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Abstract—The paper deals with the homogenization of a boundary value problem for an inhomoge-
neous body with Cosserat properties, which is referred to as the original problem. The homogeniza-
tion process is understood as a method for representing the solution of the original problem in terms
of the solution of precisely the same problem for a body with homogeneous properties. The problem
for a body with homogeneous properties is called the accompanying problem, and the body itself, the
accompanying homogeneous body. As a rule, a constructive homogenization procedure includes the
following three stages: at the first stage, the properties of the inhomogeneous body are used to find
the properties of the accompanying homogeneous body (efficient properties); at the second stage,
the boundary value problem is solved for the accompanying body; at the third stage, the solution of
the accompanying problem is used to find the solution of the original problem. This approach was
implemented in mechanics of composite materials constructed of numerous representative elements.
A significant contribution to the development of mechanics of composites is due to Rabotnov [1–3]
and his students. Recently, the homogenization method has been widely used to solve problems for
composites of regular structure by expanding the solution of the original problem in a power series in
a small geometric parameter equal to the ratio of the characteristic dimension of the periodicity cell
to the characteristic dimension of the entire body. The papers by Bakhvalov [4–6] and Pobedrya [7]
were the first in the field. At present, there are numerous monographs partially or completely dealing
with the method of a small geometric parameter [8–14].
Isolated problems for inhomogeneous bodies with nonperiodic dependence of their properties on
the coordinates were considered by many authors. Most of such papers published before 1973 are
collected in two vast bibliographic indices [15, 16]. General methods were considered, and many
specific problems of the theory of elasticity of continuously inhomogeneous bodies were solved in
Lomakin’s papers and his monograph [17]. The theory of torsion of inhomogeneous anisotropic rods
was considered in [18].
In 1991, in his Doctoral dissertation, one of the authors of this paper proposed a version of the
homogenization method based on an integral formula representing the solution of the original
static problem of inhomogeneous elasticity via the solution of the accompanying problem [19, 20].
An integral formula for the dynamic problem of elasticity was published somewhat later [21].
This integral formula was used to develop a constructive method for the homogenization of the
dynamic problem of inhomogeneous elasticity, which can be used in the case of both periodic and
nonperiodic inhomogeneity of the properties [22]. The integral formula in the case of the Cosserat
theory of elasticity was published in [23]. The present paper briefly presents constructive methods for
homogenizing the problems of the Cosserat theory of elasticity based on the integral formula.
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1. STATEMENT OF THE ORIGINAL AND ACCOMPANYING PROBLEMS [24]

The Cosserat theory of elasticity, in addition to the stresses σij and strains εij , deals with the couple
stress tensor μij and the curvature tensor κij . All these tensors are nonsymmetric. The statement of the
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74 GORBACHEV, EMEL’YANOV

static problem of the Cosserat elasticity theory consists of the equilibrium equations

σji,j + Xi = 0, μji,j + εijkσjk + Yi = 0, (1.1)

the constitutive relations

σji = Cijmnεnm + Bijmnκnm, μji = Bijmnεnm + Dijmnκnm, (1.2)

the Cauchy type relations

εnm = um,n + εmnsωs, κ = ωm,n, (1.3)

expressing the strains and curvatures in terms of components of the displacement vector ui and the
rotation vector ωi, and the boundary conditions

ui

∣
∣
Σ

= u0
i , ωi

∣
∣
Σ

= ω0
i . (1.4)

The coefficients Cijmn, Dijmn, and Bijmn are components of tensors of rank four. They are symmetric
with respect to the first and second pairs of indices but are not symmetric with respect to the indices in
pairs. The physical dimension of these tensors is different: [μ

˜
μ] = [�]1[σ

˜
σ], [C

˜
C] = [�]0[σ

˜
σ], [B

˜
B] = [�]1[σ

˜
σ],

and [D
˜
D] = [�]2[σ

˜
σ]. Here � is the length referred to the structure of the material (structure parameter), for

example, the characteristic dimension of inhomogeneity, the characteristic dimension of the composite
representative element, or the characteristic size of the periodicity cell for a composite with a regular
structure. The square brackets containing a symbol denote the dimension of the variable marked by this
symbol.

