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SATELLITE NAVIGATION.
RAW DATA PROCESSING FOR GEOPHYSICAL APPLICATIONS

A. A. Golovan and N. B. Vavilova UDC 621.396.946

ABSTRACT. Satellite navigation systems are widely used in geophysical applications for precise trajectory
determination of a vehicle—carrier of geophysical equipment. In particular, in airborne gravimetry it is
necessary to determine the velocity and acceleration of the vehicle in addition to the position determination.
Mathematical models and algorithms for the solution of these problems are described. The source data
consists of differential Doppler and carrier phase GPS observations.

Introduction

This paper is based on research done at the Laboratory of Control and Navigation of the Department
of Mathematics and Mechanics of Lomonosov Moscow State University in close collaboration with several
Russian specialized Scientific and Research Institutes.

The stimulus for this research was developing software for several Russian airborne gravimetry sys-
tems, such as those manufactured at the Moscow Institute of Electromechanics and Automatics, VINII
Geophysics and Aerogeophysics, and Joint Stock Company “Gravimetric Technologies” (GT) [1]. The
laboratory has cooperated with the GT company for several years. The GT-produced airborne gravimetry
system GT1A (Russian name—MAG-1) was employed in several big gravimetric surveys done in Russia
and abroad. The laboratory has developed post-processing software for GT1A and for the Graviton-M
airborne system manufactured at the Aerogeophysics company. An essential part of this software deals
with satellite navigation.

In this paper, we center on methodical issues and discuss basic approaches to satellite navigation. We
shall limit our discussion to applications of Global Positioning Systems (GPS).

The main aim of processing GPS observations is to determine the position of a vehicle. This can be
done with the code or carrier phase observations obtained in the standard or differential mode of GPS.

Commercial GPS software is focused on this problem [9,10]. However, in some geophysical applica-
tions, for example, in airborne gravimetry, GPS velocity and acceleration are also required. These have
to be obtained by direct processing of the raw GPS observations [4,6,7].

On GPS Velocity and Acceleration

Let us explain the necessity of GPS velocity and acceleration in airborne gravimetry. Consider the
basic gravimetric equation [2]

. V2 V2
h= (—E + N +2uVEcos<p> — v — 0y + 093 + f3.
Rrp Ry

Here h is the flight altitude; the parentheses group terms called the E6tvos corrections (these corrections
are the transfer and Coriolis accelerations caused by the motion of the vehicle around the Earth ellipsoid);
Vi and Vj are the eastern and northern components of the vehicle velocity; R and Ry are the radii
of curvature of the first vertical and the meridional section; u is the Earth angular velocity; ¢ is the
geographical latitude; g is the normal gravity on the Earth surface specified by the Helmert formula

Yo = 9.78030(1 4 0.005302 sin 2 — 0.000007 sin? 2¢) — 0.00014; (1)

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 7, pp. 181-196, 2005.
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oy = —2w8h is the altitude correction of normal gravity; wy ~ 1.24 - 1073 is the Schuler frequency; f3 is
the projection of the external specific force acting on the proof mass onto the geographical vertical; dgs
is the sought-for gravity anomaly.

Three approaches can be formulated for this problem (see [2]).

(1) The first approach assumes double integration of the gravimeter measurements and comparing
the results with GPS altitude in order to extract the gravity anomaly dg from the difference of
the data.

(2) The second approach, on the contrary, assumes double differentiation of the GPS altitude and
comparing the results with the gravimeter readings.

(3) The third “compromise” variant assumes single differentiation and single integration, respectively,
of the GPS altitude and the gravimeter readings.

The last two approaches require GPS-derived velocity and acceleration.

Obviously, velocity and acceleration can be determined by direct numerical differentiation of the GPS
position. This way involves implicit differentiation of the raw GPS observations—the code pseudoranges
or the carrier phases. We prefer to determine velocity and acceleration by direct processing of the raw
GPS observations.

