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Abstract

A problem of scattering by a Dirichlet right angle on a discrete square lattice is studied.
The waves are governed by a discrete Helmholtz equation. The solution is looked for in
the form of the Sommerfeld integral. The Sommerfeld transformant of the field is built
as an algebraic function. The paper is a continuation of [1].
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NOTATIONS

C, C complex plane and Riemann sphere
K wavenumber parameter of equation (1)

u(m,n) wave field on the lattice
φin, φ angle of propagation of the incident wave, angle of scattering
m, n indexes of nodes in the discrete physical plane
x, y wavenumber parameters
S3 branched discrete plane, introduced in [1]

wm,n(x, y) plane wave (3)
xin, yin wavenumber parameters of the incident wave

D̂(x, y) dispersion function (5)
Ξ(x) root of dispersion equation (8) defined by (10)
Υ(x) irrationality of Ξ(x), (14)
R Riemann surface of Ξ(x) or Υ(x)
R3 a 3-sheet covering of R

P3:1, P1:0 projections between R3, R1, and C
D dispersion surface
D3 a 3-sheet covering of D

x̃, x̂, x notations for points on R3, R, and C linked by natural projections
η1,1, η1,2, η2,1, η2,2 branch points of R, defined by (12), (13)

Λ, Π, Π′ symmetries of R3, see (21), (23)
A(x̃) Sommerfeld transformant of the field (see representation (17))

A0, A1, A2 the components of A having different properties with respect to Λ
x̃1, x̃2, x̃3, x̃4 prescribed poles of A on R3

Y1, . . . , Y4 residues of A
wm,n(x, y) discrete plane wave, (7)

Γ2, Γ3 contours for the Sommerfeld integral
J2, J3, J ′1, J ′3, J ′4 contours encircling zero / infinity points on R3

K0, K1, K3 fields of functions meromorphic on C, on R, and on R3, respectively
Ωj:l basis of extension Kj over Kl

F1(x), F2(x) nontrivial elements of the basis Ω3:1

$ exp{2πi/3}, cubic root of 1

b̂, b an important point on R used for building F1 and its affix
χ(x̂), Tα, Tβ Abelian integral of the first kind on R (see (46)) and its periods

α, β natural coordinates on the torus R
ψ mapping χ→ x̂
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1 Introduction

This paper continues the research presented in [1]. A 2D discrete square lattice is under
consideration. The lattice bears a discrete Helmholtz equation with a 5-point stencil. The
first quadrant of the lattice is blocked by setting the field equal to zero there. The problem of
diffraction of an incident plane wave by the blocked angle is studied. The motivation and the
literature review for such a problem can be found in [1].

A new formalism has been developed for this problem. Similarly to continuous problems
of diffraction in angular domains, a branching surface S3 is introduced in the physical discrete
plane, and the diffraction problem is reformulated as a propagation problem on this surface by
using the reflection principle. An analog of the Sommerfeld integral for field representation is
introduced. This integral is a contour integral on a complex manifold D that is the dispersion
diagram for waves on the discrete plane. Topologically, this dispersion diagram is a torus. The
integrand is a differential form that is multivalued on the dispersion diagram and possesses
prescribed poles corresponding to the incident wave and reflected waves. The contour of inte-
gration depends on the position of the observation point, and “slides” along the surface as the
observation point moves.

The integrand form contains an unknown function referred to as the Sommerfeld trans-
formant of the field. It obeys a certain functional problem. In [1] the authors found this
transformant in terms of elliptic functions. However, such a representation is not convenient.
Moreover, it can be proven that such a transformant should be an algebraic function, thus,
a representation through the elliptic functions is somewhat unnecessarily complicated. The
aim of the current paper is to build the Sommerfeld transformant of the field as an algebraic
function, and then to study the properties of the field.

The paper is organized as follows. In Section 2 the initial diffraction problem is formulated.
Then, the main result of [1] in application to the angle diffraction problem is written down.
Namely, a functional problem for the Sommerfeld transformant is set. In Section 3 the process
of finding the transformant is outlined. Namely, it is proposed first to find the functional
field K3 to which the transformant belongs, and then to specify the transformant in this field.
The field is presented by its basis, and the particular element in it is constructed as a linear
combination of the basis elements. In Section 4 the basis of the field K3 is constructed. This
is the most tricky part of the paper. In Section 5 the coefficients of representation of the
Sommerfeld transformant through the basis of the field are found. Thus, the representation
of the wave field in the form of the Sommerfeld integral becomes obtained. In Section 6 the
constructed field representation is carefully checked. We demonstrate that the result obeys
all condition imposed by the initial diffraction problem. This section can be considered as a
double check of the argument of [1] used for developing of the Sommerfeld integral formalism.
In Section 7 some numerical checks are performed. We demonstrate the process of building the
basis function and, finally, compute the solution of the diffraction problem.
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2 Problem formulation

Consider a planar square lattice whose nodes have integer indices (m,n). Let the homogeneous
discrete Helmholtz equation

u(m,n− 1) + u(m,n+ 1) + u(m− 1, n) + u(m+ 1, n) + (K2 − 4)u(m,n) = 0 (1)

be valid in the domain
m < 0 or n < 0

(see Fig. 1). The wavenumber parameter K has a positive real part and a small positive
imaginary part corresponding to an energy absorption.

The set of nodes with

(m = 0 and n ≥ 0) or (n = 0 and m ≥ 0)

is the boundary of the domain. We assume that this boundary is of the Dirichlet type, so

u(m,n) = 0 (2)

on it.

Fig. 1: Geometry of the problem of diffraction by an angle. Black circles show the position of
the Dirichlet boundary (blocked nodes)

The total wave is a sum of the incident wave and the scattered wave:

u(m,n) = uin(m,n) + usc(m,n),

where
uin(m,n) = xminy

n
in, (3)

4



where xin and yin are wavenumber parameters. These parameters obey the dispersion equation:

D̂(xin, yin) = 0, (4)

D̂(x, y) ≡ x+ x−1 + y + y−1 +K2 − 4. (5)

We assume that the wave travels into the direction of positive m and n. This means that

|xin| < 1, |yin| < 1.

Besides, we can introduce the angle of incidence by the relation

φin ≡ arctan

(
y − y−1

x− x−1

)
. (6)

We assume that angle φin is real, and

0 < φin < π/2.

The scattered wave usc should obey the radiation condition, i. e. it should decay at infinity.
The aim is to find usc.

2.1 The main result of [1]

In [1] the authors developed the Sommerfeld integral technique for the lattice diffraction prob-
lem formulated above. The unknown function describing the field is the Sommerfeld transfor-
mant. The problem for finding the Sommerfeld transformant is formulated as a problem of
finding a meromorphic function of a certain Riemann surface. The transformant should have
prescribed poles and residues.

Plane waves on the lattice have form

wm,n = wm,n(x, y) = xmyn, (7)

provided that the pair of wavenumber parameters (x, y) obey the dispersion equation

D̂(x, y) = 0. (8)

One can see that (8) guarantees fulfillment of the homogeneous Helmholtz equation (1) by w.
The set of all complex pairs (x, y) ∈ C2 obeying (8) is referred to as the dispersion diagram

of the lattice. Denote this set by D. This is a complex manifold1 embedded in C2. The simplest
way to represent D is to express y as a function of x using (8):

y(x) = Ξ(x) or y(x) = Ξ−1(x), (9)

1 A complex manifold [2] is a union of possibly intersecting neighborhoods in each of which a local com-
plex variable can be introduced, describing the neighborhood in a trivial way. The transition between the
local variables in intersecting neighborhoods is holomorphic. We assume also that the coordinates x and y are
holomorphic functions of local variables. For D, one can take x as a local variable everywhere except the neigh-
borhoods of the points ηj,l (see (12), (13)) and except the neighborhoods of the infinities. In the neighborhoods
of the points ηj,l one can choose y as a local variable. At the infinities one can use x−1.

5



Ξ(x) = −K
2 − 4 + x+ x−1

2
+
i
√

4− (K2 − 4 + x+ x−1)2

2
, (10)

Ξ−1(x) = −K
2 − 4 + x+ x−1

2
−
i
√

4− (K2 − 4 + x+ x−1)2

2
, (11)

and study the Riemann surface R of Ξ(x). This Riemann surface is a projection of the manifold
D onto the coordinate x. Topologically, D and R are similar.

The complex structure of D is pulled to R by the projection, thus R is also a complex
manifold.

One can see that R has two sheets over C. The branch points of the surface are η1,1, η1,2,
η2,1, η2,2:

η1,1 = −d
2
− i
√

4− d2

2
, η2,1 = −d

2
+
i
√

4− d2

2
, d = K2 − 2, (12)

η1,2 = −d
2

+

√
d2 − 4

2
, η2,2 = −d

2
−
√
d2 − 4

2
, d = K2 − 6. (13)

All branch points are of second order. One can see that y = ±1 at the branch points.
The scheme of R is shown in Fig. 2. The branch points are connected by cuts (shown by

bold lines). The sides of the cuts marked by the same Roman numbers should be attached to
each other. For definiteness, the cuts on R are conducted in such a way that |y(x)| = 1 on
them. The Riemann surface R is compactified, i. e. two infinite points are added to the sheets.
These infinite points are not branch points. We select the physical sheet (or sheet 1) of R as
the sheet on which |Ξ(x)| < 1 on the unit circle |x| = 1. The unit circle on the physical sheet
is shown by a dashed line in the figure.