The accompanying problem is a problem similar to the original problem for a body of the same
shape and with the same initial data but with different material characteristics C0

ijkl, D0
ijkl, and B0

ijkl.
Let vi, eij , and τij denote the displacements, strains, and stresses, and let ψi, πij , and νij denote the
angles of rotation, couple strains, and couple stresses in the corresponding problem. The statement of
the accompanying problem is given by the formulas

τji,j + Xi = 0, νji,j + εijkτjk + Yi = 0, (1.5)

τji = C0
ijklelk + B0

ijklπlk, νji = B0
ijklelk + D0

ijklπlk, (1.6)

elk = vk,l + εklsψs, πlk = ψk,l, (1.7)

vi

∣
∣
Σ

= u0
i , ψi

∣
∣
Σ

= ω0
i . (1.8)

The equations of the accompanying problem can be reduced to the system of equations

C0
ijklelk,j + B0

ijklπlk,j + Xi = 0,

B0
ijklelk,j + D0

ijklπlk,j + εijr(C0
rjklelk + B0

rjklπlk) + Yi = 0.
(1.9)

2. INTEGRAL FORMULAS IN THE STATIC PROBLEM OF THE COSSERAT THEORY
OF ELASTICITY FOR INHOMOGENEOUS BODIES

The following integral formulas relating the solutions of boundary-value problems of the same type
for inhomogeneous and homogeneous elastic bodies of the same shape and with the same initial data
were derived in [23],

ui(x) = vi(x) +
∫

V

{1
ε
(i)
kl (x, ξ)[C0

klpq − Cklpq(ξ)] +
1
κ

(i)
kl (x, ξ)[B0

klpq − Bklpq(ξ)]
}

epq(ξ) dVξ

+
∫

V

{1
ε
(i)
kl (x, ξ)[B0

klpq − Bklpq(ξ)] +
1
κ

(i)
kl (x, ξ)[D0

klpq − Dklpq(ξ)]
}

πpq(ξ) dVξ , (2.1)

ωi(x) = ψi(x) +
∫

V

{2
ε
(i)
kl (x, ξ)[C0

klpq − Cklpq(ξ)] +
2
κ

(i)
kl (x, ξ)[B0

klpq − Bklpq(ξ)]
}

epq(ξ) dVξ

+
∫

V

{2
ε
(i)
kl (x, ξ)[B0

klpq − Bklpq(ξ)] +
2
κ

(i)
kl (x, ξ)[D0

klpq − Dklpq(ξ)]
}

πpq(ξ) dVξ , (2.2)
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a
ε
(i)
kl (x, ξ) =

a
u

(i)
l,k(x, ξ) + εlks

a
ω(i)

s (x, ξ),
a
κ

(i)
kl (x, ξ) =

a
ω

(i)
l,k(x, ξ), a = 1, 2,

where
a
u

(i)
l,k(x, ξ) and

a
ω

(i)
l,k(x, ξ) are components of the displacement tensor and Green’s rotation tensor.

In the static problem of the Cosserat theory of elasticity, Green’s tensors can be introduced in two
different ways. In the first case, at a point ξ of the body, the unit lumped force directed along the xk-

axis is prescribed, and this force causes a displacement
1
u

(k)
i (x, ξ) and a rotation

1
ω

(k)
i (x, ξ). In the second

case, at a point ξ of the body, a unit lumped moment directed along the xk-axis is prescribed. Then

the displacement
2
u

(k)
i (x, ξ) and the rotation

1
ω

(k)
i (x, ξ) arise at a point x of the body. In both cases, the

boundary conditions are assumed to be zero.

3. REPRESENTATION IN THE FORM OF SERIES
We assume that the strains and curvatures in the accompanying problem are smooth functions of

the coordinates xi. Then, in a neighborhood of any point ξ ⊂ V , they can be represented in terms of the
values at the point x ⊂ V as the Taylor series

ekl(ξ) =
∞∑

q=0

Πi1...iq(ξ, x)ekl,i1...iq(x), πkl(ξ) =
∞∑

q=0

Πi1...iq(ξ, x)πkl,i1...iq(x), (3.1)

Πi1...iq(ξ, x) ≡ 1q!(ξi1 − xi1) · · · (ξiq − xiq). (3.2)

By substituting the expressions (3.1) into formulas (2.1) and (2.2), we obtain the following representa-
tion for the solution of the original problem of the Cosserat theory of elasticity in the form of series in all
possible derivatives of the strains and curvatures in the accompanying problem:

ui(x) = vi(x) +
∞∑

q=0

[Nimn(q)(x)∂qenm(x) + Uimn(q)(x)∂qπnm(x)], (3.3)

ωi(x) = ψi(x) +
∞∑

q=0

[Vimn(q)(x)∂qenm(x) + Mimn(q)(x)∂qπnm(x)]. (3.4)

Here we write out the formulas in an abbreviated form such that, for example, δjiqNimn(q−1)∂qenm