Both the Doppler and/or the carrier phase observations can be used to get GPS velocity and ac-
celeration. The carrier phases are potentially more precise. So in practice the Doppler observations are
seldom used. However, a GPS Doppler solution can be used as an initial approximation for a carrier phase
solution [4,6,7].

Velocity Determination of a Navigation Satellite

To determine velocity and acceleration one needs to know the motion of the GPS satellites, since they
enter into the solution.

Let us describe an algorithm determining the vector velocity of a GPS satellite using standard
ephemeris data. These data are transmitted by the satellite and are used first of all to determine the
satellites location. See details of the corresponding algorithm, e.g., in [5].

Initial ephemeris data are:

(1) the time from the ephemeris reference epoch ten,. For this epoch, the satellite’s coordinates and
velocities are computed;

(2) the reference ephemeris time T5c; mean motion difference from the computed value An; the mean
anomaly at reference time Mj; the orbit eccentricity e; the square root of the semi-major axis 1/a;
the amplitude of the cosine and sine harmonic correction terms to the orbit radius C}. and Cig; the
amplitude of the cosine and sine harmonic correction terms to the angle of inclination Cj. and Cig;
the amplitude of the cosine and sine harmonic correction terms to the argument of the latitude
Cyuc and Cyg; the longitude of the ascending note of the orbit plane at the weekly epoch €g; the
argument of the perigee w; the inclination angle at the reference time ip; the rate of the right
ascension Qo; the rate of the inclination angle 7.

Determined values:

(1) Rt = (Rsat, Rsat, Rsat)T—Earth Centered Earth Fixed (ECEF) satellite coordinates to the tem

reference epoch;
(2) Vb = (Vgas, vsar vsat) T ECEF satellite components of the relative velocity to the tep reference
epoch tem.
The following sequence of calculations is used (the standard algorithm of the satellite location is
described for the determination of the ECEF coordinates and velocities of the GPS satellite [5] and

supplemented with some formulas for velocity determination).
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(1) The time from the ephemeris reference epoch t* = tey — Toe. If t* > 302400, then t* is replaced
by t* — 604800. If t* < —302400, then t* is replaced by t* 4+ 604800. (Here N = 604800 is the
number of seconds in a week, Nge/2 = 302400.)

(2) The mean anomaly M at the moment ¢*:

M:M0+<3£72+An>-t*.
a

(3) The Kepler equation for the eccentric anomaly Ej is solved by the following iterations. For
Eo=M,k=1,2...do
Ep =M+ esin B_;.
If |Ey — E_1| < 1078, then stop iterations.
(4) The sine and cosine of the true anomaly f:

. V1 —e?sin E, cos B —e V1 —e?sin Ej,
sin fy=————7—7—, coSfy=——"— fr=arctan| ———— |.
1 —ecosF} 1—ecosE} coskE, —e

(5) The argument of the latitude ¢ = fr + w.
(6) The second harmonic perturbations dug, drg, and dip of the argument of the latitude ¢y, the
orbit radius r, and the angle of the inclination ig:
dup = Cyssin 2 + Clye cos 2, 01 = Cigsin 2 + Cre cos 2,  dip, = Cig sin 2¢g + Cic cos 2.
(7) The corrected values ug, 1, and i of the argument of the latitude ¢y, the orbit radius rg, and
the angle of inclination iy:
up = @ + oug, 1 = a(l —ecos Ey) + 01y, i = io + 0if, + iot*.
(8) Cartesian satellite’s coordinates 7 and r§ in the orbital reference frame O(:
r{ =rpcosug, T5 = rksinug.

(9) The corrected longitude of the ascending node

Q= Qo+ (Qo — u)t* — Utoe,

where u = 7.2921151467 - 107> (rad/s) is the WGS84 value of the Earth’s rotation rate.

