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SATELLITE NAVIGATION.
RAW DATA PROCESSING FOR GEOPHYSICAL APPLICATIONS

A. A. Golovan and N. B. Vavilova UDC 621.396.946

Abstract. Satellite navigation systems are widely used in geophysical applications for precise trajectory
determination of a vehicle–carrier of geophysical equipment. In particular, in airborne gravimetry it is
necessary to determine the velocity and acceleration of the vehicle in addition to the position determination.
Mathematical models and algorithms for the solution of these problems are described. The source data
consists of differential Doppler and carrier phase GPS observations.

Introduction

This paper is based on research done at the Laboratory of Control and Navigation of the Department
of Mathematics and Mechanics of Lomonosov Moscow State University in close collaboration with several
Russian specialized Scientific and Research Institutes.

The stimulus for this research was developing software for several Russian airborne gravimetry sys-
tems, such as those manufactured at the Moscow Institute of Electromechanics and Automatics, VNII
Geophysics and Aerogeophysics, and Joint Stock Company “Gravimetric Technologies” (GT) [1]. The
laboratory has cooperated with the GT company for several years. The GT-produced airborne gravimetry
system GT1A (Russian name—MAG-1) was employed in several big gravimetric surveys done in Russia
and abroad. The laboratory has developed post-processing software for GT1A and for the Graviton-M
airborne system manufactured at the Aerogeophysics company. An essential part of this software deals
with satellite navigation.

In this paper, we center on methodical issues and discuss basic approaches to satellite navigation. We
shall limit our discussion to applications of Global Positioning Systems (GPS).

The main aim of processing GPS observations is to determine the position of a vehicle. This can be
done with the code or carrier phase observations obtained in the standard or differential mode of GPS.

Commercial GPS software is focused on this problem [9, 10]. However, in some geophysical applica-
tions, for example, in airborne gravimetry, GPS velocity and acceleration are also required. These have
to be obtained by direct processing of the raw GPS observations [4, 6, 7].

On GPS Velocity and Acceleration

Let us explain the necessity of GPS velocity and acceleration in airborne gravimetry. Consider the
basic gravimetric equation [2]

ḧ =
(

V 2
E

RE
+

V 2
N

RN
+ 2uVE cos ϕ

)
− γ0 − δγ + δg3 + f3.

Here h is the flight altitude; the parentheses group terms called the Eötvös corrections (these corrections
are the transfer and Coriolis accelerations caused by the motion of the vehicle around the Earth ellipsoid);
VE and VN are the eastern and northern components of the vehicle velocity; RE and RN are the radii
of curvature of the first vertical and the meridional section; u is the Earth angular velocity; ϕ is the
geographical latitude; γ0 is the normal gravity on the Earth surface specified by the Helmert formula

γ0 = 9.78030(1 + 0.005302 sin ϕ2 − 0.000007 sin2 2ϕ) − 0.00014; (1)

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 7, pp. 181–196, 2005.
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δγ = −2ω2
0h is the altitude correction of normal gravity; ω0 ∼ 1.24 · 10−3 is the Schuler frequency; f3 is

the projection of the external specific force acting on the proof mass onto the geographical vertical; δg3

is the sought-for gravity anomaly.
Three approaches can be formulated for this problem (see [2]).

(1) The first approach assumes double integration of the gravimeter measurements and comparing
the results with GPS altitude in order to extract the gravity anomaly δg from the difference of
the data.

(2) The second approach, on the contrary, assumes double differentiation of the GPS altitude and
comparing the results with the gravimeter readings.

(3) The third “compromise” variant assumes single differentiation and single integration, respectively,
of the GPS altitude and the gravimeter readings.

The last two approaches require GPS-derived velocity and acceleration.
Obviously, velocity and acceleration can be determined by direct numerical differentiation of the GPS

position. This way involves implicit differentiation of the raw GPS observations—the code pseudoranges
or the carrier phases. We prefer to determine velocity and acceleration by direct processing of the raw
GPS observations.

Both the Doppler and/or the carrier phase observations can be used to get GPS velocity and ac-
celeration. The carrier phases are potentially more precise. So in practice the Doppler observations are
seldom used. However, a GPS Doppler solution can be used as an initial approximation for a carrier phase
solution [4, 6, 7].