Introduce the function

Υ(x) = x(Ξ(x)− Ξ−1(x)) =
√

(x− η1,1)(x− η1,2)(x− η2,1)(x− η2,2) = (14)

x
√

(K2 − 4 + x+ x−1)2 − 4,

Ξ(x) = −K
2 − 4 + x+ x−1

2
+

Υ(x)

2x
(15)

The first and the second representation in (14) are equivalent (one can check this), but the first
one links the the branch of the square root of Υ to that of Ξ. Indeed, Υ(x) is the irrationality
of Ξ(x), thus the Riemann surface of Υ(x) is the same as of Ξ(x), i. e. this surface is R.

Topologically, R is a torus, and thus D is a torus as well. This fact has been heavily
commented and exploited in [1].

One of the main ideas of [1] is as follows. Application of the reflection principle to the
physical configuration shown in Fig. 1 leads to a branched discrete physical plane having three
sheets (it is referred to as S3 in [1]). To construct a Sommerfeld integral for the field, one needs
a three-sheet covering of the dispersion diagram D. There exist several three-sheet coverings
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I
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II
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III
III

IV
IV

Sheet 1 Sheet 2

Fig. 2: Riemann surface R

of D. One should select the particular covering that triples the “real wave” contour and leaves
unchanged the contour of integration for the Green’s function. These two selected contours
are homotopic to the loops σα and σβ, respectively, introduced below. Corresponding covering
denoted by D3 is built in [1] (see Fig. 13 there).

Here we specify the covering D3 over D by its projection onto the variable x. The result is
the covering R3 over R. R3 is a Riemann surface whose scheme is shown in Fig. 3. Note that
there is no function having such a Riemann surface is known a priori.

The complex structure of D remains valid on D3, thus D3 is a complex manifold immersed
in C2. Indeed, topologically D3 (or R3) is also a torus. The Riemann surface R3 is a 3-sheet
covering of R without branching, therefore any function meromorphic on R is also meromorphic
on R3. Sheets 1, 3, and 5 of R3 shown in Fig. 3 correspond to the physical sheet of R.

Introduce notations for the points of the compactified complex plane C̄ of x, and for the
Riemann surfaces R, R3. The points of R3 will be indicated by the ·̃ decoration, the points of
R will be indicated by the ·̂ decoration, and the points of C̄ will exist without decorations. For
example,

x̃ ∈ R3, x̂ ∈ R, x ∈ C̄.

There exist natural projections that constitute the definitions of coverings:

x̃
P3:1−→ x̂

P1:0−→ x.

The projections x̃→ x and x̂→ x are taking an affix of a point of a Riemann surface.
It is important to notice that we keep the following convention in the whole paper: every-

where x̂ is the projection of x̃, and x is a projection of x̂ and x̃. Indeed, this is valid for any
letter instead of x (it may be, say, a or b). This can be written as

·̂ ≡ P3:1(̃·), · ≡ P1:0(̂·) ≡ P1:0(P3:1(̃·)), (16)

where · stays for any letter, possibly with indexes, but without a decoration.
If function f(x̂) is single valued on R, there is no difficulty to define it on R3 as a single-

valued function
f(x̃) = f(P3:1(x̃)) = P (x̂).
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Fig. 3: Riemann surface R3 and integration contours on it

Conversely, if f(x̃) is single-valued on R3, the function f(x̂) is generally three-valued on R,
and f(x) is six-valued on C̄. Functions Υ(x̂) and Ξ(x̂) are single-valued; functions Υ(x) and
Ξ(x) are two-valued.

Let x̃1, . . . x̃4 be the points of R3 which are specified by the affixes xj, the values y = y(x̃)
and the sheets of R3 to which they belong:

x̃1 : (xin, yin), sheet 3, x̃2 : (xin, y
−1
in ), sheet 4,

x̃3 : (x−1
in , y

−1
in ), sheet 6, x̃4 : (x−1

in , yin), sheet 1.

As it is shown in [1], the point x̃1 corresponds to the incident plane wave, the points x̃2 and x̃3

correspond to the plane waves reflected by the horizontal and the vertical parts of the boundary,
and the point x̃4 corresponds to the mirror image of the reflected wave.

8



Let be
Yj = Υ(x̂j), j = 1, . . . , 4.

One can see that Y2 = −Y1, Y4 = −Y3.
Following [1], let us formulate the functional problem for the Sommerfeld transfor-

mant A(x̃) of the wave u(m,n):

1. A(x̃) is meromorphic on R3. As it follows from this condition, the branch points of A(x)
can be located only at η1,1, η1,2, η2,1, η2,2.

2. Function A(x̃) are regular as |x| → ∞ on each of the six sheets of R3.

3. Function A(x̃) has four poles on R3. The position of the poles and the residues at them
are listed in the following table:

x̃ x y(x) Sheet Residue
x̃1 xin yin 3 −(2πi)−1Y1

x̃2 xin y−1
in 4 −(2πi)−1Y1

x̃3 x−1
in y−1

in 6 −(2πi)−1Y3

x̃4 x−1
in yin 1 −(2πi)−1Y3

Indeed, once function A(x̃) is found, one can say that R3 is the Riemann surface of A(x).
Besides, being defined on R3, the function A can be pulled back to D3. So one can consider
function A as being a 3-valued function defined on the dispersion diagram of the discrete plane.

Function A, formally, has been found in [1] (see (70) there), however it has been expressed
in elliptic functions, and this solution is hardly practical. However, the formulation of the
problem is of algebraic nature, so one can expect a purely algebraic solution.

Once A(x̃) is found, the wave field can be built using the Sommerfeld integral introduced
in [1] and having the form

u(m,n) =

∫
Γj

wm,n(x̂,Ξ(x̂))A(x̃)
dx

Υ(x̂)
. (17)

The contours of integration Γj are drawn on R3. The indexing of the contours is kept similar
to that of [1]. For m ≤ 0 one should select contour Γ2:

Γ2 = J3 + J2 + J ′1 + J ′4. (18)

For n ≤ 0 one should select contour Γ3:

Γ3 = J2 + J ′1 + J ′4 + J ′3. (19)

The contours J3, J2, J ′1, J ′4, J ′3 are shown in Fig. 3. Contours J2 and J ′1 encircle the point x = 0
on corresponding sheets. Contours J3, J ′4, J ′3 encircle the inifinities on corresponding sheets
(i. e. they encircle all finite singularities).
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The domain with m ≤ 0 and n ≤ 0 can be described either by the contour Γ2 or contour
Γ3. It is demonstrated in [1] that these representations are equivalent.

In Section 6, to make a trustful presentation, we prove that the field (17) obeys all condition
imposed on the solution of the diffraction problem.

The aim of the current paper is to construct the function A(x̃) obeying the properties 1–3
listed above.

3 Mathematical basics of building the Sommerfeld trans-

formant A(x)

3.1 Symmetries of the Riemann surface

Let x̃(j), j ∈ {1, . . . , 6} denote a point of R3 having affix x and lying on the sheet number j
(the numbering of the sheets is kept as in Fig. 3).

Consider the cyclical change of sheets

1→ 3→ 5→ 1, 2→ 4→ 6→ 2. (20)

This change generates a symmetry (referred to as Λ) of R3, Namely,

Λ(x̃(j)) = x̃(j′), (21)

where the point x̃(j′) has the same affix as x̃(j), and the sheet j′ is obtained from j by applying
the function (20).

One can see that if a function f(x̃) is meromorphic on R3 then the same is valid for f(Λ(x̃)).
Moreover, Λ does not change the value of Υ(x̃):

Υ(Λ(x̃)) = Υ(x̃). (22)

Another symmetry (referred to as Π) is as follows:

Π(x̃(j)) = x̃(7−j) (23)

(again, the affix remains the same). One can see that if a function f(x̃) is meromorphic on R3

then the same is valid for f(Π(x)). A direct check shows that

Υ(Π(x̃)) = −Υ(x̃). (24)

As it is shown in Section 6, the symmetry Π of the Riemann surface R3 corresponds to the
geometrical symmetry n→ −n of the initial physical system. The symmetry Π can be elevated
to D3. It has form

x→ x, y → y−1.

10



The symmetry Λ also has a geometrical interpretation. It corresponds to the change of the
sheets of the branched discrete physical plane. Obviously,

Π(Π(x̃)) = x̃, Λ(Λ(Λ(x̃))) = x̃.