(10) Cartesian satellite’s coordinates Ry2' = (R, RS2t Reat)T' in ECEF frame Or:

Rfﬁt = r{ cos Qp — 15 cos iy, sin O, ngt = r{sin Qx + 75 cos iy, cos O,
Rf;;t = ry sin ig.
(11) ECEF (On) satellite’s velocities V;2* = (V32¢, V2t Vns;‘t)T: ‘
(a) several supplementary values are computed: derivative f of the true anomaly fx, derivatives
duy, 07, and dix, of the argument of the latitude duy, the orbit radius r; and the angle of
the inclination 7

j = WE[@P + AnVI - &
R (1 — ecos Ey)? ’
871 = 2(Cis €08 205 — Cre 8in205) fir,  dig = 2(Cis cos 205 — Cie sin 20, fi..

The moduli v, and v, of the satellite’s range and transverse rate:

_ [ esin Ej, . B . O
Ur—a( m‘FAn)m‘Férka vy = 11 (fr + 6U);

(b) the components v{, v§, and v§ of the vector of the absolute velocity v in the orbital frame O(:

Oty = 2((jus CoS 20 — Clyc sin Q@k)fka

V) = Up COSUER — Uy SIN UL, V5 = Upsinuy + vy cosug, v§ = 1 sin fr(io + dig);
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sat bat

s Uno' s and vhat of the vector of the absolute velocity v in ECEF frame On:

(¢) the components v

Ust = 09 cos Y — 1§ cos i sin Q + v§ sin i, sin
Uf;it = v} sin Q, + v5 cos iy cos Ly, — v3 sin iy, cos
vf{;‘t = 0§ sin iy, + v§ cos ig;
(d) the components %% t Vnsgat, VSE’“t of the vector of the relative velocity V in ECEF frame On:

sat sat sat sat sat sat sat sat
VSR = o2 4 (u— Qo) R2Y, VS = o2 (u— Qo) R, VS = o2,

Models Used to Determine Vehicle Velocity

Model of Raw Doppler Observations. A generalized model of the raw Doppler observations Zy, (m/s)
has the form [8,9]

ZV,, = Vp - A(fAT - fAT) + 5‘/}0n + 5%rop + 5Vmp + 5‘/;at + 6‘/1'CV + 5‘/87 (2)

We use here the following notation:

e ) is the radio signal wavelength;
e V, is the radial velocity along the line “object-satellite” (the measured signal) specified by the
expression

Rsat - R T Vsat -V
v, = (R n)p( 7 n)7 p— \/(R%at — R,))T(RS — Ry); (3)
e far is the unknown clock drift of the receiver (estimated during processing);
e far is the known clock drift of the satellite (can be compensated algorithmically);
o 0Vion and 6Vi,op are the errors caused by the ionospheric and tropospheric refractions (partially
compensated by standard models for the ionospheric and tropospheric delays of radio signals);
® §Vyp is the error caused by the multipath from the obstacles surrounding the satellite antenna;
o §Viat and 0Vi., are the instrument errors of the satellite and the receiver (sufficiently stable in
time);
e 6V? is the random component in the error of Doppler observations.

In the differential mode of GPS the so-called double differences VAZVM are used for processing
VAZVp (Zbase Z{/(;Y) (Zbase Zrcv ) (4)

Here “base” and “rcv” indicate the observations from the base station and the rover receiver, respectively;
1 is the index indicating the observations from the ith satellite; z is the index indicating the observations
from the zenithal satellite.

Taking into account (2), the observation (4) can be represented in the form

VAZVP = VAVpl + VAV;oni + VA%ropi —+ VAVmpZ + VAV;S,
VAV, = (Vppase = Virev) = (Vppase = Vo), (5)
VA‘/(***)Z — (5‘/(***)‘;)ase - (5‘/(***);01) - (5‘/(***)2%6 - 6‘/(***)23\,)

Here VAV, is the differential combination of the radial velocities—the useful signal in (5).

