are Bernoulli numbers (B2 = 1/6, B4 = −1/30, …). The sum in Eq. (2.2) runs
over even powers of α: for n = 2 it has an integrable 1/v divergence at the threshold v = 0,
but starting with n = 4, these singularities are nonintegrable and one should specify the
precise way to handle them.1

1 In addition to the continuum contribution, there is also the contribution of positronium poles located below
the threshold (see, e.g., [2]). Expanding the latter in powers of α and adding to the perturbative expansion of the
continuum contribution, one gets the full perturbative spectral density. For our interest in this paper, only the
perturbative expansion of the continuum is relevant: The contributions of the positronium poles are localized
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Fig. 1 Deformations of the
integration contour
�1 → �2 → �3 in Eq. (2.3).
According to the Cauchy
theorem, such deformations of
the contour do not change the
finite value of the contour integral

To understand the proper way to proceed, we recall the following property of any analytic
function: A contour integral of an analytic function over the region where the function is free
of singularities is finite and does not depend on the specific choice of the integration contour.
Let us look at the problem of the threshold divergences from this perspective. We start with
the Cauchy theorem

F(s) = F(0) + s

2π i

∮

�

F(s′)
s′(s′ − s)

ds′. (2.3)

Here � is any contour surrounding the point s and located in the region where the function
F(s) is analytic. We start with the contour �1 (see Fig. 1). Obviously, the integral is finite. We
now start to deform the contour �1 → �2 → �3 in the region of analyticity of the function
F(s). Such deformations do not change the (finite) value of the integral. Finally, we end up
with the contour �3 which embraces the cut from s = 4m2 to s = ∞, and the large circle.
With the appropriate number of subtractions, the large-circle integral vanishes, and we end
up with the contour integral which embraces the cut. This integral needs some care. It may
be split into two parts: (I) the integral over a small circle of radius ε around the threshold
s = 4m2, and (II) the integral over the “cut” starting from s = 4m2 + ε to ∞ along the real
s-axis. The sum of these two integrals is finite due to the general property of the analytic
functions mentioned above. If the behavior of the function F(s) near the threshold is such that
the integral of Im F(s) over the cut is finite, then the small-circle integral vanished as ε → 0.
However, the situation changes for the case when Im F(s) has a nonintegrable singularity at
the threshold: then, the small-circle integral (I) also diverges for ε → 0, making the sum of
(I) and (II) finite for ε → 0.

We shall demonstrate this property for the general case of the singular threshold behavior
of the spectral density of the form Im F(s + i0) = ρ(s) � 1/vn . According to the behavior
of the imaginary part of F(s), Im F(s) = ρ(s) → 1 at large s, one subtraction in the spectral
representation for F(s) is sufficient to guarantee that the large-contour integral vanishes.

slightly below the threshold and fall on the threshold being expanded in powers of α. Such contributions are
integrable at the threshold and therefore are beyond the scope of our interest. To avoid confusion, we only
recall that the positronium poles lead to nonzero small-circle contributions [10] [see Eq. (2.4)].
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For convenience, we introduce a dimensionless variable z = s/4m2, such that the cut
in F(z) is located along the real z-axis from 1 to ∞, and write for the function F(z) the
following dispersion representation with one subtraction (see also [10]):

F(z) = F(0) + z

2π i

∮

Rε

F(z′)
z′(z′ − z)

dz′

+ z

π

∞∫

1+ε

ρ(z′)
z′(z′ − z − i0)

dz′. (2.4)

where Rε is the (clockwise) circle with radius ε and the center at z = 1. Equation (2.4) is an
inhomogeneous integral equation for F(z) and its solution is not fully trivial.

Technically, the cases of an even n and an odd n are slightly different, so we shall consider
them separately.

2.1 Odd powers of 1/v

The spectral density of the elastic two-point function, Eq. (2.2), contains only odd inverse
powers of v. Let us start with the case of O(α4

s ) correction, namely

ρ4(s) ∝ 1

v3 , v =
√

1 − 4m2

s
. (2.5)

A detailed discussion of the above correction in the case of the hadronic vacuum polarization
contribution to the electron (g − 2) can be found in Ref. [10].