The symmetries Π and Λ can be used to simplify the formulation of the functional problem
for A(x̃). One can see that A(x̃) can be chosen symmetrical:

A(Π(x̃)) = A(x̃). (25)

since the combination (A(x̃) +A(Π(x̃))/2 obeys all conditions imposed on A. Besides, one can
apply a symmetrization with respect to Λ (i. e. a discrete Fourier transform of dimension 3 for
each point x̂), i. e. represent A as the sum of three components

A(x̃) = A0(x̃) + A1(x̃) + A2(x̃), (26)

such that

A0(Λ(x̃)) = A0(x̃), A1(Λ(x̃)) = $A1(x̃), A2(Λ(x̃)) = $−1A2(x̃), (27)

where
$ ≡ e2πi/3. (28)

The components of A can be found by the transform

A0(x̃) =
1

3
(A(x̃) + A(Λ(x̃)) + A(Λ(Λ(x̃)))) , (29)

A1(x̃) =
1

3

(
A(x̃) +$2A(Λ(x̃)) +$A(Λ(Λ(x̃)))

)
, (30)

A2(x̃) =
1

3

(
A(x̃) +$A(Λ(x̃)) +$2A(Λ(Λ(x̃)))

)
. (31)

Each of the functions A0, A1, A2 is meromorphic on R3, is regular at the infinite points, and
possesses 12 poles at the points with affixes xin and x−1

in . The residues of the poles for each of
the functions is given by the following table (common for all three functions):

x̃ x Sheet Residue
x̃1 xin 3 −(6πi)−1Y1

x̃2 xin 4 −(6πi)−1Y1

x̃3 x−1
in 6 −(6πi)−1Y3

x̃4 x−1
in 1 −(6πi)−1Y3

11



Note that the table describes only four poles of twelve. The residues at the other poles of each
of the functions can be obtained from (27). Below we solve the functional problems for A0, A1,
A2 rather than that of for A.

Remark
There is another symmetry Π′ of the Riemann surface R3. This symmetry will be used once

in Section 6. The choice of x as the independent variable is not unique. In a very similar way,
one could use y as an independent variable. In this case, x = Ξ(y) is a double-valued function
having a Riemann surface R′. Indeed, R′ is similar to R. Moreover, R′ is a projection of the
same manifold D onto another variable.

One can define the Riemann surface R′3 as a projection of D3 onto y. R′3 has the same
structure as R3, but the independent variable is y.

There exists a symmetry of R′3 constructed the same way as Π. Denote it by Π′. This
symmetry has form

x→ x−1, y → y

and corresponds to the symmetry m→ −m of the physical plane. One can demonstrate that

A(Π′(x̃)) = A(x̃).

3.2 Functional fields necessary for solving the diffraction problem

The set of functions f(x) meromorphic on C̄ is a field ( [3], chapter 11). (Here “meromorphic”
means also that the function has a finite number of poles/zeros.) This field consists of all
rational functions of x. Denote this field by K0.

Consider the field of functions meromorphic on R, i. e. on the Riemann surface of the
function Ξ(x) or of Υ(x). Denote this field by K1. Note that we specify the field by indicating
a Riemann surface on which its elements are meromorphic. One can prove a nontrivial theorem
that all elements of K1 are rational functions of x and Υ(x), so K1 is an extension of K0 by
a single element Υ(x). K1 is an algebraic extension of K0 since the function Υ(x) obeys an
algebraic equation with coefficients belonging to K0:

Υ2(x)− (x− η1,1)(x− η1,2)(x− η2,1)(x− η2,2) = 0. (32)

The fields of functions meromorphic on certain Riemann surfaces are studied in more details,
for example, in the monograph [4].

One can prove (see [3], chapter 23) that such an algebraic extension has a basis , i. e. a set
Ω1:0 = [ω1, . . . , ωj] of elements of K1 such that any element z of K1 can be uniquely represented
as

z(x̂) = q1(x)ω1(x̂) + · · ·+ qj(x)ωj(x̂), (33)

where qj ∈ K0, i. e. they are rational functions of x. A basis of the extension K1 over K0 can
be easily found:

Ω1:0 = [1,Υ(x̂)]. (34)

12



In other words, the following statement is valid: any function meromorphic on R can be
represented uniquely in the form

q(x̂) = z1(x) + z2(x)Υ(x̂), z1, z2 ∈ K0. (35)

The number of elements of the basis is referred to as the degree of extension of K1 over K0.
This degree is equal to 2.

According to the functional problem for the Sommerfed’s transformant A(x̃), this transfor-
mant should belong to the set of functions meromorphic on R3. This set is also a field. Denote
it by K3. As it can be proven (see the next subsection), K3 is an algebraic extension of K1,
and the degree of the extension is equal to 3. Since K0 ⊂ K3, one of the elements of the basis
can be taken equal to 1. Thus, we are looking for three-valued functions F1(x̂), F2(x̂) (or, the
same, six-valued functions F1(x) and F2(x)) such that

Ω3:1 = [1, F1, F2] (36)

is the basis of K3 over K1. The Sommerfeld transformant of the field A(x̃) should be uniquely
represented as

A(x̃) = q0(x̂) + q1(x̂)F1(x̃) + q2(x̂)F2(x̃), (37)

where qj(x̂) belong to K1 being rational functions of x and Υ(x̂).
Finding the functions F1(x̃) and F2(x̃) is an unusual problem since no function whose

Riemann surface is R3 is given a priori. Finding the coefficients of qj(x) is, conversely, an
almost trivial task when the basis (36) is built. They are constructed by using the knowledge
of poles and residues of the Sommerfeld transformant, i. e. by using the condition 3 imposed
on A.

Note that the concept of a pole / zero at some point on the complex manifolds R or on
R3 differs from that on C if the affix of the point is equal to any of the branch points ηj,l.
Consider a function f(x̂) ∈ K1 such that f(ηj,l) = 0 or f(ηj,l) =∞. To find the multiplicity of
the zero / pole at ηj,l one should introduce the local variable τ in the neighborhood of ηj,l in
such a way that the neighborhood of ηj,l on R is described by a small circle in the τ -plane in
a topologically trivial way, i. e. such that x̂(τ) is a bijection. One can use for example

τ =
√
x− ηj,l

as such a variable (another choice is to take τ = Υ(x̂)). Then, one should express locally f(x̂)
in terms of τ , i. e. build a function

θ(τ) = f(x̂(τ)).

The multiplicity of zero / pole of f is, by definition, the multiplicity of corresponding zero /
pole of θ(τ).

For example, the function Υ(x̂) has simple zeros on R at each of the points ηj,l, although it
may seem surprising. Moreover, the function

1

Υ2(x̂)
=

1

(x− η1,1)(x− η2,1)(x− η1,2)(x− η2,2)

13



has double poles at each ηj,l on R, while the same function, but considered on C, has simple
poles at those points.

The poles / zeros on R3 are defined in the same way as for R.
For all three surfaces C, R, and R3, the poles / zeros at the infinity can be studied by

introducing the local variable τ = 1/x.
The plan for building the function A(x̃) is is as follows. First, we construct the functions

F1(x̃), F2(x̃) and form the basis Ω3:1 (see (36)). Second, we find the coefficients q0(x̂), q1(x̂),
q2(x̂) of (37).

Remark
In [1] we studied functions meromorphic on a two-sheets covering of R, namely on R2. The

functions meromorpic on this surface form a field K2. This field can be considered as as an
extension over K1 of degree 2. The basis of this extension is

Ω2:1 = [1, Q(x)], Q(x) =
√

(x− η1,1)(x− η1,2). (38)

The field K2 can be also considered as an extension over K0. In this case, the basis consist of
four elements listed in [1], (50), (51):

Ω2:0 = [1,Υ(x), Q(x), Q(x)Υ(x)]. (39)

In this case, the coefficients should belong to K0.

3.3 The structure of extension K3 over K1

According to the standard argument of Galois theory [4], the symmetries of R3 are linked with
the structure of the field K3. Let us sketch out the proof that the degree of the the extension
K3 over K1 is equal to 3 and that this extension is algebraic.

Let a function g(x̃) ∈ K3 have the property g(Λ(x̃)) = g(x̃). Then this function is single-
valued on R1, and, thus, g ∈ K1.

Consider any function f(x̂) meromorphic on R3 but not meromorphic on R. This means
that f ∈ K3 is not single-valued on R. Consider the combinations similar to (29), (30), (31):

f0(x̃) =
1

3
(f(x̂) + f(Λ(x̂)) + f(Λ(Λ(x̂)))) , (40)

f1(x̃) =
1

3

(
f(x̂) +$−1f(Λ(x̂)) +$f(Λ(Λ(x̂)))

)
, (41)

f2(x̃) =
1

3

(
f(x̂) +$f(Λ(x̂)) +$−1f(Λ(Λ(x̂)))

)
, (42)

Obviously, if f0, f1, f2 are known, the function f can be reconstructed by

f(x̃) = f0(x̃) + f1(x̃) + f2(x̃). (43)
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Note that

f0(Λ(x̃)) = f0(x̃), f1(Λ(x̃)) = $f1(x̃), f2(Λ(x̃)) = $−1f2(x̃). (44)

One can conclude from (44) that the functions f0, (f1)3, (f2)3 are single-valued on R, and thus
belong to K1, i. e. they are represented by (35). Obviously, functions f1 and f2 obey cubic
equations with coefficients from K1.