≡ δjiqNimni1...iq−1enm,i1...iq .
The coefficients in the series Uimn(q), Uimn(q), Vimn(q), and Mimn(q) are continuous functions of

coordinates vanishing on the boundary of the body: (N,U,M, V )imn(q)

∣
∣
Σ

= 0. They are weighted
moments of strains and Green’s curvatures of the initial problem [25]. These functions are identically
zero for a homogeneous material and different from zero in the case of an inhomogeneous material. The
form of (N,U,M, V )imn(q)-functions is determined by the functional dependence on the coordinates of
the physical and mechanical characteristics of the material, and hence it is meaningful to call them the
structure functions. The functions (N,U,M, V )imn(q) form structure tensors of rank q + 3.

The structure functions have the following physical dimension: [Nimn(q)] = [�]q+1, [Uimn(q)] = [�]q+2,
[Vimn(q)] = [�]q , and [Mimn(q)] = [�]q+1. The series for the strains and curvatures become

εji = eji +
∞∑

q=0

{

[Nimn(q),j + δjiqNimn(q−1) + εijsVsmn(q)]∂qenm

+ [Uimn(q),j + δjiqUimn(q−1) + εijsMsmn(q)]∂qπnm

}

, (3.5)

κji = πji +
∞∑

q=0

{

[Vimn(q),j + δjiqVimn(q−1)]∂qenm + [Mimn(q),j + δjiqMimn(q−1)]∂qπnm

}

. (3.6)

After this, we write out the expressions for the force and couple stresses,

σji =
∞∑

q=0

[C̃ijmn(q)∂qenm + B̃ijmn(q)∂qπnm], (3.7)
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76 GORBACHEV, EMEL’YANOV

μji =
∞∑

q=0

[ ˜̃Bijmn(q)∂qenm + ˜̃Dijmn(q)∂qπnm]. (3.8)

The coefficients in the series (3.7) and (3.8) for the stresses have the following dimension:

[C̃ijmn(q)] = [l]q[σ], [B̃ijmn(q)] = [ ˜̃Bijmn(q)] = [l]q+1[σ], [D̃ijmn(q)] = [l]q+2[σ].

The coefficients C̃ijmn(q), B̃ijmn(q),
˜̃Bijmn(q), and D̃ijmn(q) can be expressed via the (N,U,M, V )imn(q)-

functions (the index (0) is omitted in the case q = 0) as follows:

C̃ijmn(0) ≡ C̃ijmn = Cijmn + Cijkl(Nkmn,l + εklsVsmn) + BijklVkmn,l, (3.9)

B̃ijmn(0) ≡ B̃ijmn = Bijmn + Cijkl(Ukmn,l + εklsMsmn) + BijklMkmn,l, (3.10)

˜̃Bijmn(0) ≡ ˜̃Bijmn = Bijmn + Bijkl(Nkmn,l + εklsVsmn) + DijklVkmn,l, (3.11)

D̃ijmn(0) ≡ D̃ijmn = Dijmn + Bijkl(Ukmn,l + εklsMsmn) + DijklMkmn,l, (3.12)

and for q ≥ 1 as follows:

C̃ijmn(q) = Cijkl[Nkmn(q),l + δliqNkmn(q−1) + εklsVsmn(q)] + Bijkl[Vkmn(q),l + δliqVkmn(q−1)], (3.13)

B̃ijmn(q) = Cijkl[Ukmn(q),l + δliqUkmn(q−1) + εklsMsmn(q)] + Bijkl[Mkmn(q),l + δliqMkmn(q−1)], (3.14)

˜̃Bijmn(q) = Bijkl[Nkmn(q),l + δliqNkmn(q−1) + εklsVsmn(q)] + Dijkl[Vkmn(q),l + δliqVkmn(q−1)], (3.15)

D̃ijmn(q) = Bijkl[Ukmn(q),l + δliqUkmn(q−1) + εklsMsmn(q)] + Dijkl[Mkmn(q),l + δliqMkmn(q−1)]. (3.16)

We substitute the series (3.7) and (3.8) into the equations of the original problem and obtain
∞∑

q=0

[

( ˜̃Cijmn(q),j + ˜̃Ciijmn(q−1))∂qenm + ( ˜̃Bijmn(q),j + ˜̃Biijmn(q−1))∂qπnm

]

+ Xi = 0,

∞∑

q=0

[

( ˜̃Bijmn(q),j + ˜̃Biijmn(q−1) + εijrC̃rjmn(q))∂qenm

+ ( ˜̃Dijmn(q),j + ˜̃Diijmn(q−1) + εijrB̃rjimn(q))∂qπnm

]

+ Yi = 0.