We first analyze the contribution to F3/2(z) from the dispersion integral over the cut and
thus see which parts of this contribution are to be inserted in the small-circle integral. By a
manipulation with the integrand,

1

1 − z
z′

=
(

1

1 − z
z′

− 1

1 − z

)
+ 1

1 − z

= − z

1 − z

1 − 1
z′

1 − z
z′

+ 1

1 − z
, (2.6)

we isolate the term singular in ε and obtain

F3/2(z, ε) ≡ z

π

∞∫

1+ε

1

(1 − 1/z′)3/2z′(z′ − z)
dz′

= 2z

π(1 − z)

1√
ε

− 2z

π(1 − z)
− z

1 − z
F1/2(z, 0)

+O(
√

ε), (2.7)

where

F1/2(z, ε) ≡ z

π

∞∫

1+ε

1

(1 − 1/z′)1/2 z′(z′ − z − i0)
dz′,

F1/2(z, 0) = − 2

π

√
z

z − 1
log

(√−z + √
1 − z

)
. (2.8)
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Since F1/2(z, ε) is a regular function at ε → 0, we could replace in (2.7) F1/2(z, ε) with
F1/2(z, 0).

It is convenient to write (2.7) in the following form

F3/2(z, ε) = 2

π

z

1 − z

1√
ε

+ 2

π

z

z − 1

[
1 −

√
z

z − 1
log

(√
z + √

z − 1
)]

−
(

z

1 − z

)3/2

+ O(
√

ε), (2.9)

where the second term on the r.h.s. is finite at the threshold.
Let us write down again Eq. (2.4):

F3/2(z) = F3/2(0) + z

2π i

∮

Rε

F3/2(z′)
z′(z′ − z)

dz′ + F3/2(z, ε). (2.10)

Because of the Cauchy theorem, the function F3/2(z) does not depend on ε. This means that
the term ∼ ε−1/2 generated by F3/2(z, ε) cannot be a part of F3/2(z) and should cancel against
the small-circle integral. We shall now demonstrate that the cancellation of this divergent term
is the only effect of the small-circle integral and that it does not yield any contribution that
remains finite in the limit ε → 0. In other words, to obtain F3/2(z) one needs to subtract
from F3/2(z, ε) all singular terms in ε and then send ε → 0. To prove this statement, we just
show that F3/2(z) obtained in this way satisfies Eq. (2.10).

We turn to Eq. (2.9) and omit the first term in its r.h.s., which is singular in ε. Then we check
which of the remaining structures may give a nonvanishing contribution when integrated over
the small circle. The second term in the r.h.s. of Eq. (2.9) is nonsingular at the threshold, as
it can be easily checked by an expansion around z = 1. Therefore, its contribution to the
small-circle integral vanishes after the limit ε → 0 is taken.

Only the last term in the r.h.s. of Eq. (2.9), which is singular at the threshold, can contribute
to the small-circle integral. It is convenient to set z′ = 1 − ε eiφ and take the φ-integral from
π to −π that corresponds to the clockwise contour integration (the angle φ is measured from
the negative direction of the z-axis; at φ = −π , we are on the upper boundary of the cut, and
at φ = π we are on its lower boundary), one gets

I3/2(z, ε) ≡ − z

2π i

∮

Rε

√
z′

(1 − z′)3/2

dz′

z′ − z

= z

2π(1 − z)
√

ε

π∫

−π

dφ e−iφ/2 + O(
√

ε)

= − 2

π

z

1 − z

1√
ε

+ O(
√

ε), (2.11)

where we made use of the integral
π∫

−π

dφ e−iφ/2 = 4. Thus, the small-circle integral I3/2(z, ε)

precisely cancels the singular contribution in 1/
√

ε coming from F3/2(z, ε) and does not
develop any finite terms in the limit ε → 0.
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Finally, in the case of the perturbative term (2.5), we come to the following solution for
F3/2(z):