Take the basis
Ω3:1 = [1, f1, f2]. (45)

The function f is represented through this basis by using the coefficients f0, 1, 1. Let us show
that any other function f ′(x̃) ∈ K3 can be represented as (37) using the basis (45). Perform the
same procedure as above. Get the functions f ′0, f ′1, f ′2 having the properties (44). Function f ′0
belongs to K1 and can be used as the first coefficient of the expansion. Consider the functions
f ′j/fj(x), j = 1, 2. They are meromorphic and single-valued on R, thus they belong to K1.
These functions can be used as corresponding coefficients.

4 Finding the basis functions F1, F2

4.1 Abelian integral of the first kind on D1

As a tool, we use the Abelian integral of the first kind on R. The detailed description of this
subject can be found, e.g., in [3], chapter 12. Since R is a torus, there is one Abelian integral
regular everywhere (up to a constant factor and a constant additive term):

χ(x̂) =

x̂∫
η2,1

dx′

Υ(x̂′)
. (46)

The integral is assumed to be taken along some contour γ drawn on R. The contour starts at
η2,1 and ends at some point x̂ ∈ R. Indeed, the starting point is arbitrary, and the value η2,1 is
chosen for convenience. The value of the integral depends not only on the point x̂, but also on
the homotopic class of the contour γ.

Consider the contours σα and σβ on R (see Fig. 4). These contours have a common point η2,1.
Being cut along the contours σα and σβ, the surface R becomes (topologically) a parallelogram.

Contours σα and σβ play an important role in [1] and here. The contour σα is homotopic
to the “real waves” contour on R. This contour is a set of points x̂ such that an expression
xmΞn(x̂) can be treated as a usual plane wave on the discrete plane. The real waves can be
easily defined if Im[K] = 0: they possess (x, y = Ξ(x̂)) with |x| = |y| = 1 (such waves do not
decay in any direction). Thus, the real waves line is composed of two copies of an arc of the
unit circle connecting η2,1 and η1,1. It is shown in Fig. 5 by a dashed line.

If Im[K] 6= 0, the definition of the real wave may be ambiguous since all waves possess decay
/ growth in some directions. We fix “real waves” as the connected set of points (x, y) ∈ D
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Fig. 5: “Real waves” line on R for real K (dashed line)

obeying the property

Im

[
y − y−1

x− x−1

]
= 0 (47)

and passing through the branch points η2,1 and η1,1. This set tends to the line shown in Fig. 5
as Im[K]→ 0. One can show, e. g. numerically or asymptotically, that the set of all such “real
waves” is a closed contour on R homotopical to σα.

The contour σβ is homotopic to the unit circle on the physical sheet of R. Being equipped
with an orientation, it becomes the integral path for the Green’s function of a discrete plane
(see [1]).

Comparing Fig. 4 with Fig. 3 one can conclude that the covering R3 of R is such that the
preimage of σβ is a set of three copies of σβ, while the preimage of σα is a three-sheet covering
of σα. Note that a bypass along the contour σα, being elevated onto R3, changes the sheets of
R3 cyclically according to the transformation Λ introduced above.

The integrals of the form (46) taken along the closed contours σα and σβ on R are the
periods of χ(x̂) referred to as Tα and Tβ:

Tα =

∫
σα

dx

Υ(x̂)
, Tβ =

∫
σβ

dx

Υ(x̂)
. (48)
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The mapping x̂→ χ maps the surface R cut along the contours σα and σβ onto an elemen-
tary parallelogram in the complex χ-plane. This parallelogram is shown in Fig. 6, left.

Re[ ]c

Im[ ]c

Ta

Tb

a

b

2p

2p

a b

c ( )P
-1

Fig. 6: Elementary parallelogram in the χ-plane and coordinates (α, β) on a torus

Consider an inverse mapping ψ : χ → x̂. As it is known, this mapping has the following
properties:

ψ(χ+ Tα) = ψ(χ+ Tβ) = ψ(χ), (49)

i. e. it is bi-periodic. This property can be used for introduction of coordinates α and β on R,
revealing the structure of R as the structure of a torus. Namely, the coordinates α and β can
be introduced as linear combinations

α = c1,1Re[χ] + c1,2Im[χ], β = c2,1Re[χ] + c2,2Im[χ], (50)

with the coefficients cj,k found from the following equations

c1,1Re[Tα] + c1,2Im[Tα] = 2π, c1,1Re[Tβ] + c1,2Im[Tβ] = 0, (51)

c2,1Re[Tα] + c2,2Im[Tα] = 0, c2,1Re[Tβ] + c2,2Im[Tβ] = 2π. (52)

The coordinates (α, β) on R are shown in Fig. 6, right. The surface R is displayed schemat-
ically as a torus, i. e. R is deformed in an appropriate way. The resulting surface is compact,
thus, the infinities are represented as two points on it. The coordinate lines of α and β on the
initial representation of R are close2 to those shown in Fig. 4 of [1].

According to the schemes in Fig. 2 and Fig. 3, the torus R corresponds to the parallelogram

R : 0 ≤ α < 2π, 0 ≤ β < 2π,

while the torus R3 corresponds to the parallelogram

R3 : 0 ≤ α < 6π, 0 ≤ β < 2π.

2 Coordinates α and β are close to the coordinates α and β defined in [1], but not exactly the same. Note
that the requirement that β = π on the “real waves” line is not fulfilled in the new formulation.
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Each point (α, β) ∈ R is the image of three points (α, β), (α + 2π, β), (α + 4π, β) of the cover-
ing R3.

The symmetries Λ and Π have the following representations in the coordinates (α, β):

Λ : α→ α + 2π, β → β,

Π : α→ 4π − α, β → −β.

4.2 Elementary meromorphic functions on the torus R

We are starting with an auxiliary problem. For any 4 points â1, â2, b̂1, b̂2 on R find out whether
there exists a function M(x̂) ∈ K1 having simple poles b̂1, b̂2 only, and simple zeros â1, â2 only,
and, indeed, build such a function if it exists.

A criterion of existence of such a function M is known. This criterion is the Abel’s theorem
(see [5], chapter 10) : On R, there should exist a contour γ1 going from â1 to b̂1 and a contour
γ2 going from â2 to b̂2 such that ∫

γ1

dx

Υ(x̂)
+

∫
γ2

dx

Υ(x̂)
= 0. (53)

The criterion has a transcendent (non-algebraic) character. In this subsection we are going to
derive an algebraic version of it.

A general case
Assume that a1, a2, b1, b2 are all distinct values not equal to infinity or to ηj,l. This is the

general case. Some important particular cases will be considered below.
Let us try to construct function M(x̂) explicitly. First, construct function M(x̂) (possibly

depending on parameters) having poles at b̂1 and b̂2. An obvious Ansatz (up to a common
constant factor) is as follows:

M(x̂) =
Υ(x̂)

(x− b1)(x− b2)
+

g1

x− b1

+
g2

x− b2

+ c. (54)

for some complex values g1, g2, c. As above, x, a1, a2, b1, b2 are the affixes of the points
x̂, â1, â2, b̂1, b̂2, respectively.

For arbitrary g1, g2, this function has poles at four points of R: at P−1
1:0 (b1) and P−1

1:0 (b2).
Choose the values of g1, g2 such that they suppress the poles that have affixes b1, b2, but that
are not b̂1 and b̂2. One can see that the appropriate function is as follows:

M(x̂) =
Υ(x̂)

(x− b1)(x− b2)
+

Υ(b̂1)

(x− b1)(b1 − b2)
+

Υ(b̂2)

(x− b2)(b2 − b1)
+ c. (55)

Now let us fix the zeros. Choose parameter c in such a way that M(â1) = 0:

c = −

[
Υ(â1)

(a1 − b1)(a1 − b2)
+

Υ(b̂1)

(a1 − b1)(b1 − b2)
+

Υ(b̂2)

(a1 − b2)(b2 − b1)

]
. (56)
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Finally, the condition guaranteeing that â2 is also a zero is the equation

Υ(â2)

(a2 − b1)(a2 − b2)
+

Υ(b̂1)

(a2 − b1)(b1 − b2)
+

Υ(b̂2)

(a2 − b2)(b2 − b1)
=

Υ(â1)

(a1 − b1)(a1 − b2)
+

Υ(b̂1)

(a1 − b1)(b1 − b2)
+

Υ(b̂2)

(a1 − b2)(b2 − b1)
. (57)

This is an equation linking â1, â2, b̂1, b̂2 that guarantees existence of a function M(x̂) meromor-
phic on R, having simple zeros at â1, â2 and simple poles at b̂1, b̂2. Thus, (57) is an algebraic
analog of the analytic equation (53). The function M itself is given by (55), (56).

Another (more symmetrical) form of (57) is

(b1 − b2)[(a1 − b1)(a1 − b2) Υ(â2)− (a2 − b1)(a2 − b2) Υ(â1)] = (58)

(a1 − a2)[(a1 − b1)(a2 − b1) Υ(b̂2)− (a1 − b2)(a2 − b2) Υ(b̂1)].