Velocity Determination of a Navigation Satellite

To determine velocity and acceleration one needs to know the motion of the GPS satellites, since they
enter into the solution.

Let us describe an algorithm determining the vector velocity of a GPS satellite using standard
ephemeris data. These data are transmitted by the satellite and are used first of all to determine the
satellites location. See details of the corresponding algorithm, e.g., in [5].

Initial ephemeris data are:

(1) the time from the ephemeris reference epoch tem. For this epoch, the satellite’s coordinates and
velocities are computed;

(2) the reference ephemeris time Toe; mean motion difference from the computed value ∆n; the mean
anomaly at reference time M0; the orbit eccentricity e; the square root of the semi-major axis

√
a;

the amplitude of the cosine and sine harmonic correction terms to the orbit radius Crc and Crs; the
amplitude of the cosine and sine harmonic correction terms to the angle of inclination Cic and Cis;
the amplitude of the cosine and sine harmonic correction terms to the argument of the latitude
Cuc and Cus; the longitude of the ascending note of the orbit plane at the weekly epoch Ω0; the
argument of the perigee ω; the inclination angle at the reference time i0; the rate of the right
ascension Ω̇0; the rate of the inclination angle i̇0.

Determined values:

(1) Rsat
η = (Rsat

η1
, Rsat

η2
, Rsat

η3
)T —Earth Centered Earth Fixed (ECEF) satellite coordinates to the tem

reference epoch;
(2) V sat

η = (V sat
η1

, V sat
η2

, V sat
η3

)T —ECEF satellite components of the relative velocity to the tem reference
epoch tem.

The following sequence of calculations is used (the standard algorithm of the satellite location is
described for the determination of the ECEF coordinates and velocities of the GPS satellite [5] and
supplemented with some formulas for velocity determination).

5921



(1) The time from the ephemeris reference epoch t∗ = tem − Toe. If t∗ > 302400, then t∗ is replaced
by t∗ − 604800. If t∗ < −302400, then t∗ is replaced by t∗ + 604800. (Here Nsec = 604800 is the
number of seconds in a week, Nsec/2 = 302400.)

(2) The mean anomaly M at the moment t∗:

M = M0 +
( √

µ

a3/2
+ ∆n

)
· t∗.

(3) The Kepler equation for the eccentric anomaly Ek is solved by the following iterations. For
E0 = M , k = 1, 2 . . . do

Ek = M + e sin Ek−1.

If |Ek − Ek−1| ≤ 10−8, then stop iterations.
(4) The sine and cosine of the true anomaly fk:

sin fk =
√

1 − e2 sin Ek

1 − e cos Ek
, cos fk =

cos Ek − e

1 − e cos Ek
, fk = arctan

(√
1 − e2 sin Ek

cos Ek − e

)
.

(5) The argument of the latitude ϕk = fk + ω.
(6) The second harmonic perturbations δuk, δrk, and δik of the argument of the latitude ϕk, the

orbit radius r, and the angle of the inclination i0:

δuk = Cus sin 2ϕk +Cuc cos 2ϕk, δrk = Crs sin 2ϕk +Crc cos 2ϕk, δik = Cis sin 2ϕk +Cic cos 2ϕk.

(7) The corrected values uk, rk, and ik of the argument of the latitude ϕk, the orbit radius rk, and
the angle of inclination ik:

uk = ϕk + δuk, rk = a(1 − e cos Ek) + δrk, ik = i0 + δik + i̇0t
∗.

(8) Cartesian satellite’s coordinates ro
1 and ro

2 in the orbital reference frame Oζ:

ro
1 = rk cos uk, ro

2 = rk sin uk.

(9) The corrected longitude of the ascending node

Ωk = Ω0 + (Ω̇0 − u)t∗ − utoe,

where u = 7.2921151467 · 10−5 (rad/s) is the WGS84 value of the Earth’s rotation rate.
(10) Cartesian satellite’s coordinates Rsat

η = (Rsat
η1

, Rsat
η2

, Rsat
η3

)T in ECEF frame Oη:

Rsat
η1

= ro
1 cos Ωk − ro

2 cos ik sin Ωk, Rsat
η2

= ro
1 sin Ωk + ro

2 cos ik cos Ωk,

Rsat
η3

= ro
2 sin ik.