F3/2(z) = F3/2(0) + 2

π

z

z − 1

− 2

π

z

z − 1

√
z

z − 1
log(

√−z + √
1 − z). (2.12)

It is straightforward to check that on the upper boundary of the cut along the real axis from
z = 1 to +∞ [to get there one needs to set z → z+ i0 for z > 1], the imaginary part of F(z)
is indeed equal to (1 − 1/z)−3/2. The behavior of F3/2(z) near the threshold z = 1 reads

F3/2(z + i0) − F3/2(0)

= i

(
z

z − 1

)3/2

− 2

3π
− 2

5π
(z − 1) + O((z − 1)2), (2.13)

and F3/2(z) verifies Eq. (2.4) in the limit ε → 0.
For higher-order contributions, the small-circle integrals produce singular terms contain-

ing a series of inverse powers of
√

ε related to poles of the increasing order at the threshold
z = 1.

A recursive expression for Fn+ 1
2
(z) for an arbitrary integer n ≥ 1 reads (a derivation of

this expression and a proof by induction of the cancellation of all ε-dependent terms is given
in Appendix A):

Fn+ 1
2
(z) − Fn+ 1

2
(0) = z

z − 1

{
Fn− 1

2
(z) − Fn− 1

2
(0)

}

+ 1

π

z

z − 1

1

(n − 1
2 )

. (2.14)

2.2 Even powers of 1/v

In several practical applications, e.g., when considering the expansion of the heavy–light two-
point correlation functions, one encounters spectral densities with threshold singularities of
the type 1/v2n , with integer n [16].2 Conceptually, this case has no difference compared to
the odd powers considered previously, but technically there are some subtleties.

The dispersion integral over the cut reads

Fn(z, ε) = z

π

∫ ∞

1+ε

dz′ 1

(1 − 1
z′ )

n

1

z′(z′ − z)
. (2.15)

Using Eq. (2.6), one can obtain the following relation

Fn(z, ε) = z

z − 1
Fn−1(z, ε)

− 1

π

z

z − 1

∫ ∞

1+ε

dz′ 1

(1 − 1
z′ )

n

1

z′2
, (2.16)

2 One should not confuse even powers of 1/v in the spectral density of the two-point function considered
here and even powers of 1/v in the two-point function itself [10]: the latter emerge in the elastic two-point
function in QED and correspond to the δ-function and its derivatives in the spectral density and therefore do
not represent nonintegrable threshold singularities.
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that gives, after taking the integral,

Fn(z, ε) = z

z − 1
Fn−1(z, ε)

− 1

π

z

z − 1

[
(1 + 1

ε
)n − 1

]
ε − 1

(n − 1)(1 + ε)
. (2.17)

For n > 1, the last term contains only positive powers of 1/ε (in particular, no constant term).
As already explained above, the ε-dependent piece of Fn(z, ε) cannot be a part of the analytic
function Fn(z). So, (2.17) suggests that the analytic function Fn(z) satisfies the relation

Fn(z) − Fn(0) = z

z − 1

{
Fn−1(z) − Fn−1(0)

}
. (2.18)

For n = 1, one finds

F1(z, ε) = − 1

π

z

z − 1
log(1 − z) + 1

π

z

z − 1
log(ε) + O(ε)

(2.19)

and its ε-independent part suggests

F1(z) − F1(0) = − 1

π

z

z − 1
log(1 − z). (2.20)

Starting with this function, Eq. (2.18) yields

Fn(z) − Fn(0) = − 1

π

(
z

z − 1

)n

log(1 − z). (2.21)

This solution is still our conjecture and we need to check that Fn(z) given by (2.21) satisfies
the integral equation (2.6). To this end, we insert (2.21) in the small-circle integral and
check that the only role of the small-circle integral is indeed to precisely cancel the singular
ε-dependent terms in Fn(z, ε).

Let us illustrate how things work, e.g., for n = 2:

F2(z, ε) = − 1

π

(
z

z − 1

)2

log(1 − z)

+ 1

π

(
z

z − 1

)2

log(ε) + 1

π

z

1 − z

1

ε
+ O(ε).