A special case: poles b̂1 and b̂2 coincide
The coincidence of b̂1 and b̂2 means that b̂ = b̂1 = b̂2 is a pole of order 2. The Ansatz for M

that should replace (55) is as follows:

M(x̂) =
Υ(x̂)

(x− b)2
+

Υ(b̂)

(x− b)2
+

Υ̇(b̂)

x− b
+ c, (59)

where

Υ̇(x̂) ≡ dΥ(x̂)

dx
. (60)

The constant c is chosen in such a way that M(â1) = 0:

c = −

[
Υ(â1)

(a1 − b)2
+

Υ(b̂)

(a1 − b)2
+

Υ̇(b̂)

a1 − b

]
(61)

Finally, this function is zero at â1 if

Υ(â1)

(a1 − b)2
+

Υ(b̂)

(a1 − b)2
+

Υ̇(b̂)

a1 − b
=

Υ(â2)

(a2 − b)2
+

Υ(b̂)

(a2 − b)2
+

Υ̇(b̂)

a2 − b
. (62)

Thus, (62) is the condition of existence of a meromorphic function on R having zeros at â1 and
â2, and a double pole at b̂. The same condition should be valid for existence of a function with
a double zero at b̂ and simple poles at â1 and â2.

A special case: poles b̂1 and b̂2 coincide with a branch point ηj,l
If â1 and â2 are different points of R having the same (arbitrary) affix a1 = a2 = a, then no

condition is needed. One can draw the contours γ1 and γ2 on different sheets of R such that
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P1:0(γ1) = P1:0(γ2), and (53) will be valid automatically. The function M(x̂) is then as follows:

M(x̂) =
x− a
x− ηj,l

. (63)

Note that ηj,l is a double pole of M on R according to a comment at the end of Section 3.
A detailed study based on the bijection between the elementary parallelogram in the χ-plane

and R shows that if â1 and â2 have different affixes, a corresponding function M cannot exist.

A special case: a double pole at b̂1, a simple zero at b̂2, another simple zero at ηj,l,

affixes of b̂1 and b̂2 coincide: b1 = b2 = b
A function with a double pole at b̂1 and regular at b̂2 is as follows:

M(x̂) =
Υ(x̂)

(x− b)2
+

Υ(b̂1)

(x− b)2
+

Υ̇(b̂1)

x− b
+ c. (64)

Function M(x̂) has a zero at b̂2 if

c =
Ϋ(b̂1)

2
, (65)

where

Ϋ(x̂) ≡ d2Υ(x̂)

dx2
.

Since Υ(ηj,l) = 0, the condition M(ηj,l) = 0 reads as

Υ(b̂1)

(ηj,l − b)2
+

Υ̇(b̂1)

ηj,l − b
+

Ϋ(b̂1)

2
= 0. (66)

Indeed, equations (62) and (66) are also algebraic versions of (53) in the corresponding
special cases.

4.3 Building the elements F1 and F2 of the basis Ω3:1

In this subsection we describe the main result of the paper, namely, we build functions F1

and F2.
The difficulty of building the basis Ω3:1 is as follows. The reasoning made above shows that

constructing of, say, F1(x̃) should include taking a cubic radical of a function belonging to K1.
Let this function be G(x̂), i. e. let be

F1(x̃) = G1/3(x̂). (67)

Since function F1 is not allowed to have branch points on R, all poles and zeros of G(x̂) on R
should have order 3ν, ν ∈ Z. At the same time, if function G(x̂) is a cube of another function
from K1, say

G(x̂) = g3(x̂),
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then the values of G1/3(x̂) are just g(x̂), $g(x̂), $−1g(x̂). All of these functions belong to
K1, and thus, cannot contribute to a basis Ω3:1. Therefore, it is necessary to find a function
G(x̂) ∈ K1, having poles and zeros of order 3ν, but that is not a cube of a function from K1.

Remark.
This can be illustrated by the example solved in [1], where a basis Ω2:1 has been constructed.

A non-trivial element of this basis is Q(x) defined by (38). One can see that

Q(x) = G
1/2
2 (x),

where
G2(x) = (x− η1,1)(x− η1,2),

The function G2 has double zeros at x = η1,1 and x = η1,2 (they are double in the sense of local
variable τ on the complex manifold R, sew above), and two double poles at the infinities of the
two sheets of R. However, G2(x) is not a square of any function meromorphic on R.

To get F1(x̃) having the Riemann surface R3, one should impose two additional restrictions
on G(x̂). Namely, the variation of the argument of G along σβ should be equal to 6πν, ν ∈ Z,
while its variation along σα should be 2π(3ν + 1) or 2π(3ν + 2).

Let us describe the procedure of constructing the function G(x̂). First, we describe it in
terms of the Abel’s criterion. Consider the period Tβ defined by (48). Take an arbitrary point

â ∈ R. Find the points b̂, ĉ on R such that∫
γ1

dx

Υ(x)
=

∫
γ2

dx

Υ(x)
=

∫
γ3

dx

Υ(x)
=
Tβ
3
. (68)

The contours γ1,2,3 cyclically connecting the points â, b̂, ĉ are shown in Fig. 7, right. The
Riemann surface R is shown schematically as a torus in this figure, i. e. it is deformed homo-
topically to emphasize its topology. The contours σα and σβ introduced by Fig. 4 are shown in
Fig. 7, left. We take the contours γ1, γ2, γ3 such that their concatenation is homotopic to σβ.

To find such points, b̂, ĉ, one can build explicitly the coordinate line α = const starting
from â, i. e. the line along which the integral

x̂∫
â

dx′

Υ(x̂′)

changes linearly from 0 to Tβ. Then one should split this segment into 3 equal parts in the
χ-plane. Contours γ1, γ2, γ3 can be taken as corresponding straight segments in the χ-plane
subject to the mapping ψ.

Construct two functions M1(x̂) and M2(x̂) such that:

• M1 has a double pole at â and simple zeros at b̂ and ĉ;

• M2 has a double pole at b̂ and simple zeros at â and ĉ.
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Both functions do exist according to the Abel’s criterion.
Function G is constructed as

G(x̂) =
M1(x̂)

M2(x̂)
. (69)

By construction, G(x̂) has a triple pole at â and a triple zero at b̂. There are no other poles or
zeros of G.

Function F1 defined by (67) is three-valued on R1 and has no branch points. Moreover, the
F1 cannot be a meromorphic function on R1, since there is no function meromorphic on R1

and having a single simple pole / zero on it.
Let us find the change of the argument of the function G(x̂) along the contour σβ. Compute

the phase change on the contour σ′β shown in Fig. 7, right, not passing through the points â,

b̂, ĉ, and taken parallel to the β-axis in the (α, β)-plane. What is important, this contour goes
not cross the contours γ1, γ2, γ3 since they are taken also parallel to the β-axis by construction.

Consider a family of functions M(ẑ1; x̂) (x̂ is considered as an argument and ẑ1 is a param-
eter, both belong to D1). The functions are as follows. Construct points z2 and z3 in such a
way that

ẑ2∫
ẑ1

dx

Υ(x)
=

ẑ3∫
ẑ2

dx

Υ(x)
=

ẑ1∫
ẑ3

dx

Υ(x)
=
Tβ
3
. (70)

and demand that M(ẑ1; x̂) has a double pole at ẑ1 and simple zeros in ẑ2 and ẑ3. Normalize M
in any invariant way (say, by the residue of M−1 at ẑ2). By construction, the family M(ẑ1; x̂)
is continuous with respect to ẑ1. Moreover,

M1(x̂) = M(â; x̂), M2(x̂) = M(b̂; x̂).

Carry ẑ1 from â to b̂ continuously along γ1. The argument variation of M(ẑ; x̂) is continuous
during this change (since the points ẑ1, ẑ2, ẑ3 do not hit the contour σ′β), thus this argument
variation remains constant. Therefore the phase change of G on σ′β is zero.

Homotopic deformation of σ′β into some σ′′β may lead to the crossing of a triple zero or
a triple pole of G, thus the argument variation of G along σ′′β is 3πν for some ν ∈ Z. The
parameter ν depends on the particular choice of σβ.
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A similar but slightly more complicated consideration can be applied to computation of the
argument variation of G along σα. Consider the crossing of the contours σα and σβ. The pair
of the coordinate vectors (eα, eβ), being considered on the local complex coordinate plane τ
is oriented as the pair (Im[τ ],Re[τ ]), and this fact is a topological invariant, i. e. it remains
unchanged with any homotopic deformation of σα and σβ leaving their intersection transversal.
One can show that in this case the argument variation of G along σα is 2π(3ν+ 1), ν ∈ Z. The
parameter ν depends on the particular choice of σα.

Fix the point â as η2,1 for simplicity. Then the points b̂ and ĉ should have the same affix,
still unknown (see the second special case in the previous subsection). Denote corresponding
point b̂ by b̂ and its affix by b. This point plays an important role in what follows. Denote the
point ĉ having the same affix b, but located on another sheet of R, by ĉ.

Function M1 is given by the formula (63):

M1(x̂) =
x− b

x− η2,1

. (71)

Function M2(x̂) is constructed in (64), (65):

M2(x̂) =
Υ(x̂)

(x− b)2
+

Υ(b̂)

(x− b)2
+

Υ̇(b̂)

x− b
+

Ϋ(b̂)

2
(72)

provided that equation (66) is valid for b̂1 = b̂ and ηj,l = η2,1. We discuss finding of b̂ in details
in the next subsection.