(11) ECEF (Oη) satellite’s velocities V sat
η = (V sat

η1
, V sat

η2
, V sat

η3
)T :

(a) several supplementary values are computed: derivative ḟk of the true anomaly fk, derivatives
δu̇k, δṙk, and δi̇k, of the argument of the latitude δuk, the orbit radius rk and the angle of
the inclination i0

ḟk =
(
√

µ/a3/2 + ∆n)
√

1 − e2

(1 − e cos Ek)2
, δu̇k = 2(Cus cos 2ϕk − Cuc sin 2ϕk)ḟk,

δṙk = 2(Crs cos 2ϕk − Crc sin 2ϕk)ḟk, δi̇k = 2(Cis cos 2ϕk − Cic sin 2ϕk)ḟk.

The moduli vr and vu of the satellite’s range and transverse rate:

vr = a

(√
µ

a3/2
+ ∆n

)
e sin Ek

1 − e cos Ek
+ δṙk, vu = rk(ḟk + δu̇k);

(b) the components vo
1, vo

2, and vo
3 of the vector of the absolute velocity v in the orbital frame Oζ:

vo
1 = vr cos uk − vu sin uk, vo

2 = vr sin uk + vu cos uk, vo
3 = rk sin fk(i̇0 + δi̇k);
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(c) the components vsat
η1

, vsat
η2

, and vsat
η3

of the vector of the absolute velocity v in ECEF frame Oη:

vsat
η1

= vo
1 cos Ωk − vo

2 cos ik sin Ωk + vo
3 sin ik sin Ωk,

vsat
η2

= vo
1 sin Ωk + vo

2 cos ik cos Ωk − vo
3 sin ik cos Ωk,

vsat
η3

= vo
2 sin ik + vo

3 cos ik;

(d) the components V sat
η1

, V sat
η2

, V sat
η3

of the vector of the relative velocity V in ECEF frame Oη:

V sat
η1

= vsat
η1

+ (u − Ω̇0)Rsat
η2

, V sat
η2

= vsat
η2

− (u − Ω̇0)Rsat
η1

, V sat
η3

= vsat
η3

.

Models Used to Determine Vehicle Velocity

Model of Raw Doppler Observations. A generalized model of the raw Doppler observations ZVρ (m/s)
has the form [8,9]

ZVρ = Vρ − λ(f∆τ − f∆T ) + δVion + δVtrop + δVmp + δVsat + δVrcv + δV s, (2)

We use here the following notation:

• λ is the radio signal wavelength;
• Vρ is the radial velocity along the line “object–satellite” (the measured signal) specified by the

expression

Vρ =
(Rsat

η − Rη)T (V sat
η − Vη)

ρ
, ρ =

√
(Rsat

η − Rη)T (Rsat
η − Rη); (3)

• f∆τ is the unknown clock drift of the receiver (estimated during processing);
• f∆T is the known clock drift of the satellite (can be compensated algorithmically);
• δVion and δVtrop are the errors caused by the ionospheric and tropospheric refractions (partially

compensated by standard models for the ionospheric and tropospheric delays of radio signals);
• δVmp is the error caused by the multipath from the obstacles surrounding the satellite antenna;
• δVsat and δVrcv are the instrument errors of the satellite and the receiver (sufficiently stable in

time);
• δV s is the random component in the error of Doppler observations.

In the differential mode of GPS the so-called double differences ∇∆ZVρi
are used for processing

∇∆ZVρi
= (Zbase

Vρi
− Zrcv

Vρi
) − (Zbase

Vρz
− Zrcv

Vρz
). (4)

Here “base” and “rcv” indicate the observations from the base station and the rover receiver, respectively;
i is the index indicating the observations from the ith satellite; z is the index indicating the observations
from the zenithal satellite.

Taking into account (2), the observation (4) can be represented in the form

∇∆ZVρi
= ∇∆Vρi + ∇∆Vioni + ∇∆Vtropi

+ ∇∆Vmpi
+ ∇∆V s

i ,

∇∆Vρi = (Vρbase
i

− Vρrcv
i

) − (Vρbase
z

− Vρrcv
z

),

∇∆V(∗∗∗)i
=
(
δV(∗∗∗)base

i
− δV(∗∗∗)rcvi

)− (δV(∗∗∗)base
z

− δV(∗∗∗)rcvz

)
.