(2.22)

We now have to insert its ε-independent part, which as expected gives the solution F2(z), in
the contour integral. Substituting z′ = 1 − ε exp(iφ), such that the clockwise φ integral runs
from π to −π , we obtain

I2(z, ε) = − z

1 − z

× 1

2π i

∫ π

−π

dφ

π

εieiφ

ε2e2iφ

1 − εeiφ

1 − εeiφ 1
1−z

[
log(ε) + iφ)

]
(2.23)

yielding

I2(z, ε) = − 1

π

(
z

z − 1

)2

log(ε) − 1

π

z

1 − z

1

ε
+ O(ε). (2.24)
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The small-circle integral cancels all ε-singular terms in the integral over the cut and does not
add any finite contributions for ε → 0.

A proof by induction of the cancellation of the ε-dependent terms (not only singular but all
ε-dependent terms) in the sum Fn(z, ε) + In(z, ε) for any integer n is given in Appendix B.
So, our procedure indeed yields the solution of the integral equation (2.4) in the form (2.21).

Before closing this Section, we emphasize that it is not necessary to calculate the small-
circle integrals explicitly; it is sufficient to calculate the integral over the cut in Eq. (2.4):
The ε-independent part gives the analytic function F(z), while (due to the Cauchy theorem)
the ε-dependent terms in the dispersion integral in Eq. (2.4) are precisely cancelled by the
small-circle contribution. As we have seen, the cancellation of the ε-dependent terms is the
only role of the small-circle integral in the case of nonintegrable threshold singularities; it
does not provide any finite contributions in the limit ε → 0.

3 Conclusions

We discussed the way to handle properly the threshold divergences arising in perturbation
theory for two-point functions. Our results are as follows:

(i) Taking a proper account of the small-circle integral around the threshold leads to the “sur-
face term” that exactly cancels the threshold divergence of the spectral integral. Thus,
a properly defined dispersion representation for F(s) (and in fact for any analytic func-
tion) at each order of perturbative expansion is finite and does not have any threshold
divergence.
It should be understood that when the small-circle integral provides a nonzero contri-
bution, the Cauchy theorem leads to the integral equation for the function F(s) even if
its discontinuity ρ(s) on the cut is known analytically. We formulated an algorithm for
solving this integral equation: Namely, one should calculate the integral over the cut and
isolate in this integral the ε-singular and the ε-regular parts; the ε-regular part gives the
desired solution of the integral equation, while the ε-singular part precisely cancels the
small-circle integral. Noteworthy, the only role of the small-circle integral is the cancel-
lation of the ε-singularities. At each order of the perturbative expansion, the small-circle
integral does not lead to finite contributions.
We presented the analysis of nonintegrable threshold divergences of the general structure
ρ(s) ∼ 1/vn , where n can be both even and odd integer numbers n ≥ 2. Moreover, it
should be clear that the proposed algorithm is applicable to any singular threshold behav-
ior of the spectral density.
Let us emphasize that thanks to the Cauchy theorem the explicit calculation of the small-
circle integrals is not required. It is sufficient to isolate all terms singular in ε in the
dispersion integral of ρ(s): The small-circle integral is precisely equal to the singular
part of the integral over the cut taken with an opposite sign. Noteworthy, the small-circle
contribution does not yield any finite remnants in the limit ε → 0.

(ii) We would like to mention once more a detailed analysis of the threshold singularities in
the dispersion representation for the vacuum polarization in QED [10], in which case the
spectral function contains contributions of the continuum states and the bound positron-
ium states. The analysis of [10] made use of the knowledge of the analytic results of both
the vacuum polarization and its imaginary part to demonstrate the relevance of the small-
circle integrals in the dispersion representation for the vacuum polarization. Notice, that
the finite small-circle contributions discussed in [10] come from the positronium poles.
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The latter are localized near the threshold and their contributions to the vacuum polar-
ization are integrable.
The goal of our analysis is the algorithm of treating nonintegrable threshold singularities
that emerge in perturbation theory; our algorithm allows one to obtain the analytic func-
tion as the solution of the integral equation and does not require the a priori knowledge
of this analytic function.