(3.17)

Then we rewrite Eqs. (1.9) of the accompanying problem as follows:

C0
ii1mnenm,i1 + B0

ii1mnπnm,i1 + Xi = 0,

B0
ii1mnenm,i1 + D0

ii1mnπnm,i1 + εijr(C0
rjmnenm + B0

rjmnπnm) + Yi = 0.
(3.18)

By comparing Eqs. (3.17) and (3.18), we see that the coefficients of the derivatives of eij and πij in
Eqs. (3.17) should be as follows:

the first group of equalities:

q = 0

{

C̃ijmn(0),j = 0,
˜̃Bijmn(0),j + εijrC̃rjmn(0) = εijrC

0
rjmn,

(3.19)

q = 1

{

C̃ijmn(1),j + C̃ii1mn(0) = C0
ii1mn,

˜̃Bijmn(1),j + ˜̃Bii1mn(0) + εijrC̃rjmn(1) = B0
ii1mn,

(3.20)

q ≥ 2

{

C̃ijmn(q),j + C̃iiqmn(q−1) = 0,
˜̃Bijmn(q),j + ˜̃Biiqmn(q−1) + εijrC̃rjmn(q) = 0;

(3.21)

the second group of equalities:

q = 0

{

B̃ijmn(0),j = 0,
˜̃Dijmn(0),j + εijrB̃rjmn(0) = εijrB

0
rjmn,

(3.22)
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HOMOGENIZATION OF THE EQUATIONS OF THE COSSERAT THEORY 77

q = 1

{

B̃ijmn(1),j + B̃ii1mn(0) = B0
ii1mn,

˜̃Dijmn(1),j + ˜̃Dii1mn(0) + εijrB̃rjmn(1) = D0
ii1mn,

(3.23)

q ≥ 2

{

B̃ijmn(q),j + B̃iiqmn(q−1) = 0,
˜̃Dijmn(q),j + ˜̃Diiqmn(q−1) + εijrB̃rjmn(q) = 0.

(3.24)

By substituting (3.9), (3.11) and (3.13), (3.15) into the first group of equalities (3.19)–(3.21), we
obtain the following system of recursion equations for the functions Nkmn(q) and Vkmn(q). The recursion
in the first group starts from the equations

[Cijmn + Cijkl(Nkmn,l + εklsVsmn) + BijklVkmn,l]j = 0,

[Bijmn + Bijkl(Nkmn,l + εklsVsmn) + DijklVkmn,l]j = εijr(C0
rjmn − C̃rjmn).

(3.25)

The functions Mkmn(q) and Ukmn(q) are determined from the second group of equations. The
recursion in the first group starts from the equations

[Bijmn + Cijkl(Ukmn,l + εklsMsmn) + BijklMkmn,l]j = 0,

[Bijmn + Bijkl(Nkmn,l + εklsVsmn) + DijklVkmn,l]j = εijr(C0
rjmn − C̃rjmn).

(3.26)

The unique solution of Eqs. (3.25) and (3.26) and of all subsequent equations is determined by the
condition that all (N,U, V,M)imn(q) functions are zero on the boundary Σ of the domain V occupied by
the body.

The solution of the original problems in the form of series contains the coefficients C0
ijkl, D0

ijkl,

and B0
ijkl, which represent the accompanying homogeneous body. In principle, these can be any

physically admissible quantities. Obviously, they do not affect the exact solution of the original problem.
But the choice of the properties of the accompanying body significantly affects the rate of convergence
of the series to the exact solution. In [25], it is proposed to choose them in the form

C0
ijmn = 〈C̃ijmn〉V = 〈Cijmn + Cijkl(Nkmn,l + εklsVsmn) + BijklVkmn,l〉V , (3.27)

D0
ijmn = 〈D̃ijmn〉V = 〈Dijmn + Bijkl(Ukmn,l + εklsMsmn) + DijklMkmn,l〉V , (3.28)

B0
ijmn = 〈 ˜̃Bijmn〉V = 〈Bijmn + Bijkl(Nkmn,l + εklsVsmn) + DijklVkmn,l〉V

= 〈B̃ijmn〉V = 〈Bijmn + Cijkl(Ukmn,l + εklsMsmn) + BijklMkmn,l〉V . (3.29)

Let us show that these are precisely the effective coefficients in the sense of the definition given below.