The observation (5) has the advantage that the instrument errors of the receiver and the satellite
as well as their clock errors are absent in it. In addition, the level of the residual errors VAV,,,, and
V AVirop, is lower in comparison with similar errors in the standard mode of GPS (the smaller the distance
between the base station and the rover receiver and the smaller the difference between their altitudes, the
lower is this level).
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Determining Velocity by Processing Differential Doppler Observations. Let us compute the
radial velocity Vjpase “satellite-base station” using ECEF coordinates and velocities of the GPS satellite
and the base station (anase =0):

t; _ pb T
(Rf]a Rnase)

p?ase

A similar formula is used for the radial velocity Vp§cv “satellite—receiver” in which the rover’s velocity V,;CV
is taken into account:

VpEasc = Vnsati . (6)

sat; rcv\T

by (2) _ (Rn Ry )
V?7sa , ‘/ngcv — ijCV
)

(R%ati _ R%CV)T

rcv

Vprer = Vi + Vi, Vi =
K (3 i pz

p; p

e
Here the component Vp(r_lc)v can be computed directly with known coordinates and velocity of the GPS

satellite and coordinates of the vehicle.
The component VP;QC)V contains information on the vehicle’s velocity. Let

VAzy, = VAZy, = [(Vypwe = VEL) = (Vowe = Vi )] (8)
Then
VAzy, = — (Vi = V) + VAViow, + VAVisep, + VAVap, + VAV = B Vi + VA,
h%;) _ ( Ret ;v R Rets ;V R%CV>T | 9)
Pi Pz
Here

VAP, =V AVion, + VAVirop, + VAV, + VAV

is the residual error of Doppler double differences.
We obtain the following linear model used to estimate VnM :

T
VAzy,, h(Tl) VA7,
Vaw, = | Vo | = | he |y | VAR | S v 4 VA, (10)
VAZVpN,l h,{N—l) VAT‘[)N71

The solution of (10) by the least-squares method (under the corresponding hypotheses on noises VA7)
is of the form

\ 7TCV T -1 —1 14T -1

VT]C = (H(U)W H("])) H("])W VAZVP (]‘1)
Here W is the covariance matrix of the noises {VAr, }.

Model of the Carrier Phase Observations. The model of the carrier phases observations Zy,, is as
follows [8-10]:

Zy =L+ F(AT = AT) + N + 6pion + top + et + 0pre + Spmp + 36" (12)
Here p is the distance from the vehicle to the satellite; f is the frequency of the satellite radio signal; IV is
an unknown integer number (the ambiguity of the carrier phase observations); d¢ion and dpiop are the
errors in the carrier phase observations caused by the ionospheric and tropospheric refractions; dpgat and
0¢rev are the instrument errors of the satellite and the receiver; dpp,p is the error due to multipath; d¢*
is the random component in the error of the carrier phase observations.

The single differences VZ,, and AZ,, of the carrier phase observations are of the form

VZp = Zp— Zp., DZy, =70 — 71, (13)
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where Zggj‘se is the carrier phase observation of the base station, ZV is the carrier phase observation of
the rover receiver, and i is the satellite number.
The double difference VAZ,,, takes form

VAZ,, = (Zgj‘se —Z5") = (ZB?SG —Z57). (14)
Taking into account (12), the observation (14) can be represented as
VAp;

VAZ,, = + VAN; + VA@ion; + VA@uop, + VApmp, + VAS,

VAp;i = (p™° — pi) — (p2*° — pi), (15)
VAN; = (N;base o Nircv) o (N;)ase o N;cv)’

VAP ews); = (590](0355)1- —09(h,) — (&P}f»ff)z — 09,

The useful signal in the differential carrier phase observation (15) is VAp;/A.

The observation form (15) has the advantage that the instrument errors of the receiver and the
satellites as well as their clock errors are absent in it. In addition, the level of the residual errors VAwion,
and VApirop, is low (the smaller the distance between the base station and the rover receiver and the
smaller the difference between their altitudes, the lower is this level).

The value of VAN; is an integer ambiguity of the double differences for the carrier phase observations;
this ambiguity cannot be compensated with the above technique of forming the carrier phase observations.

Determining Velocity by Differential Carrier Phase Observations. The main idea of the algo-
rithm consists in direct numerical differentiation of the carrier phases. Otherwise the algorithm differs
from that described above only in the different way of formation of the measurements containing the
useful information on the vehicle’s motion. Therefore, we shall give just brief comments.