In conclusion, in higher orders of the perturbation theory, nonintegrable threshold singu-
larities given by powers of 1/v emerge. Our algorithm allows one to handle properly nonin-
tegrable threshold singularities of two-point functions and leads to finite perturbative terms
at each order; therefore, it may have a broad applicability. In particular, our algorithm opens
the possibility of applying perturbative series to the investigation of ground-state hadrons
within the machinery of QCD sum rules.

Acknowledgements We are grateful to M. Steinhauser for illuminating comments concerning the application
of his program rhad [7]. D. M. was supported by RFBR under project 19-52-15022. S. S. thanks the Italian
Ministry of Research (MIUR) for support under the grant PRIN 20172LNEEZ.

Appendix A: Proof by induction for Fn+ 1
2
[odd powers 1/v2n+1]

We start with the integral over the cut

Fn+ 1
2
(z, ε) = z

π

∫ ∞

1+ε

dz′ 1

(1 − 1
z′ )

n+ 1
2

1

z′(z′ − z)
. (A.1)

By virtue of (2.6), we come to a recursive relation

Fn+ 1
2
(z, ε) = z

z − 1
Fn− 1

2
(z, ε) + 1

π

z

1 − z
�Fn+ 1

2
(ε), (A.2)

where

�Fn+ 1
2
(ε) =

∫ ∞

1+ε

dz′ 1

(1 − 1
z′ )

n+ 1
2

1

z′2

=
(

ε
1+ε

) 1
2 −n − 1

n − 1
2

. (A.3)

This function is represented by an infinite sum of powers of
√

ε, the most singular term being

of the order ε−(n− 1
2 ). Noteworthy, the ε-independent term in �Fn+ 1

2
(ε) is

− 1

(n − 1
2 )

. (A.4)

We now conjecture that the ε-independent part of the recursive relation (A.2) yields the
recursive relation for Fn+ 1

2
(z):

Fn+ 1
2
(z) − Fn+ 1

2
(0) = z

z − 1

{
Fn− 1

2
(z) − Fn− 1

2
(0)

}

+ 1

π

z

z − 1

1

(n − 1
2 )

, n ≥ 1, (A.5)
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where the knowledge of the ε-independent term in �Fn+ 1
2
(ε) is used.

The analytic solution F1
2
(z) is easily found:

F1
2
(z) = F1

2
(0) − 2

π

√
z

z − 1
log

(√−z + √
1 − z

)
. (A.6)

Solving (A.5) iteratively, we find the conjectured solution Fn+ 1
2
(z). We still have to prove

that this function indeed satisfies the integral equation (2.4). To this end, we need to calculate
the small-circle integral of the function Fn+ 1

2
(z), see Eq. (2.4).

Using (2.6), the small-circle integral satisfies a recursive relation similar to (A.2):

In+ 1
2
(z, ε) = z

z − 1
In− 1

2
(z, ε) + 1

π

z

1 − z
�In+ 1

2
(ε), (A.7)

where

�In+ 1
2
(ε) = 1

2π i

∮
1+ε

dz′Fn+ 1
2
(z′) 1

z′2
. (A.8)

To calculate this small-circle integral, we expand the integrand near z = 1. Making use of
the expansion

Fn+ 1
2
(z) = (−1)n

(
z

1 − z

)n+ 1
2 + O((z − 1)0) (A.9)

and expanding also 1/z2 near z = 1, we find

�Fn+ 1
2
(ε) + �In+ 1

2
(ε) = − 1

(n − 1
2 )

, (A.10)

yielding

Fn+ 1
2
(z, ε) + In+ 1

2
(z, ε)

= z

z − 1

{
Fn− 1

2
(z, ε) + In− 1

2
(z, ε)

}

+ z

π(z − 1)

1

(n − 1
2 )