4. EFFECTIVE CHARACTERISTICS IN THE COSSERAT THEORY OF ELASTICITY

The effective coefficients of any inhomogeneous Cosserat material composed of identical repre-
sentative volumes are coefficients that permit relating the force and couple stresses 〈σij〉 and 〈μij〉
averaged over any representative volume to the strains 〈εij〉 and curvatures 〈κij〉 averaged over the same
representative volume. This definition of effective properties of a Cosserat elastic body is a generalization
of the definition given in [26] to the case of a body composed of representative volumes of a material with
Cosserat properties.

For simplicity, first consider a periodically inhomogeneous material with periodicity cells Ω of cubic
shape with edge �. In this case, the cube Ω is a representative volume, and its edge � is a structure
parameter. In a periodically inhomogeneous body, the material tensors C, B, and D are one-periodic
functions of the local variables 0≤ ζi = {xi/�}= xi/�− [xi/�]≤ 1. Here the braces denote the fractional
part of a number, and the square brackets denote the integer part of a number. The variables ζi are also
called the fast variables [6], and functions of the fast variables are called rapidly oscillating functions of
the global coordinates xi [17].

We introduce new structure functions and structure tensors by using the replacements Nimn(q) →
�q+1Nimn(q), Uimn(q) → �q+2Uimn(q), Vimn(q) → �qVimn(q), Mimn(q) → �q+1Mimn(q), Bijmn → �Bijmn,
and Dijmn → �2Dijmn.
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78 GORBACHEV, EMEL’YANOV

The new functions depend on the local variables ζi. Moreover, (N,U, V,M)imn(q) are dimensionless
functions, and the new material coefficients Bijmn and Dijmn are of the dimension of stresses. The
functions of local coordinates ζi are differentiated with respect to the global coordinates xi according
to the rule

f,i(ζ) ≡ ∂f(ζ)
∂xi

=
∂f

∂ζk

∂ζk

∂xi
=

1
�

∂f

∂ζik
≡ 1�f|i.

After this, the structure parameter � occurs in most of the formulas in the preceding sections; for
example, the constitutive relations (1.2) of the original problem become

σji = Cijmn(ζ)εnm + �Bijmn(ζ)κnm, μji = �Bijmn(ζ)εnm + �2Dijmn(ζ)κnm, (4.1)

and the effective constitutive relations of the form (〈σ〉, 〈μ〉) ∼ (〈ε〉, 〈κ〉) will be written as

〈σji〉Ω = Ceff
ijmn〈εnm〉Ω + �Beff

ijmn〈κnm〉Ω, 〈μji〉Ω = �Beff
ijmn〈εnm〉Ω + �2Deff

ijmn〈κnm〉Ω. (4.2)

According to the new structure functions, the series (3.3)–(3.8) become

ui(x) = vi(x) +
∞∑

q=0

[�q+1Nimn(q)(ζ)∂qenm(x) + �q+2Uimn(q)(ζ)∂qπnm(x)], (4.3)

ωi(x) = ψi(x) +
∞∑

q=0

[�qVimn(q)(ζ)∂qenm(x) + �q+1Mimn(q)(ζ)∂qπnm(x)], (4.4)

εji = (δjnδim + Nimn|j + εijsVsmn)enm + �(Uimn|j + εijsMsmn)πmn

+
∞∑

q=1

[�q(Nimn(q)|j + Nimn(q−1)δjiq + εijsVsmn(q))∂qenm

+ �q+1(Uimn(q)|j + Uimn(q−1)δjiq + εijsMsmn(q))∂qπnm], (4.5)

κji =
1
�

Vimn|jenm + (δjnδim + Mimn|j)πnm

+
∞∑

q=1

[�q−1(Vimn(q)|j + Vimn(q−1)δjiq)∂qenm + �q(Mimn(q)|j + Mimn(q−1)δjiq)∂qπnm], (4.6)

σji =
∞∑

q=0

[�qC̃ijmn(q)∂qenm + �q+1B̃ijmn(q)∂qπnm], (4.7)

μji =
∞∑

q=0

[�q+1 ˜̃Bijmn(q)∂qenm + �q+2D̃ijmn(q)∂qπnm]. (4.8)

The recursion equations for the new (N,U, V,M)imn(q) functions retain the form (3.19)–(3.26)
except that the derivative with respect to the global coordinate, which is denoted by an index after the
comma in (3.19)–(3.26), is replaced by the derivative with respect to the local variable, which is denoted
by an index after the vertical bar. In the general case, to determine the (N,U, V,M)imn(q) functions,
one should solve the boundary value problems for Eqs. (3.19)–(3.26) with homogeneous conditions on
the boundary of the entire body, The coefficients in these equations are periodic functions of the local
variables. At the distance of the order of the characteristic dimension of the periodicity cell from the body
boundary, the desired functions also tend to periodic functions [27] that are continuous and periodic
solutions of Eqs. (3.19)–(3.26) in the cube Ω. This fact is pointed out in [28–30] and is numerically
confirmed in the dissertation [31]. The periodic solutions of Eqs. (3.19)–(3.26) in the cube are determined
up to constants [6], which can be found from the normalization condition 〈(N,U, V,M)imn(q)〉Ω = 0.