Thus, when the point b̂ is found, the function F1(x̃) can be written as:

F1(x̃) =

(
Υ(x̂)

(x− b)2
+

Υ(b̂)

(x− b)2
+

Υ̇(b̂)

x− b
+

Ϋ(b̂)

2

)−1/3(
x− b

x− η2,1

)1/3

. (73)

Note that the function F1 is defined by (73) ambiguously. This ambiguity follows from that
of the cubic radical, i. e. the result can be multiplied by $ or $−1. This ambiguity is partly
addressed below.

Let us list the properties of the function F1(x̃):

• It has Riemann surface R3.

• It has simple poles at three points of R3 having affixes η2,1. There are no other poles
(including infinities).

• It has simple zeros at three points of R3 that are P−1
3:1 (b̂). There are no other zeros

(including infinities).

• As it follows from the argument change of G along σα,

F1(Λ(x̃)) = $F1(x̃). (74)
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Let us build the function F2. Note that

Υ(ĉ) = −Υ(b̂), Υ̇(ĉ) = −Υ̇(b̂), Ϋ(ĉ) = −Ϋ(b̂).

Construct a function M3(x̂) having a double pole at ĉ and simple zeros at η2,1 and at b̂. Then
take

F2(x̃) = (M1(x̂)/M3(x̂))1/3 . (75)

Similarly to (73),

F2(x̃) =

(
− Υ(x̂)

(x− b)2
+

Υ(b̂)

(x− b)2
+

Υ̇(b̂)

x− b
+

Ϋ(b̂)

2

)−1/3(
x− b

x− η2,1

)1/3

. (76)

The properties of F2(x̃) are as follows:

• It has Riemann surface R3.

• It has simple poles at three points of R3 having affixes η2,1. There are no other poles
(including the infinities).

• It has simple zeros at three points of R3 that are P−1
3:1 (ĉ). The affixes of these points are

equal to b. There are no other zeros (including the infinities).

• Similarly to F1,
F2(Λ(x̃)) = $−1F2(x̃). (77)

This property of F2 and the similar property of F1 guarantee that the elements of the
basis (36) are linearly independent.

Besides, there are some properties linking F1 and F2.
The symmetry Π converts F1 into F2:

F1(Π(x̃)) = δF2(x̃), δ ∈ {1, $,$−1}. (78)

To prove this, use (24) and note that

Υ(x̂)

(x− b)2
+

Υ(b̂)

(x− b)2
+

Υ̇(b̂)

x− b
+

Ϋ(b̂)

2

Π−→ − Υ(x̂)

(x− b)2
+

Υ(b̂)

(x− b)2
+

Υ̇(b̂)

x− b
+

Ϋ(b̂)

2

To remove some of the ambiguity of determining F1 and F2, fix the value δ = 1, thus fixing

F1(Π(x̃)) = F2(x̃). (79)

The product of functions F1 and F2 is rational. Namely, it belongs to K1 since

F1(Λ(x̃))F2(Λ(x̃)) = F1(x̃)F2(x̃),
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and, then, it belongs to K0 since

F1(Π(x̃))F2(Π(x̃)) = F1(x̃)F2(x̃).

One can easily see that F1(x̃)F2(x̃) should have a simple pole at x = η2,1 and a simple zero at
x = b. Studying the function at infinity, one can find that

F1(x̃)F2(x̃) =
1

((Ϋ(b̂))2/4− 1)1/3

x− b

x− η2,1

. (80)

Indeed, some ambiguity is still left in the choice of the branch of the cubic root. This ambiguity,
however, does not affect the final formulae.

4.4 Algebraic equations for finding the affix b

Here our aim is to replace the transcendent equation (68) by an algebraic equation. As before,
we consider a special case when â = η2,1.

Let us use the condition (65) of existence of a function M2 having a double pole at b̂ and
simple zeros η2,1 and ĉ, provided that b̂ and ĉ have the same affix b:

Υ(b̂)

(η2,1 − b)2
+

Υ̇(b̂)

η2,1 − b
+

Ϋ(b̂)

2
= 0. (81)

Note that ratios Υ̇(b̂)/Υ(b̂) and Ÿ (b̂)/Y (b̂) are rational functions of b. Thus, (81) is an
algebraic equation for b. After some algebra, equation (81) becomes reduced to the fourth
order equation:

h0 + h1b + h2b
2 + h3b

3 + h4b
4 = 0, (82)

where
h0 = η2,1 + 3η1,2 − η2

2,1η1,2 + η2,1η
2
1,2,

h1 = −4(1 + 2η2,1η1,2 + η2
1,2),

h2 = 6(η2,1 + η1,2 + η2
2,1η1,2 + η2,1η

2
1,2),

h3 = −4η2,1(η2,1 + 2η1,2 + η2,1η
2
1,2),

h4 = η2,1 − η1,2 + 3η2
2,1η1,2 + η2,1η

2
1,2.

The algebraic condition (82) is slightly weaker than the transcendent condition (70). Namely,
equation (82) is fulfilled if there exist any contours γ1, γ2, γ3 cyclically connecting the points
η2,1 and two points on R having affix b, such that∫

γ1

dx

Υ(x̂)
=

∫
γ2

dx

Υ(x̂)
=

∫
γ3

dx

Υ(x̂)
. (83)

The concatenation of the contours γ1 + γ2 + γ3 is not necessarily homotopic to σβ, thus, each
of the integrals is not necessarily equal to Tβ/3.
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A detailed study shows that the equation (82) has four roots: b1, b2, b3, b4, such that

b1∫
η2,1

dx

Υ(x̂)
= ±Tβ

3
+ µTβ + νTα, (84)

b2∫
η2,1

dx

Υ(x̂)
= ±Tα

3
+ µTβ + νTα, (85)

b3∫
η2,1

dx

Υ(x̂)
= ±Tα + Tβ

3
+ µTβ + νTα, (86)

b4∫
η2,1

dx

Υ(x̂)
= ±Tα − Tβ

3
+ µTβ + νTα. (87)

The integrals are defined up to the sign and up to the integers µ, ν, which depend on the
particular choice of the integration contour. One can see that only b1 fits the condition (70),
i. e. b = b1.

For practical computations, we propose two following algorithms for computing the value b
with a high accuracy.

Algorithm 1:

1. Compute Tβ by numerical integration.

2. Find b approximately from the condition

b∫
η2,1

dx

Υ(x)
=
Tβ
3
. (88)

For this, solve numerically the ordinary differential equation

dx

dχ
= Υ(x) (89)

on the segment χ ∈ [0, Tβ/3]. Take x(0) = η2,1. The value x(Tβ/3) is the approximation
for b. Denote it by b′.

3. Using b′ as a starting approximation, solve (82) by Newton’s method. As a result, after
several iterations, get a refined value of b.
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Since the first two steps are necessary only to obtain the starting approximation for Newton’s
method used on the third step, very coarse meshes can be used for numerical integration and
for solving the ordinary differential equation. The Newton’s method is very cheap, and, several
iterations provide the value of b having the machine accuracy.

Another algorithm can be developed, taking the algebraic equation (82) as the starting
point. The algorithm is as follows.

Algorithm 2:

1. Solve equation (82) and find four values: b1, b2, b3, b4.

2. For each value bj construct the function G(x̂) by (69) and check the variation of Arg[G]
along the contour σβ. There should exist only one value of b (among the four values
found on step 1), for which the variation of Arg[G] is equal to zero. This value of b is
what we are looking for.

Indeed, Algorithm 1 and Algorithm 2 should yield the same result.

Remark
To solve the ordinary differential equation (89) near the branch point η2,1 one can use the

local variable on R, namely,
τ = τ(x) =

√
x− η2,1.

One can rewrite (89) as an ODE for τ(χ):

dτ

dχ
=

1

2

√
(τ 2 + η2,1 − η1,1)(τ 2 + η2,1 − η1,2)(τ 2 + η2,1 − η2,2)

(
=

Υ

2τ

)
. (90)

Thus, one can solve (90) in some small neighborhood of η2,1, and then solve (89).

5 Constructing the Sommerfeld transformant A(x)

Here we assume that xin and x−1
in are not equal to b or to ηj,l.

Let us build the Sommerfeld transformant A(x̃) obeying the functional problem formulated
in Subsection 2.1. For this, we use the representation (37) expressing A through the basis Ω3:1.
The functions F1 and F2 are built above.

The coefficients qj(x̂) of the representation (37) belong to K1. Thus,

qj(x̂) = q′j(x) + q′′j (x)Υ(x̂), j = 0, 1, 2, (91)

where q′j(x) and q′′j (x) belong to K0, i. e. they are rational functions. The aim of this section
is to find the functions q′j(x) and q′′j (x).

According to the representation (26) with properties (27) and (74), (77),

A0(x̃) = q′0(x) + q′′0(x)Υ(x̂), (92)

27



A1(x̃) = (q′1(x) + q′′1(x)Υ(x̂))F1(x̃), (93)

A2(x̃) = (q′2(x) + q′′2(x)Υ(x̂))F2(x̃). (94)

To build the functions q′j(x) and q′′j (x), one should study poles and zeros of these functions.
Let us formulate a series of statements.