Let us consider the numerical derivative

VAZ%' (tj-i-l) — VAZ i(tj_l)
b1 — tj—1

VAZ}, (t) = A (16)

of the differential carrier phases {VAZ,, (t;)}. Using (16) we can form the approximation (estimate) of
double differences of the radial velocity “receivers-satellites”

VA‘/;% = (‘/pbase - ‘/pz_cv) — (V Base — ‘/PECV)

p
at epoch t;:
VAZ (t;) = VApiltin) = VApilti-1) VAV, (17)
: i1 — i1
Then VAZ‘*/M (tj) is used in the algorithm (8)—(11) instead of the similar Doppler differential observation
VAZy, (t;).

The midpoint of the algorithm is the numerical differentiation of the double differences of the carrier
phases. Correct realization of the given procedure assumes absence of cycle slips in the carrier phases
(change of the ambiguity values {VAN;}) on the interval of differentiation. Therefore, the algorithms of
detecting and excluding possible cycle slips in the carrier phases are a necessary element of the software.
For example, in (10) it is possible to use the least-modulus algorithm instead of the least-squares algorithm.
It should be noted that the Doppler derived velocity can also be used as additional useful information.

Mathematical Models for Determining the Acceleration

The absolute acceleration W of a vehicle is the sum of the gravity acceleration and the acceleration
caused by external forces acting on the vehicle. The final aim of the problem considered below is to
determine the latter acceleration.
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Let us consider the Greenwich coordinate system Om, where O is the Earth’s center, Oniny is the
equatorial plane, and Ons is the axis of the Earth’s rotation. The dynamic equation for the motion of the
vehicle can be written down in the axes of this coordinate system as follows:

Vi = 20,V 4 gy + Wi, gy = gog — G2RE™. (15)

Here V7V is the relative velocity of the vehicle in the axes of On; u, = (0,0, u)T is the vector of angular
velocity of the Earth rotation; , is the skew-symmetric matrix corresponding to the vector w,; go, is
the specific component of the gravitational force; g, is the specific component of gravity; Wi is the
sought-for acceleration of the vehicle in the Greenwich coordinate system.

We have

W:]‘cv — Vnrcv o 2,&”‘/77mv . (gOr] o ’LAL%R,ZCV)

In gravimetric applications, the Helmert formula 1 is used to determine the absolute value of normal
gravity v corrected for the flight altitude h.
In the axes of On, we can write down

0 —sinA —cosAsing cosAcosy
gp=B| 0], B=/| cosA\ —sinAsing sinAcosyp |,
—y 0 Cos sin

where B is the matrix of the relative orientation for the Greenwich and geographical coordinate system
and X\ and ¢ are the geographical coordinates of the object.
Let us assume that the radial acceleration A,, along the line “object-navigation satellite” is known:

(Vnsati o WCV)T(‘/;?sati o Vnrcv) /')?CVQ (R%ati o RZCV)T ot o
Api = rcv - lljcv + rcv (‘/;a f - VWCV)’

P = (R — Rien)T (R — Riev),

Here Rflati and Vnsati are the Greenwich coordinates and the vector of the relative velocity of the ith
navigation satellite; R)™ and V¥ are the Greenwich coordinates and the vector of the relative velocity

of the object; pi®¥ is the distance between the satellite and the object.

7

The radial acceleration A,, can be represented as the sum of two components Agi) and Agl), where

(Vnsati _ Vnrcv)T(‘/nsati _ Vnrcv) B p.gcv2 N (R%ﬂti _ chv)T
pi pi P K
(R%ati _ R%CV)T

Ircv

Pi

I
) -

(20)

AN —

rrev
Pi V;? :

The first component AE)IZ.) can be calculated explicitly on the basis of known data on coordinates and

velocities for the satellite and the object. The component Agl) contains information on VWrCV and on the

sought-for acceleration Wj".
Let us assume that we can estimate A, on the basis of raw GPS observations:
ZApi = Api + 75,

Here r;, is the generalized error in the found value of A,,.
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Let za,, = Za,, — A,()Ii). Then Vn can be determined using the following model for the estimation
problem:

T
ZAp, h(l) T'p1

T . .. .