(5)

Here ∇∆Vρi is the differential combination of the radial velocities—the useful signal in (5).
The observation (5) has the advantage that the instrument errors of the receiver and the satellite

as well as their clock errors are absent in it. In addition, the level of the residual errors ∇∆Vioni and
∇∆Vtropi

is lower in comparison with similar errors in the standard mode of GPS (the smaller the distance
between the base station and the rover receiver and the smaller the difference between their altitudes, the
lower is this level).
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Determining Velocity by Processing Differential Doppler Observations. Let us compute the
radial velocity Vρbase

i
“satellite–base station” using ECEF coordinates and velocities of the GPS satellite

and the base station (V base
η = 0):

Vρbase
i

=
(Rsati

η − Rbase
η )T

ρbase
i

V sati
η . (6)

A similar formula is used for the radial velocity Vρrcv
i

“satellite–receiver” in which the rover’s velocity V rcv
η

is taken into account:

Vρrcv
i

= V
(1)
ρrcv

i
+ V

(2)
ρrcv

i
, V

(1)
ρrcv

i
=

(Rsati
η − Rrcv

η )T

ρrcv
i

V sati
η , V

(2)
ρrcv

i
= −(Rsati

η − Rrcv
η )T

ρrcv
i

V rcv
η , (7)

Here the component V
(1)
ρrcv

i
can be computed directly with known coordinates and velocity of the GPS

satellite and coordinates of the vehicle.
The component V

(2)
ρrcv

i
contains information on the vehicle’s velocity. Let

∇∆zVρi
= ∇∆ZVρi

−
[(

Vρbase
i

− V
(1)
ρrcv

i

)
−
(
Vρbase

z
− V

(1)
ρrcv

z

)]
. (8)

Then

∇∆zVρi
= −

(
V

(2)
ρrcv

i
− V

(2)
ρrcv

z

)
+ ∇∆Vioni + ∇∆Vtropi

+ ∇∆Vmpi
+ ∇∆V s

i = hT
(i)V

rcv
η + ∇∆rρ̇i ,

hT
(i) =

(
Rsati

η − Rrcv
η

ρrcv
i

− Rsatz
η − Rrcv

η

ρrcv
z

)T

.
(9)

Here
∇∆rρ̇i = ∇∆Vioni + ∇∆Vtropi

+ ∇∆Vmpi
+ ∇∆V s

i

is the residual error of Doppler double differences.
We obtain the following linear model used to estimate V M

η :

∇∆zVρ =




∇∆zVρ1∇∆zVρ2

. . .
∇∆zVρN−1


 =




hT
(1)

hT
(2)

. . .
hT

(N−1)


V rcv

η +




∇∆rρ̇1

∇∆rρ̇2

. . .
∇∆rρ̇N−1


 = H(η)V

rcv
η + ∇∆rρ̇. (10)

The solution of (10) by the least-squares method (under the corresponding hypotheses on noises ∇∆rρ̇)
is of the form

Ṽ rcv
η = (HT

(η)W
−1H(η))

−1HT
(η)W

−1∇∆zVρ . (11)

Here W is the covariance matrix of the noises {∇∆rρ̇i}.
Model of the Carrier Phase Observations. The model of the carrier phases observations ZVϕ is as
follows [8–10]:

Zϕ =
ρ

λ
+ f(∆τ − ∆T ) + N + δϕion + δϕtrop + δϕsat + δϕrcv + δϕmp + δϕs. (12)

Here ρ is the distance from the vehicle to the satellite; f is the frequency of the satellite radio signal; N is
an unknown integer number (the ambiguity of the carrier phase observations); δϕion and δϕtrop are the
errors in the carrier phase observations caused by the ionospheric and tropospheric refractions; δϕsat and
δϕrcv are the instrument errors of the satellite and the receiver; δϕmp is the error due to multipath; δϕs

is the random component in the error of the carrier phase observations.
The single differences ∇Zϕi and ∆Zϕi of the carrier phase observations are of the form

∇Zϕi = Zϕi − Zϕz , ∆Zϕi = Zbase
ϕi

− Zrcv
ϕi

, (13)
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where Zbase
ϕi

is the carrier phase observation of the base station, Zrcv
ϕi

is the carrier phase observation of
the rover receiver, and i is the satellite number.