1. Let x0 be not equal to ∞, ηj,l, b, xin, or x−1
in . Then all functions q′j(x), q′′j (x), j = 0, 1, 2

are regular at x0.

The proof is as follows. Consider some particular j. Let ν be the highest pole order of the
functions q′j(x), q′′j (x) at x. Note that F1,2(x0) 6= 0 and Υ(x0) 6= 0. Thus, the pole of order
ν will appear on the sheet 1 or 2 (corresponding residues cannot be compensated both). This
contradicts to the functional problem for Aj

The statements 2, 3 and 4 are similar to statement 1, so we omit their proofs.

2. The functions q′k(x), q′′k(x), k = 0, 1, 2 are regular at the points η1,1, η1,2, η2,2.

3. The functions q′k(x), x2q′′k(x), k = 0, 1, 2 are regular at infinity.

4. The functions q′k(x), q′′k(x) have simple poles at xin and x−1
in .

Slightly more subtle consideration is needed for the values x equal to η2,1 and b, since
functions F1 and F2 have poles and zeros at these affixes. The following statements can be
proven:

5. The functions q′0(x), q′′0(x), (x − η2,1)−1q′1(x), q′′1(x), (x − η2,1)−1q′2(x), q′′2(x) are regular at
x = η2,1.

6. Functions q′0 and q′′0 are regular at b. q′j(x), q′′j (x), j = 1, 2 can have simple poles at b. The
following identities should be valid:

lim
x→b

[q′1(x)−Υ(b̂)q′′1(x)] = 0, lim
x→b

[q′2(x) + Υ(b̂)q′′2(x)] = 0,

Using these statements, one can find the most general form for the functions q′j(x), q′′j (x)
obeying statements 1–6:

q′0(x) =
s1

x− xin

+
s2

x− x−1
in

+ s0, (95)

q′′0(x) =
s3

x− xin

− s3

x− x−1
in

, (96)

q′1(x) = (x− η2,1)

(
s4

x− xin

+
s5

x− x−1
in

− (s6 + s7)Υ(b̂)

x− b

)
, (97)

q′′1(x) = (b− η2,1)

(
s6

x− xin

+
s7

x− x−1
in

− s6 + s7

x− b

)
, (98)
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q′2(x) = (x− η2,1)

(
s8

x− xin

+
s9

x− x−1
in

+
(s10 + s11)Υ(b̂)

x− b

)
, (99)

q′′2(x) = (b− η2,1)

(
s10

x− xin

+
s11

x− x−1
in

− s10 + s11

x− b

)
. (100)

One can see that these functions contain 12 scalar parameters s0, . . . , s11. The parameter s0

can be chosen arbitrarily (we assume further that s0 = 0). The rest 11 parameters can be found
from the known residues of Aj at x̃1, x̃2, x̃3, x̃4.

Using these residues given by the formulation of the functional problems for Aj(x̃), build a
system of equations for s1, . . . , s11:

s1 = iY1/(6π), s2 = iY3/(6π), s3 = 0, (101)

(xin − η2,1)s4F1(x̃1) + (b− η2,1)s6Y1F1(x̃1) = iY1/(6π), (102)

(xin − η2,1)s4F1(x̃2)− (b− η2,1)s6Y1F1(x̃2) = iY1/(6π), (103)

(xin − η2,1)s8F2(x̃1) + (b− η2,1)s10Y1F2(x̃1) = iY1/(6π), (104)

(xin − η2,1)s8F2(x̃2)− (b− η2,1)s10Y1F2(x̃2) = iY1/(6π), (105)

(x−1
in − η2,1)s5F1(x̃3) + (b− η2,1)s7Y3F1(x̃3) = iY3/(6π), (106)

(x−1
in − η2,1)s5F1(x̃4)− (b− η2,1)s7Y3F1(x̃4) = iY3/(6π), (107)

(x−1
in − η2,1)s9F2(x̃3) + (b− η2,1)s11Y3F2(x̃3) = iY3/(6π), (108)

(x−1
in − η2,1)s9F2(x̃4)− (b− η2,1)s11Y3F2(x̃4) = iY3/(6π). (109)

The equations (102)–(109) can be easily solved. The result can be written using (80) as
follows:

s4 = ZΥ(x̂1)
1

xin − b
(F2(x̃1) + F2(x̃2)), (110)

s6 = Z

(
1

b− η2,1

+
1

xin − b

)
(F2(x̃1)− F2(x̃2)), (111)

s8 = ZΥ(x̂1)
1

xin − b
(F1(x̃1) + F1(x̃2)), (112)
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s10 = Z

(
1

b− η2,1

+
1

xin − b

)
(F1(x̃1)− F1(x̃2)), (113)

s5 = ZΥ(x̂3)
1

x−1
in − b

(F2(x̃3) + F2(x̃4)), (114)

s7 = Z

(
1

b− η2,1

+
1

x−1
in − b

)
(F2(x̃3)− F2(x̃4)), (115)

s9 = ZΥ(x̂3)
1

x−1
in − b

(F1(x̃3) + F1(x̃4)), (116)

s11 = Z

(
1

b− η2,1

+
1

x−1
in − b

)
(F1(x̃3)− F1(x̃4)), (117)

where

Z =
i((Ϋ(b̂))2/4− 1)1/3

12π
. (118)

Finally, the Sommerfeld transformant is found. The formulae that should be used for
computations are (26), (92), (93), (94), (101), (110)–(117).

6 Why u(m,n) obeys the diffraction problem?

Here we check directly that the Sommerfeld integral (17) defines the wave u(m,n) obeying all
conditions imposed on it.

Consistency of the Sommerfeld integral
One can see that u(m,n) is defined in a different way for the domains m ≤ 0 and n ≤ 0,

namely the integration contours Γ2 and Γ3 are different (see (18), (19)). Let us show that
these representations yield the same result in the intersection of the domains, namely, in the
quadrant m ≤ 0 and n ≤ 0. For this, let us show that∫

J3

wm,n(x,Ξ(x̂))A(x̃)
dx

Υ(x̂)
=

∫
J ′
3

wm,n(x,Ξ(x̂))A(x̃)
dx

Υ(x̂)
= 0 for m ≤ 0 and n ≤ 0. (119)

The proof is straightforward. One can see that at the infinities of the sheets 2 and 4 of the
scheme shown in Fig. 3 both x and Ξ(x̂) tend to∞. Thus, the function wm,n(x,Ξ(x̂)) does not
grow as |x| → ∞. According to the conditions imposed on A, the integrals are equal to zero.

Validity of the discrete Helmholtz equation
Substitute the representation (17) with (18) for m < 0, or with (19) for n < 0. Substitute

this representation into the equation (1). Note that the the discrete Laplace operator acts only
on w. A direct check shows that (1) is valid.
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Radiation condition
Let us demonstrate that u(m,n) obeys the radiation condition formulated in the form of

the limiting absorption principle. For this, deform the contours Γ2 and Γ3 homotopically as
follows:

Γ2 = λ1 + λ2 + λ3, Γ3 = λ3 + λ4 + λ5, (120)

where contours λ1, . . . , λ5 are shown in Fig. 8. Sheets 5 and 6 are not shown. Contours λ1 and
λ2 are drawn around corresponding cuts (we remind that the cuts are conducted along the sets
of x for which |y(x̂)| = 1). Contours λ4 and λ5 are unit circles. Contour λ3 encircles xin. Note
that |xin| < 1.

Fig. 8: Contours of integration λ1, . . . , λ5

One can see that ∫
λ3

wm,n(x̂, y(x̂))A(x̃)
dx

Υ(x̂)
= uin. (121)

As the result, the following representations of the field are obtained:

u(m,n) = uin(m,n) +

∫
λ1+λ2

wm,n(x̂, y(x̂))A(x̃)
dx

Υ(x̂)
for m ≤ 0, (122)

u(m,n) = uin(m,n) +

∫
λ4+λ5

wm,n(x̂, y(x̂))A(x̃)
dx

Υ(x̂)
for n ≤ 0. (123)
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Consider the exponential factor wm,n = xmyn of the representation (122). For each point
of the representation contours, |y| = 1 and |x| > 1. Since m ≤ 0, the result should decay for
large negative m. Besides, the field should decay for constant negative m and growing positive
n due to the oscillatory nature of factor w on the contours λ1 and λ2.

Similarly, for the representation (123), |x| = 1 and |y| > 1 in the exponential factor, thus
the field should decay for large negative n.

Thus, we obtain that the total field is a sum of the incident field and a decaying field.