Let L be the characteristic dimension of the entire body, and let �/L 
 1; i.e., the body is composed
of a large number of cells in all directions. In this case, the smooth functions ∂qenm(x) and ∂qπnm(x) do
not practically change in any �-cube; i.e., they behave as constants after averaging over the �-cube,

〈f(q)(ζ)∂qenm(x)〉Ω ≈ 〈f(q)(ζ)〉Ω∂qenm(x), 〈f(q)(ζ)∂qπnm(x)〉Ω ≈ 〈f(q)(ζ)〉Ω∂qπnm(x).
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HOMOGENIZATION OF THE EQUATIONS OF THE COSSERAT THEORY 79

It follows from the above that the averaging over any inner cell of the expressions (4.3), (4.4) for the
components of the displacements and rotation vectors and of the expressions (4.5), (4.8) for the strains
and the curvature gives

〈ui〉Ω → vi, 〈ωi〉Ω → ψi as α ≡ �/L → 0, (4.9)

〈εij〉Ω → eij , 〈κij〉Ω → πij as α ≡ �/L → 0. (4.10)

The expressions (4.7) and (4.8) for the force and couple stresses averaged over the periodicity cell can
be represented as

〈σji〉Ω = 〈C̃ijmn〉Ωemn+�〈B̃ijmn〉Ωπmn+O(α) α→0−→〈C̃ijmn〉Ω〈εji〉Ω+�〈B̃ijmn〉Ω〈κij〉Ω, (4.11)

〈μji〉Ω = �〈 ˜̃Bijmn〉Ωemn+�2〈D̃ijmn〉Ωπmn+O(α2) α→0−→ �〈 ˜̃Bijmn〉Ω〈εij〉Ω+�2〈D̃ijmn〉Ω〈κij〉Ω. (4.12)

These formulas and definition (4.2) give the following expressions for the effective characteristics of a
composite with Cosserat properties:

Ceff
ijmn = 〈C̃ijmn〉Ω = 〈Cijmn + Cijkl(Nkmn|l + εklsVsmn) + BijklVkmn|l〉Ω, (4.13)

Deff
ijmn = 〈D̃ijmn〉Ω = 〈Dijmn + Bijkl(Ukmn|l + εklsMsmn) + DijklMkmn|l〉Ω, (4.14)

Beff
ijmn = 〈B̃ijmn〉Ω = 〈 ˜̃Bijmn〉Ω = 〈Bijmn + Bijkl(Nkmn|l + εklsVsmn) + DijklVkmn|l〉Ω

= 〈Bijmn + Cijkl(Ukmn|l + εklsMsmn) + BijklMkmn|l〉Ω. (4.15)

Thus, to obtain the effective characteristics of regular composites, one should average the functions
C̃ijkl(ζ), B̃ijkl(ζ), and D̃ijkl(ζ) over the periodicity cell. The functions (N,U, V,M)imn(q) in formu-
las (4.13)–(4.15) are determined from the solution of the coupled systems (3.15) and (3.26) in the
periodicity cell. The unique solution of these systems is chosen from the periodicity conditions

Nkmn(ζ1, ζ2, ζ3)
∣
∣
ζi=0

= Nkmn(ζ1, ζ2, ζ3)
∣
∣
ζi=1

(i = 1, 2, 3), (4.16)

Vkmn(ζ1, ζ2, ζ3)
∣
∣
ζi=0

= Vkmn(ζ1, ζ2, ζ3)
∣
∣
ζi=1

(i = 1, 2, 3), (4.17)

Ukmn(ζ1, ζ2, ζ3)
∣
∣
ζi=0

= Ukmn(ζ1, ζ2, ζ3)
∣
∣
ζi=1

(i = 1, 2, 3), (4.18)

Mkmn(ζ1, ζ2, ζ3)
∣
∣
ζi=0

= Mkmn(ζ1, ζ2, ζ3)
∣
∣
ζi=1

(i = 1, 2, 3), (4.19)

and the normalization conditions

〈Nkmn〉 = 0, 〈Vkmn〉 = 0, 〈Ukmn〉 = 0, 〈Mkmn〉 = 0. (4.20)