The double difference ∇∆Zϕi takes form

∇∆Zϕi = (Zbase
ϕi

− Zrcv
ϕi

) − (Zbase
ϕz

− Zrcv
ϕz

). (14)

Taking into account (12), the observation (14) can be represented as

∇∆Zϕi =
∇∆ρi

λ
+ ∇∆Ni + ∇∆ϕioni + ∇∆ϕtropi

+ ∇∆ϕmpi
+ ∇∆ϕs

i ,

∇∆ρi = (ρbase
i − ρrcv

i ) − (ρbase
z − ρrcv

z ),

∇∆Ni = (Nbase
i − N rcv

i ) − (Nbase
z − N rcv

z ),

∇∆ϕ(∗∗∗)i
=
(
δϕbase

(∗∗∗)i
− δϕrcv

(∗∗∗)i

)− (δϕbase
(∗∗∗)z

− δϕrcv
(∗∗∗)z

)
.

(15)

The useful signal in the differential carrier phase observation (15) is ∇∆ρi/λ.
The observation form (15) has the advantage that the instrument errors of the receiver and the

satellites as well as their clock errors are absent in it. In addition, the level of the residual errors ∇∆ϕioni

and ∇∆ϕtropi
is low (the smaller the distance between the base station and the rover receiver and the

smaller the difference between their altitudes, the lower is this level).
The value of ∇∆Ni is an integer ambiguity of the double differences for the carrier phase observations;

this ambiguity cannot be compensated with the above technique of forming the carrier phase observations.

Determining Velocity by Differential Carrier Phase Observations. The main idea of the algo-
rithm consists in direct numerical differentiation of the carrier phases. Otherwise the algorithm differs
from that described above only in the different way of formation of the measurements containing the
useful information on the vehicle’s motion. Therefore, we shall give just brief comments.

Let us consider the numerical derivative

∇∆Z∗
Vρi

(tj) = λ
∇∆Zϕi(tj+1) −∇∆Zϕi(tj−1)

tj+1 − tj−1
(16)

of the differential carrier phases {∇∆Zϕi(tj)}. Using (16) we can form the approximation (estimate) of
double differences of the radial velocity “receivers-satellites”

∇∆Vρi = (Vρbase
i

− Vρrcv
i

) − (Vρbase
z

− Vρrcv
z

)

at epoch tj :

∇∆Z∗
Vρi

(tj) � ∇∆ρi(tj+1) −∇∆ρi(tj−1)
tj+1 − tj−1

� ∇∆Vρi . (17)

Then ∇∆Z∗
Vρi

(tj) is used in the algorithm (8)–(11) instead of the similar Doppler differential observation
∇∆ZVρi

(tj).
The midpoint of the algorithm is the numerical differentiation of the double differences of the carrier

phases. Correct realization of the given procedure assumes absence of cycle slips in the carrier phases
(change of the ambiguity values {∇∆Ni}) on the interval of differentiation. Therefore, the algorithms of
detecting and excluding possible cycle slips in the carrier phases are a necessary element of the software.
For example, in (10) it is possible to use the least-modulus algorithm instead of the least-squares algorithm.
It should be noted that the Doppler derived velocity can also be used as additional useful information.

Mathematical Models for Determining the Acceleration

The absolute acceleration W of a vehicle is the sum of the gravity acceleration and the acceleration
caused by external forces acting on the vehicle. The final aim of the problem considered below is to
determine the latter acceleration.
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Let us consider the Greenwich coordinate system Oη, where O is the Earth’s center, Oη1η2 is the
equatorial plane, and Oη3 is the axis of the Earth’s rotation. The dynamic equation for the motion of the
vehicle can be written down in the axes of this coordinate system as follows:

V̇ rcv
η = 2ûηV

rcv
η + gη + W rcv

η , gη = g0η − û2
ηR

rcv
η . (18)

Here V rcv
η is the relative velocity of the vehicle in the axes of Oη; uη = (0, 0, u)T is the vector of angular

velocity of the Earth rotation; ûη is the skew-symmetric matrix corresponding to the vector uη; g0η is
the specific component of the gravitational force; gη is the specific component of gravity; W rcv

η is the
sought-for acceleration of the vehicle in the Greenwich coordinate system.