ZA, = R h(Q) VnrCV RN - HVanV +rp,
.. R 21

ZAP(N) hjl\; rﬁN ( )
hT _ _R%ati _ chv ‘
@) Pi

Here 7 is the generalized error of observations and NV is the number of visible satellites.
The solution to (21) obtained by the least-squares method (under the corresponding hypotheses on
noises 7, in observations) is of the form

rev _ T -1y -1 T -1

Ve = (HTQ ' H) ' HTQ 24,
where @ is the covariance matrix of noises 7.

Using (18), we get
Wi = Vi =2,V — (goy — @ Ry™). (22)

Determining Acceleration by Processing the Doppler Observations. Let us consider three values of double
differences VAZy, (t;—1), VAZy, (t;), and VAZy, (tj+1) for Doppler observations. Using the first-order
central difference of these values, we can form an approximation (estimate) VAZ,, (t) for the first
derivative of VAZy, (t) at the time instant ¢;:
_ VAZy, (tjx1) = VAZy, (t-1)

tji+1 —tj—1

VAZ4, (t) (23)

The estimate VAZj4, (t;) is a useful signal for the following double difference
VAA, () = (Appase () = Aprev (t5)) — (Appase () — Aprev (£5))-
Let us introduce the model
VAZy, =VAA, +VAr,

where VAr;, is the generalized error in the double difference of radial accelerations.
Taking into account (19) and (20), the double difference VAA,, can be represented as the sum of two
components:

VAA, = VAAD + VAAID,

VAAE)IR — (Apzbase - AE,I;CV) - (Apl;ase - Agl;)cv), VAAE)IZI) - —(A(H) - A(H)

pE‘CV pECV ) .

The first component is explicitly calculated with the use of the known data on coordinates and
velocities of the navigation satellites, the rover receiver, and the base station. The second component
contains the unknown parameter V" to be estimated. Let

VAzy, =VAZs, — VAAD.
Then the following model is valid for VAzy,

T
sat; _ prcv sat, _ prcv
RTI R77 _ R77 R77 )

rcv rcv
Pz

VAZAM = h%;)f/nrcv + VArg, h%;) = ( >



In the case of N — 1 observations (N is the number of visible satellites), we obtain the following linear
model for the problem of estimating the value of V"

FApy hgT}) VAT
s, = | A | = | e Ve 4+ VAT, = HV}™ + VAr;. (25)
2oy, h% VAT,

The solution to (25) obtained by the least-squares method (under the corresponding hypotheses on
noises VAr;) is of the form
Ve = (HT'Q'H) "H"Q 'VAza,.
Here @ is the covariance matrix of noises VAr;,.
Finally, we use Eq. (22) to estimate the acceleration Wy".

Determining Acceleration with Differential Carrier Phase Observations. The algorithm con-
sidered below differs from that presented above only in another way of forming the observations with
useful information on the vehicle acceleration. Therefore, we restrict ourselves to brief comments.

Let us consider the three values VAZ,, (t;_1), VAZ,,(t;), and VAZ,, (t;+1) of differential carrier
phase observations. Numerical differentiation is performed using the second-order central differences. As
a result, we obtain the approximation (estimate) VAZy4, (see (15)) for the double differences

VAApZ — (Apb)ase - AP;YCV) - (Aplz)ase - APECV)
of radial accelerations along the lines “receivers-satellites” at the time instant ¢;:
VAZ%' (thrl) - 2VAZ%' (tj) + VAZ i(tjfl)
At?

VAZy, (tj) = A

Here At = tj+1 — tj = tj — tjfl.
As in the case of Doppler observations, we introduce

VAzy, =VAZy, —VAAD,

. (26)

where - -
I
VAAE)Z) = (Ap?ase - Ap?:v) - (Ap]zaase - AP;CV)'
The components A phase and AI(DIE)CK are specified in (19) and (20).