In the general case of inhomogeneity, i.e., in the case where the elasticity coefficients are arbitrary
integrable functions of the global coordinates x, the effective characteristics are determined by the
same formulas (4.13)–(4.15), but the averaging in these formulas is performed over the entire body
by formulas (3.27)–(3.29). The functions (N,U, V,M)imn(q) depend on x and are determined by solving
the same equations (3.25) and (3.26) in the entire inhomogeneous body for zero values of the desired
functions on the boundary of the body. In the specific case where the elasticity coefficients are periodic,
the functions (N,U, V,M)imn(q)(x) significantly differ from periodic functions only in the boundary layer,
whose thickness is equal to several characteristic dimensions of the periodicity cell and tends to zero with
further refinement of the structure. Thus, the elastic characteristics determined by various formulas differ
only by quantities of order O(α).

5. CASE OF A LAYER INFINITE IN THE HORIZONTAL PROJECTION
AND INHOMOGENEOUS ACROSS THE THICKNESS

Let L denote the plate thickness. Assume that the x3-axis is perpendicular to the face surfaces of the
layer and the lower face surface corresponds to the value x3 = 0. In this case, the coefficients Cijkl, Dijkl,
and Bijkl are functions of the coordinate x3. We assume that the desired functions Nkmn(q), Ukmn(q),
Vkmn(q), and Mkmn(q) depend only on x3 as well. Because of (3.27)–(3.19), Eqs. (3.25) and (3.26)
become the ordinary integro-differential equations

[Ci3k3N
′
kmn + Ci3mn + Ci3klεklsVsmn + Bi3k3V

′
kmn]′ = 0,
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[Di3k3V
′
kmn + Bi3mn + Bi3klεklsVsmn + Bi3k3N

′
kmn]′ = εijr(〈C̃rjmn〉 − C̃rjmn),

C̃rjmn = Crjk3N
′
kmn + Crjmn + CrjklεklsVsmn + Bijk3V

′
kmn, (5.1)

[Ci3k3U
′
kmn + Bi3mn + Ci3klεklsMsmn + Bi3k3M

′
kmn]′ = 0,

[Di3k3M
′
kmn + Di3mn + Bi3klεklsMsmn + Bi3k3U

′
kmn]′ = εijr(〈B̃rjmn〉 − B̃rjmn),

B̃rjmn = Crjk3U
′
kmn + Brjmn + CrjklεklsMsmn + Dijk3M

′
kmn. (5.2)

The prime denotes the derivative with respect to x3, and the angle brackets denote the average value
of a function over the plate thickness,

〈f〉 ≡ 1
L

L∫

0

f(x3) dx3.

The conditions on the plate boundaries become

Nimn

∣
∣
x3=0,L

= 0, Vimn

∣
∣
x3=0,L

= 0, Mimn

∣
∣
x3=0,L

= 0, Uimn

∣
∣
x3=0,L

= 0. (5.3)

We integrate the first equation in system (5.1), take into account the relation 〈N ′
imn〉 = 0, and obtain

N ′
kmn = [C−1

k3l3〈C
−1
l3p3〉

−1〈C−1
p3q3Cq3mn〉 − C−1

k3q3Cq3mn]

+ [C−1
k3l3〈C

−1
l3p3〉

−1〈C−1
p3q3Cq3ab(•)〉 − C−1

k3q3Cq3ab]εabsVsmn

+ [C−1
k3l3〈C

−1
l3p3〉

−1〈C−1
p3q3Cq3s3(•)〉 − C−1

k3q3Cq3s3]V ′
smn. (5.4)

In the last two square brackets, the symbol (•) is replaced by εabsVsmn and V ′
smn, respectively. Note

that the average values of each row on the right-hand side in (5.4) is zero. Further, we determine C̃ijmn as

C̃ijmn = Cijmn + Cijk3C
−1
k3l3〈C

−1
l3p3〉

−1〈C−1
p3q3Cq3mn〉 − Cijk3C

−1
k3l3Cl3mn

+ [Cijab + Cijk3C
−1
k3l3〈C

−1
l3p3〉

−1〈C−1
p3q3Cq3ab(•)〉 − Cijk3C

−1
k3q3Cq3ab]εabsVsmn,

+ [Bijs3 + Cijk3C
−1
k3l3〈C

−1
l3p3〉

−1〈C−1
p3q3Bq3s3(•)〉 − Cijk3C

−1
k3q3Bq3s3]V ′

smn. (5.5)