We have

W rcv
η = V̇ rcv

η − 2ûηV
rcv
η − (g0η − û2

ηR
rcv
η ).

In gravimetric applications, the Helmert formula 1 is used to determine the absolute value of normal
gravity γ corrected for the flight altitude h.

In the axes of Oη, we can write down

gη = B


 0

0
−γ


 , B =


− sin λ − cos λ sin ϕ cos λ cos ϕ

cos λ − sin λ sin ϕ sin λ cos ϕ
0 cos ϕ sin ϕ


 ,

where B is the matrix of the relative orientation for the Greenwich and geographical coordinate system
and λ and ϕ are the geographical coordinates of the object.

Let us assume that the radial acceleration Aρi along the line “object–navigation satellite” is known:

Aρi =
(V sati

η − V rcv
η )T (V sati

η − V rcv
η )

ρrcv
i

− ρ̇rcv2

i

ρrcv
i

+
(Rsati

η − Rrcv
η )T

ρrcv
i

(V̇ sati
η − V̇ rcv

η ),

ρrcv
i =

√
(Rsati

η − Rrcv
η )T (Rsati

η − Rrcv
η ).

(19)

Here Rsati
η and V sati

η are the Greenwich coordinates and the vector of the relative velocity of the ith
navigation satellite; Rrcv

η and V rcv
η are the Greenwich coordinates and the vector of the relative velocity

of the object; ρrcv
i is the distance between the satellite and the object.

The radial acceleration Aρi can be represented as the sum of two components A
(I)
ρi and A

(II)
ρi , where

A(I)
ρi

=
(V sati

η − V rcv
η )T (V sati

η − V rcv
η )

ρi
− ρ̇rcv2

i

ρi
+

(Rsati
η − Rrcv

η )T

ρrcv
i

V̇ sati
η ,

A(II)
ρi

= −(Rsati
η − Rrcv

η )T

ρrcv
i

V̇ rcv
η .

(20)

The first component A
(I)
ρi can be calculated explicitly on the basis of known data on coordinates and

velocities for the satellite and the object. The component A
(II)
ρi contains information on V̇ rcv

η and on the
sought-for acceleration W rcv

η .
Let us assume that we can estimate Aρi on the basis of raw GPS observations:

ZAρi
= Aρi + rρ̈i .

Here rρ̈i is the generalized error in the found value of Aρi .
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Let zAρi
= ZAρi

− A
(I)
ρi . Then V̇η can be determined using the following model for the estimation

problem:

zAρ =




zAρ1

zAρ2

. . .
zAρ(N)


 =




hT
(1)

hT
(2)

. . .
hT

N


 V̇ rcv

η +




rρ̈1

rρ̈2

. . .
rρ̈N


 = HV̇ rcv

η + rρ̈,

hT
(i) = −Rsati

η − Rrcv
η

ρi
.

(21)

Here rρ̈ is the generalized error of observations and N is the number of visible satellites.
The solution to (21) obtained by the least-squares method (under the corresponding hypotheses on

noises rρ̈i in observations) is of the form

˙̃V rcv
η = (HT Q−1H)−1HT Q−1zAρ ,

where Q is the covariance matrix of noises rρ̈i .
Using (18), we get

W̃ rcv
η = ˙̃V rcv

η − 2ûηV
rcv
η − (g0η − û2

ηR
rcv
η ). (22)

Determining Acceleration by Processing the Doppler Observations. Let us consider three values of double
differences ∇∆ZVρi

(tj−1), ∇∆ZVρi
(tj), and ∇∆ZVρi

(tj+1) for Doppler observations. Using the first-order
central difference of these values, we can form an approximation (estimate) ∇∆ZAρi

(t) for the first
derivative of ∇∆ZVρi

(t) at the time instant tj :

∇∆ZAρi
(tj) =

∇∆ZVρi
(tj+1) −∇∆ZVρi

(tj−1)
tj+1 − tj−1

. (23)

The estimate ∇∆ZAρi
(tj) is a useful signal for the following double difference

∇∆Aρi(tj) = (Aρbase
i

(tj) − Aρrcv
i

(tj)) − (Aρbase
z

(tj) − Aρrcv
z

(tj)).