According to (24) and (25), the model for the problem of estimating the vector Vn takes the form

VAZA,J1 h?l) VAT¢1
A T . , .
VAzy, = VB2, | | e VreY 4 VAT, = HV}™ + VArg,
VAza,. | h{N—l) VArgy (27)
sat; rCcV sat . TrCcV T
hT _ Rnatl _ Rnc / B Rﬁ t. RWC / '
v o o

Here VArg, is the total error of observations due to numerical differentiation of errors in carrier phase
observations.

In its structure, the problem (27) completely coincides with the model (25) for the problem of deter-
mining the acceleration by Doppler observations. In order to solve (27), we can also use the least-squares
method under the corresponding hypotheses on the characteristics of errors VA7g.

The algorithm for determining acceleration uses direct numerical differentiation of the double differ-
ences of carrier phases. Similar remarks can be formulated concerning algorithms for cycle slip detection
and exclusion as in the velocity determination problem.
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It should be noted that Doppler-derived acceleration can be used as additional useful information
when processing phase observations.

Determining Location with Differential Carrier Phase Observations

Let us return to the main problem of satellite navigation—the problem of determining the coordinates
of a vehicle by differential carrier phase observations. Let us assume that the GPS derived velocity is
already obtained in postprocessing.

The proposed approach to the problem of determining the vehicle’s location is rather obvious. We
introduce a kinematic model of the vehicle motion:

R =y, (28)
where Rff"/ are the simulated coordinates of the object, and ‘77;‘3" are the GPS-derived velocities based

on processing differential Doppler or carrier phase observations.
Let us introduce the errors of the model (28):

ARy = Ry — Ry, oV, =V — Ve,

where R;™, V)V are true coordinates and velocities of the vehicle, AR, is the error in location, and dV/, is
the error in GPS derived velocity. We can write

AR, = 6V, (29)

Now we can linearize the differential carrier phase observations (15) around the model (29) of the
vehicle motion. The linearized equations will take form

hiay VAN, VA
T
vasi) = | " [ ar,)+| VAN | 4| VAT | H(4)AR, (L) + VAN +VAR(L,), (30)
hT VANN,1 VATN,1

(N-1)

where the rows hg;) of the matrix H(t;) are defined in (27), VAN is the vector of integer ambiguities,
and VAr is the vector of total errors of the carrier phase observations.
Let us introduce the state vector

z; = (AR,"(t;), VANT)T

and transform the continuous time model (29) to its discrete form. Then the problem of estimation of
the state vector x; = x(t;) using differential carrier phase observations VAz; = VAz(t;) can be set as

Tiv1 =3+ ¢, VAz =Hjz;+r), (31)

where H; = H(t;), rj = VAr(t;), and g; is the system driving noise, equivalent to dV}, in the discrete
form (29). A Kalman smoothing filter can be used to solve (31) under appropriate hypotheses on the
noises gqj, ;.

A peculiarity of the proposed algorithm lies in the necessity to parametrize the system driving noise
0V, model. Both heuristic models and models based on statistical analysis of the corresponding carrier
phase residuals can be used here.

The advantage of the proposed approach lies in the significant simplification of detecting and excluding
the carrier phase cycle slips. This is because we reduce this problem to the simpler case of obtaining the
velocity.

Experience shows that the proposed algorithms are effective even with large > 100 km base line
lengths.
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Conclusion

The problem of how to determine velocity, acceleration, and position by raw Doppler and carrier

phase GPS observations was discussed. Corresponding mathematical models for differential Doppler
and carrier phase GPS observations were described. An approach was proposed for vehicle velocity and
acceleration determination. This approach is based on direct numerical differentiation of raw carrier phase
observations. The problem was reduced to a linear estimation. Application of the proposed algorithms in
airborne gravimetry [1, 3] shows their efficiency.
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