. (A.11)

This equation coincides with Eq. (A.5) for

Fn+ 1
2
(z) − Fn+ 1

2
(0) = Fn+ 1

2
(z, ε) + In+ 1

2
(z, ε) (A.12)

and verifies by induction that the sum Fn+ 1
2
(z, ε) + In+ 1

2
(z, ε) does not depend on ε (since

F1
2
(z)−F1

2
(0) is ε-independent). We therefore prove our conjecture that the solution Fn+ 1

2
(z)

is obtained from the dispersion integral over the cut, Fn+ 1
2
(z, ε), by omitting all ε-dependent

terms. Let us emphasize that the only role of the small-circle integral In+ 1
2
(z, ε) is to cancel

the ε-dependent terms in Fn+ 1
2
(z, ε); it leaves no other traces.

Appendix B: Proof by induction for Fn [even powers 1/v2n]

This appendix gives the analysis for the case Fn which has some subtleties compared to the
analysis for Fn+ 1

2
of Appendix A.
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We start with the integral over the cut

Fn(z, ε) = z

π

∫ ∞

1+ε

dz′ 1

(1 − 1
z′ )

n

1

z′(z′ − z)
. (B.1)

By virtue of (2.6), one obtains a recursive relation

Fn(z, ε) = z

z − 1
Fn−1(z, ε) + 1

π

z

1 − z
�Fn(ε), (B.2)

where

�Fn(ε) =
∫ ∞

1+ε

dz′ 1

(1 − 1
z′ )

n

1

z′2

=
[
(1 + 1

ε
)n − 1

]
ε − 1

(n − 1)(1 + ε)
. (B.3)

For integer n, this function is represented by a finite sum of poles in 1/ε of the increasing
order; it contains no regular structures in ε.

Solving (B.2) for the ε-independent part and making use of the known expression for
F1(z), we obtained Fn(z) in the form [see (2.21)]:

Fn(z) = Fn(0) − 1

π

(
z

z − 1

)n

log(1 − z). (B.4)

This is still our conjecture and we have to check that this function satisfies the integral
equation (2.4).

Let us calculate the small-circle integral for Fn(z) given by (B.4). Using again (2.6), we
obtain also for the small-circle integral a recursive relation

In(z, ε) = z

z − 1
In−1(z, ε) + 1

π

z

1 − z
�In(ε), (B.5)

where

�In(ε) = 1

2π i

∮
1+ε

dz′ log(1 − z′) 1

(1 − 1
z′ )

n

1

z′2

= −
[
(1 + 1

ε
)n − 1

]
ε − 1

(n − 1)(1 + ε)
= −�Fn(ε), (B.6)

Thus, Fn(z, ε) + In(z, ε) satisfies the recursive relation

Fn(z, ε) + In(z, ε) = z

z − 1

{
Fn−1(z, ε) + In−1(z, ε)

}
. (B.7)

For n = 1 we find

F1(z, ε) = − 1

π

z

z − 1
log(1 − z) + 1

π

z

z − 1
log(ε)

+ z

(z − 1)2 ε + z

2(z − 1)3 ε2 + O(ε3) (B.8)

and

I1(z, ε) = − 1

π

z

z − 1
log(ε)

− z

(z − 1)2 ε − z

2(z − 1)3 ε2 + O(ε3), (B.9)

123



  106 Page 12 of 12 Eur. Phys. J. Plus         (2021) 136:106 

leading to

F1(z, ε) + I1(z, ε) = − 1

π

z

z − 1
log(1 − z). (B.10)

Let us emphasize again that not only singular in ε terms, but also powers of ε cancel in the
sum, so F1(z, ε) + I1(z, ε) does not depend on ε at all. As follows from (B.7), for any n the
sum Fn(z, ε) + In(z, ε) also does not depend on ε and has the form

Fn(z, ε) + In(z, ε) = − 1

π

(
z

z − 1

)n

log(1 − z). (B.11)

So our conjectured solution (B.4) indeed solves the integral equation (2.4).
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