Let us introduce the model
∇∆ZAρi

= ∇∆Aρi + ∇∆rρ̈i ,

where ∇∆rρ̈i is the generalized error in the double difference of radial accelerations.
Taking into account (19) and (20), the double difference ∇∆Aρi can be represented as the sum of two

components:

∇∆Aρi = ∇∆A(I)
ρi

+ ∇∆A(II)
ρi

,

∇∆A(I)
ρi

=
(
Aρbase

i
− A

(I)
ρrcv

i

)− (Aρbase
z

− A
(I)
ρrcv

z

)
, ∇∆A(II)

ρi
= −(A(II)

ρrcv
i

− A
(II)
ρrcv

z

)
.

The first component is explicitly calculated with the use of the known data on coordinates and
velocities of the navigation satellites, the rover receiver, and the base station. The second component
contains the unknown parameter V̇ rcv

η to be estimated. Let

∇∆zAρi
= ∇∆ZAρi

−∇∆A(I)
ρi

.

Then the following model is valid for ∇∆zAρi
:

∇∆zAρi
= hT

(i)V̇
rcv
η + ∇∆rρ̈i , hT

(i) =

(
Rsati

η − Rrcv
η

ρrcv
i

− Rsatz
η − Rrcv

η

ρrcv
z

)T

. (24)
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In the case of N − 1 observations (N is the number of visible satellites), we obtain the following linear
model for the problem of estimating the value of V̇ rcv

η :

zAρ =




zAρ1

zAρ2

. . .
zAρN−1


 =




hT
(1)

hT
(2)

. . .
hT

N


 V̇ rcv

η +




∇∆rρ̈1

∇∆rρ̈2

. . .
∇∆rρ̈N−1


 = HV̇ rcv

η + ∇∆rρ̈. (25)

The solution to (25) obtained by the least-squares method (under the corresponding hypotheses on
noises ∇∆rρ̈) is of the form

˙̃V rcv
η = (HT Q−1H)−1HT Q−1∇∆zAρ .

Here Q is the covariance matrix of noises ∇∆rρ̈i .
Finally, we use Eq. (22) to estimate the acceleration W̃ rcv

η .

Determining Acceleration with Differential Carrier Phase Observations. The algorithm con-
sidered below differs from that presented above only in another way of forming the observations with
useful information on the vehicle acceleration. Therefore, we restrict ourselves to brief comments.

Let us consider the three values ∇∆Zϕi(tj−1), ∇∆Zϕi(tj), and ∇∆Zϕi(tj+1) of differential carrier
phase observations. Numerical differentiation is performed using the second-order central differences. As
a result, we obtain the approximation (estimate) ∇∆ZAρi

(see (15)) for the double differences

∇∆Aρi = (Aρbase
i

− Aρrcv
i

) − (Aρbase
z

− Aρrcv
z

)

of radial accelerations along the lines “receivers–satellites” at the time instant tj :

∇∆ZAρi
(tj) = λ

∇∆Zϕi(tj+1) − 2∇∆Zϕi(tj) + ∇∆Zϕi(tj−1)
∆t2

. (26)

Here ∆t = tj+1 − tj = tj − tj−1.
As in the case of Doppler observations, we introduce

∇∆zAρi
= ∇∆ZAρi

−∇∆A(I)
ρi

,

where
∇∆A(I)

ρi
=
(
Aρbase

i
− A

(I)
ρrcv

i

)− (Aρbase
z

− A
(I)
ρrcv

z

)
.

The components Aρbase
(∗)

and A
(I)
ρrcv
(∗)

are specified in (19) and (20).