Boundary conditions
Let us check the boundary condition u = 0 on the side m ≥ 0, n = 0. For this, use the

representation (17), (19).
On the boundary m ≥ 0, n = 0, the contour of the Sommerfeld integral can be deformed

into two unit circles drawn in sheet 3 and 4 (see Fig. 9). Namely,

u(m, 0) =

∫
λ4+λ6

xmA(x̃)
dx

Υ(x̂)
. (124)

Due to the symmetry (25), this integral is zero.
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Sheet 6

l

xin

4l

Fig. 9: Contours of integration λ4 and λ6

The situation is slightly more subtle with the boundary m = 0, n ≥ 0. As it follows from the
consideration performed in [1], the Sommerfeld integral is introduced invariantly with respect
to the choice of the independent variable. For example, one can choose y as an independent
variable, and repeat the whole consideration based on this variable. This would lead to an
integral representation

u(m,n) = −
∫

Γj

wm,n(Ξ(ŷ), y)A′(ỹ)
dy

Υ(ŷ)
. (125)

The new Sommerfeld transformant A′ is linked with the old transformant by the relation

A′(ỹ) = A(x̃(ỹ)). (126)
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Since the whole consideration can be repeated in the variable y, the symmetry argument de-
scribed here can be also reproduced. The symmetry Π′ mentioned above should be used. The
axes m and n become swapped, so now this argument works for the boundary m = 0, n ≥ 0.

7 Numerical examples

In this section we are demonstrating the ideas of the paper using some numerical examples. In
all cases we take real values of K, having in mind the limit Im[K]→ +0.

7.1 Computation of b̂

Take K = 0.5 and find the point b̂. Use Algorithm 1 for this. First, find the period Tβ (see
(48)). For the numerical integration, use contour σβ shown in Fig. 10, left. The positions of
the branch point ηj,l are shown by stars.
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Fig. 10: Contour for finding Tβ (left), solution of equation (89), right

Find the correct values of Υ(x̂) on this contour. The contour passes through the point
x = 1 on sheet 1, thus, one can fix Υ(1), and then utilize the continuity. One can see that
Υ(1) = ±0.9682i, and one should choose the correct sign. Take K close to 0.5, but having
a small positive imaginary part, say K = 0.5 + 0.1i. The values of Υ(1) for this K are
±(−0.1810 + 0.9722i), and they correspond to the values y1 = 0.7895 + 0.4361 and y2 =
0.9705− 0.5361, respectively. One can see that |y1| < 1 and |y2| > 1. Thus, one should choose
Υ(1) = −0.1810 + 0.9722i for K = 0.5 + 0.1i. By continuity, Υ(1) = 0.9682i for K = 0.5. This
reasoning yields that Im[Υ(1)] > 0 on the physical sheet for all real 0 < K < 2.

The integral for Tβ can be easily computed for K = 0.5:

Tβ = −1.6219 + 2.4884i.
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For demonstration purposes, solve the equation (89) (or its equivalent form (90)) on the
segment χ ∈ [0, Tβ], taking x(0) = η2,1. The result is the trajectory going from η2,1 to η2,2 along
one of the sheets of R and returning back along another sheet. The trajectory ends almost
exactly at η2,1. The projection of this trajectory onto the x-plane is shown in Fig. 10, right.

According to Algorithm 1, solve equation (89) for χ ∈ [0, Tβ/3], with x(0) = η2,1. As the

result, get the position of the point b̂, i. e. the affix b and the value Υ(b̂). We use this value
as a starting approximation for b and refer to it as b′. If the ODE is solved by the simplest
Euler’s scheme on a mesh of 100 nodes,

b′ = 0.2917 + 0.1858i, Υ(b̂′) = −0.2437 + 0.7958i.

The position of b′ is shown in Fig. 10, right, by a circle. The value of Υ(b̂′) is needed to
conclude that b̂′ belongs to sheet 2 of R.

The value of b′ obtained so far can be considered as a rough approximation for this param-
eter. According to Algorithm 1, one can solve (82) by the Newton’s method to refine the value.
The process stabilizes after 4 steps, and the result is:

b = 0.295390040273516 + 0.186354378894278i.

One can see that the starting approximation b′ happens to be quite close to the exact root of
(82). This is a clear demonstration of consistency of our approach.

Taking K belonging to a dense grid covering the segment [10−3, 1] and repeating the pro-
cedure described above, one can obtain the values b̂(K). They are presented graphically in
Fig. 11. The affix b is shown by its real and imaginary part. The value Υ(b̂) is necessary only
to select a correct sheet of R, so we displayed the imaginary part of it.

An important conclusion that can be made from Fig. 11 (and of course one can prove this
analytically) is that

b→ 1 as K → 0,

and b̂ is located on sheet 2.

7.2 Examination of G = (F1)
3

Fix K = 0.5 and use the value of b̂ found in the previous subsection. Let us construct the
function G(x̂) by the formulae (69), (71), (72), i. e.

G(x̂) =

(
Υ(x̂)

(x− b)2
+

Υ(b̂)

(x− b)2
+

Υ̇(b̂)

x− b
+

Ϋ(b̂)

2

)−1
x− b

x− η2,1

.

Let us check numerically the validity of the non-trivial condition imposed on G, i. e. that the
arguments variation of G on σβ is zero, while the argument variation of G on σα is equal to 2π.

To check this, we build hodographs of G on σα and on σβ, i. e. we plot the values of G(x̂)
for x̂ running along the contours σα and σβ. As the result, we get oriented contours in the
complex plane of G.
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Fig. 11: The values of Re[b], Im[b], and Im[Υ(b̂)] as functions of K

The contour homotopic to σβ has been already built (see Fig. 10, left). The contour homo-
topic to σα and convenient for numerical computations is shown in Fig. 12. The contour passes
the value x = 1 on sheet 1 on the way down.

The hodographs of G(x̂) on σα and σβ are shown in Fig. 13, left and right, respectively. The
origin is marked by letter O in both graphs. One can see that the hodograph for σα encircles
the origin for a single time in the positive direction, and the hodograph for σβ does not encircle
the origin at all. Thus, the conditions for G are valid.

Indeed, a similar check can be performed for (F2)3.

7.3 Building the wave field u(m,n)

Take the value of K equal to 0.5.
For simplicity, we take angle of incidence φin = π/4. By symmetry, xin = yin and we are

looking for the solution of the equation D̂(xin, xin) = 0 corresponding to the wave traveling in
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the positive direction with respect to m and n:

xin = yin =
4−K2 + iK

√
8−K2

4
= 0.9375 + 0.3480i.

We compute the total field by the formulae (122), (123) with the transformant A represented
by (26).The components Aj, j ∈ {0, 1, 2} are computed by (92), (93), (94). We took 50000
nodes on each contour for integration.

The real part of the total field is shown in Fig. 14.
The field pattern corresponds to what can be expected. The field is zero at the boundary,

and there are visible zones of the reflected waves.
In Fig. 15 we plot the scattered field usc only. The real part is in the left, while the imaginary

part is in the right. One can see cylindrical wave scattered by the angle vertex.
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8 Conclusion

Let us summarize the process of solving the problem of diffraction by a Dirichlet right angle on
a discrete plane. Note that the problem is characterized by two parameters: by the wavenumber
parameter K of the Helmholtz equation (1) and by the incident angle φin defined by (6). The
procedure is as follows:

1. The consideration is based on the structure of the Riemann surface R. This surface is
described by four branch points η1,1, η1,2, η2,1, η2,2. These branch points depend only on
K, and they are found from (12), (13).

2. One should find the period Tβ. This can be done by computing the corresponding integral
in (48). The contour is shown in Fig. 4, but it is practical to perform the integration along
the unit circle in the negative direction. Function Υ(x) is given by the last expression of
(14). The branch of Υ(x) is chosen in such a way that Ξ(x) defined by (15) has property
|Ξ(x)| < 1.

3. The parameter b̂ should be found. This is the point on R, thus it is characterized by the
affix b and the branch of Υ(b̂).

Algorithm 1 described in Subsection 4.4 can be used for this. According to this algorithm,
first, the differential equation (89) is solved numerically on the segment χ ∈ [0, Tβ/3], and
an approximation b′ of the parameter b becomes obtained. Besides, the sheet of R on
which b̂ is located becomes determined. Second, an algebraic equation (82) is solved
iteratively using b̂′ as the starting approximation.

4. The functions F1(x̃) and F2(x̃) are constructed by (73) and (76). Note that these functions
depend on K as on a parameter.

5. The Sommerfeld transformant of the field A(x̃) is built using (26), (92), (93), (94), (101),
(110)–(117).

6. The function u(m,n) is built using the Sommerfeld integral (17).

The whole consideration is held in the framework of the Sommerfeld integral. The structure
of the integral may seem slightly unusual, however, as we demonstrate in [1], it is a natural
generalization of the Sommerfeld integral for angular domains for the discrete case.

We first build the functional field K3 to which the Sommerfeld transfomant of the field
belongs. Note that this field is common for all incident angles. The functional field K3 is
represented as the basis Ω3:1 composed of three functions or by the basis Ω3:0 composed of six
functions. The construction of the basis is a non-trivial procedure. Second, for a particular
angle of incidence φin we find the Sommerfeld transformant A(x̃). This task is tedious, but quite
simple. The coefficients are rational functions, and one should find these functions obeying some
known restrictions and having some known poles. This structure of solution seems to be deeply
linked with the embedding procedure [6, 7]. The elements of the basis are either solutions on
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the branched physical surface, having some fixed configurations of the incident fields, or they
are oversingular solutions. This, possibly, gives a new view on the embedding procedure.
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