After integrating the second equation in system (5.1) once, we obtain

V ′
kmn = −D−1

k3l3

[

Bl3mn + Bl3abεabsVsmn + Bl3s3N
′
smn

− 〈D−1
l3p3〉

−1〈D−1
p3q3(Bq3mn + Bq3abεabsVsmn + Bq3s3N

′
smn)〉

]

+ D−1
k3l3

[

εljr

x3∫

0

(〈C̃rjmn〉 − C̃rjmn(y)) dy

− 〈D−1
i3p3〉−1

〈

D−1
p3q3(z)εqjr

z∫

0

(〈C̃rjmn〉 − C̃rjmn(y)) dy

〉]

. (5.6)

The average value of the right-hand side of this expression is zero. Now if we substitute the
expressions (5.2) and (5.5) into this formula, then the right-hand side of (5.6) can be written in the
same form as the right-hand side of (5.4),

V ′
kmn = ekmn + ĝkabεabsVsmn + f̂ks3V

′
smn, (5.7)

ekmn = D−1
k3s3Tsmn − D−1

k3s3〈D
−1
s3p3〉〈D−1

p3q3Tqmn〉, (5.8)

Timn = εijr

x3∫

0

[〈C̃∗
rjmn〉 − C̃∗

rjmn(y)] dy − (Bi3mn + Bi3k3rkmn), (5.9)

C̃∗
ijmn ≡ Cijmn + Cijk3C

−1
k3l3〈C

−1
l3p3〉

−1〈C−1
p3q3Cq3mn〉 − Cijk3C

−1
k3l3Cl3mn, (5.10)
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rkmn ≡ C−1
k3l3〈C

−1
l3p3〉

−1〈C−1
p3q3Cq3mn〉 − C−1

k3q3Cq3mn. (5.11)

The expressions of ĝkab and f̂ks3 are cumbersome operators, and we do not write them out here. Note
that the average value of each of the terms in (5.7) is zero. These terms are deviations from the mean
value, and the second and third terms are quantities of the order of the squared first term. The main
contribution to the expression of the function Vkmn is given by the first term. A similar situation also
takes place for the function Nkmn.

To obtain approximate expressions for the effective characteristics of a layer homogenous over the
thickness and made of a Cosserat material, we preserve only the first terms in the expressions for the
functions Nkmn and Vkmn; i.e., we set

N ′
kmn ≈ rkmn ⇒ Nkmn ≈

x3∫

0

rkmn(y) dy, (5.12)

V ′
kmn ≈ ekmn ⇒ Vkmn ≈

x3∫

0

ekmn(y) dy. (5.13)

System (5.2) for the functions Ukmn and Mkmn can be integrated in a similar way. Omitting
insignificant details, we obtain the following approximate expressions for the functions Ukmn and Mkmn:

U ′
kmn ≈ dkmn ⇒ Ukmn ≈

x3∫

0

dkmn(y) dy. (5.14)

M ′
kmn ≈ hkmn ⇒ Mkmn ≈

x3∫

0

hkmn(y) dy. (5.15)

dkmn ≡ C−1
k3l3〈C

−1
l3p3〉

−1〈C−1
p3q3Bq3mn〉 − C−1

k3q3Bq3mn, (5.16)

hkmn ≡ D−1
k3s3Θsmn − D−1

k3s3〈D
−1
s3p3〉〈D−1

p3q3Θqmn〉, (5.17)

Θimn = εijr

x3∫

0

[〈B̃∗
rjmn〉 − B̃∗

rjmn(y)] dy − (Di3mn + Bi3k3dkmn), (5.18)

B̃∗
ijmn = Bijmn + Cijk3C

−1
k3l3〈C

−1
l3p3〉

−1〈C−1
p3q3Bq3mn〉 − Cijk3C

−1
k3l3Bl3mn. (5.19)

Now we can write out explicit expressions for the effective characteristics of a layer inhomogeneous
over the thickness:

Ceff
ijmn ≈ 〈C̃ijmn〉 = 〈Cijmn + Cijkl(δi3N

′
kmn + εklsVsmn) + Bijk3V

′
kmn〉, (5.20)

Deff
ijmn ≈ 〈D̃ijmn〉 = 〈Dijmn + Bijkl(δi3U

′
kmn + εklsMsmn) + Dijk3M

′
kmn〉, (5.21)

Beff
ijmn ≈ 〈B̃ijmn〉 = 〈 ˜̃Bijmn〉 = 〈Bijmn + Bijkl(δi3N

′
kmn + εklsVsmn) + Dijk3V

′
kmn〉

= 〈Bijmn + Cijkl(δi3U
′
kmn + εklsMsmn) + Bijk3U

′
kmn〉. (5.22)
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