According to (24) and (25), the model for the problem of estimating the vector V̇η takes the form

∇∆zAρ =




∇∆zAρ1∇∆zAρ2

. . .
∇∆zAρN−1


 =




hT
(1)

hT
(2)

. . .
hT

(N−1)


 V̇ rcv

η +




∇∆rϕ̈1

∇∆rϕ̈2

. . .
∇∆rϕ̈N−1


 = HV̇ rcv

η + ∇∆rϕ̈,

hT
(i) =

(
Rsati

η − Rrcv
η

′

ρrcv
i

′ − Rsatz
η − Rrcv

η
′

ρrcv
z

′

)T

.

(27)

Here ∇∆rϕ̈i is the total error of observations due to numerical differentiation of errors in carrier phase
observations.

In its structure, the problem (27) completely coincides with the model (25) for the problem of deter-
mining the acceleration by Doppler observations. In order to solve (27), we can also use the least-squares
method under the corresponding hypotheses on the characteristics of errors ∇∆rϕ̈.

The algorithm for determining acceleration uses direct numerical differentiation of the double differ-
ences of carrier phases. Similar remarks can be formulated concerning algorithms for cycle slip detection
and exclusion as in the velocity determination problem.
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It should be noted that Doppler-derived acceleration can be used as additional useful information
when processing phase observations.

Determining Location with Differential Carrier Phase Observations

Let us return to the main problem of satellite navigation—the problem of determining the coordinates
of a vehicle by differential carrier phase observations. Let us assume that the GPS derived velocity is
already obtained in postprocessing.

The proposed approach to the problem of determining the vehicle’s location is rather obvious. We
introduce a kinematic model of the vehicle motion:

Ṙrcv′
η = Ṽ rcv

η , (28)

where Rrcv′
η are the simulated coordinates of the object, and Ṽ rcv

η are the GPS-derived velocities based
on processing differential Doppler or carrier phase observations.

Let us introduce the errors of the model (28):

∆Rη = Rrcv′
η − Rrcv

η , δVη = Ṽ rcv
η − V rcv

η ,

where Rrcv
η , V rcv

η are true coordinates and velocities of the vehicle, ∆Rη is the error in location, and δVη is
the error in GPS derived velocity. We can write

∆Ṙη = δVη. (29)

Now we can linearize the differential carrier phase observations (15) around the model (29) of the
vehicle motion. The linearized equations will take form

∇∆z(tj) =




hT
(1)

hT
(2)

. . .
hT

(N−1)


∆Rη(tj)+




∇∆N1

∇∆N2

. . .
∇∆NN−1


+




∇∆r1

∇∆r2

. . .
∇∆rN−1


 = H(tj)∆Rη(tj)+∇∆N +∇∆r(tj), (30)

where the rows hT
(i) of the matrix H(tj) are defined in (27), ∇∆N is the vector of integer ambiguities,

and ∇∆r is the vector of total errors of the carrier phase observations.
Let us introduce the state vector

xj = (∆Rη
T (tj),∇∆NT )T

and transform the continuous time model (29) to its discrete form. Then the problem of estimation of
the state vector xj = x(tj) using differential carrier phase observations ∇∆zj = ∇∆z(tj) can be set as

xj+1 = xj + qj , ∇∆zj = Hjxj + rj , (31)

where Hj = H(tj), rj = ∇∆r(tj), and qj is the system driving noise, equivalent to δVη in the discrete
form (29). A Kalman smoothing filter can be used to solve (31) under appropriate hypotheses on the
noises qj , rj .

A peculiarity of the proposed algorithm lies in the necessity to parametrize the system driving noise
δVη model. Both heuristic models and models based on statistical analysis of the corresponding carrier
phase residuals can be used here.

The advantage of the proposed approach lies in the significant simplification of detecting and excluding
the carrier phase cycle slips. This is because we reduce this problem to the simpler case of obtaining the
velocity.

Experience shows that the proposed algorithms are effective even with large > 100 km base line
lengths.
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Conclusion

The problem of how to determine velocity, acceleration, and position by raw Doppler and carrier
phase GPS observations was discussed. Corresponding mathematical models for differential Doppler
and carrier phase GPS observations were described. An approach was proposed for vehicle velocity and
acceleration determination. This approach is based on direct numerical differentiation of raw carrier phase
observations. The problem was reduced to a linear estimation. Application of the proposed algorithms in
airborne gravimetry [1, 3] shows their efficiency.

This research was supported by the Russian Foundation for Basic Research (project No. 04-01-00738).
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