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A methodfor numericalmodelingof quasi-stationaryelectromagneticfields in axiallysymmetricmedia is proposed.
It is basedon thedirectfinite-elementmethod andtheuseof special basisfunctions.Assumingcylindrical coordinates
r, ~, z, the three-dimensionalsolution is presentedas a superpositionof fields with the azimuthal dependence
exp(in4). For eachcasethis resultsin a systemof two equationsof elliptical type in two scalarfunctions in the(r, z)
plane.

Thediscretizationleadsto theconservativenine-pointsdifferencescheme.The systemof linear equationsis solved
by meansof the LU-decompositiontechnique,thebandstructureof thematrix beingtaken into account.

The programis testedusinganalytical results(DC asymptote)for a near-surfaceinhomogeneity.Comparisonalsois
madewith 2D results(H-polarization)for themodel of a local well conductinginclusion in a three-layeredEarth.

1. Introduction integral equation method (Zakharov, 1978;
Barashkovand Dmitriev, 1982) or by oneof the

Analysis andinterpretationof transientelectro- differential equation methods(Zhdanov et al.,
magneticfield anomaliesin the Earth, investiga- 1984).
tion of the resolution of soundingsas well as a In this work we suggestan algorithm for the
numberof other problemsencounteredtoday in numerical modeling of quasi-stationaryelectro-
geoelectrics(BerdichevskyandZhdanov,1984) re- magneticfields in axially symmetricthree-dimen-
quire computer-assistedcalculationof many dif- sional media. The algorithm relies on finite-ele-
ferent models. Theseproblemscan be solved in ment modification of the balancemethod which
principle by usingexisting methodsof numerical has shown good results for the solution of two-
modelingof electromagneticfields in media that and three-dimensionalproblems(Zhdanovet al.,
includearbitrary three-dimensionalinhomogenei- 1982; Spichak,1983).
ties(e.g., review paperby Hohmann(1983)). How-
ever, this objectivecan be achievedwith reduced
computer resourcesif we restrict ourselves to 2. Basic equations andboundaryconditions
modelsof a specific type of symmetry.In particu-
lar, axially symmetric three-dimensionalmodels
reducethe vectorproblemto a seriesof indepen- 2.1. Problemstatement
dentproblemsin aplanefor two scalarfunctions
(Zakharov, 1978). In this case,the reductionto a Consideran electromagneticfield excitedby a
discretesystemmaybe accomplishedeitherby the planeverticallyincident wavein a layeredmedium
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____________________ Substituting these expansions into Maxwell’s
equationswe derivethe following systemof equa-

o —_________________ tions for harmonics
1 1 (n)_ ~JH4’ET
1 w
383 661 m
399 661 l
S
BT


az
(3)

az 8r = aE,~’~ (4)

uIIIII::i::~_________________ 1 _____—H~”~+ ~‘ — ~ = aE~’~ (5)r ‘1’ 8r r
________________________—

%. — 4’ = iwH,~”~ (6)

_____ — _____

= ico~.t~H,~”~ (7)Fig. 1. Model of the geoelectricsection(in cylindrical coordi-
nates);fl is thedomain of modeling. + — ~ = ic~s0H~”~ (8)

r 4’ 0r r

that includesa three-dimensionalaxially symmet- Let u = ~ and v = ~ Using eqns. (3), (8)
ric inhomogeneity (Fig. 1). The medium is as- and (5), (6) weexpressthecomponents~ ~

and ~ ~ in termsof u and v
sumed to be isotropic and non-magnetic.The
magneticpermeabilityin thewhole spaceis taken ~ = in4u — iw,.Lorb~v
to be equalto permeabilityof freespace(~t= ~t0). ~ = inh~u+ iw~uorbrv
Displacementcurrentsareneglected,i.e., the field (9)
is assumedto bequasi-stationary.Thetime depen- ~ = — arb2u+ inbrv
dence of the fields is defined by the factor Hn) = ar4u + in4v
exp(— icot). Maxwell’s equations for quasi-sta-
tionary field harmonicsthenhavethe form where

curlH=aE
curlE=iw~z0H (1) r(.~+1)

are thecomponentsof thevectordifferential oper-
We will introducea cylindrical coordinatesys- ator

tem (r, ~, z) whoseaxiscoincideswith the axis of
symmetry of the inhomogeneity and is positive b— [41
verticallydownwards(Fig. 1). — 4]

2.2. Differential equationsfor azimuthal compo- and a ic~is0ar
2— n2.

nentsofharmonics Substituting theseexpressionsinto (4) and (7)
gives equationsin u and v

Following Zakharov (1978), we will represent div
2(arbu) + au — in curl2(bv) = 0

the componentsof the vectors E, H as Fourier (10)
series div2(ic~qs0rbv)+ico~s0v— in curl2(bu) =0

+ 00 where
Er4’,z = ~ E,~2exp(in~) a a

div2 = e~-~--+ e
(2)

Hr4’z= ~ H,~~exp(in4) curl
fl 00 2 = er — e~
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wheree~ande2 are the unit vectorsof the cylin- componentsof the electric field are zero. This
dricalcoordinatesystem. leadsto the boundaryconditions

It is evident that whenthe field is excitedby a
planewave it is sufficientto solve theproblemfor u = 0 ~ = 0az
harmonics n = ±1 (Barashkov and Dmitriev,
1982). If the normal field is polarized linearly (c) On theaxis of symmetry,the exactrelations
(with the magneticfield in the 4) = ~r/2 azimuth), = =

the harmonicsn = 1 and n = —1 are relatedby 3r

E~~(r,z) = —E,~
1~(r,z) aresatisfied.

(11) (d) On the right-hand boundaryof the mod-
H~”(r, z) = H,~’~(r,z) eling domain, the total field is locally approxi-

Hence, to determinethe electromagneticfield matedby a planevertically incident wave. In this
case,the boundaryconditionsarecomponentswithin an axially symmetric three-di-

mensional model, it is sufficient to define the u .~ = ~ =

and v functionscorrespondingto valuen = 1 and ar 8r
then to determinethe requiredfield by formula (2)
with referenceto relations(9) and (11).

3. Formulation of discrete equationsand their

2.3. Boundaryconditions numericalsolution

Without lossof generality,thedomain of mod- To derive discreteequations,we will utilize a
eling is assumedto be arectangle~2on the plane directfinite-elementmethod (Norrie andde Vries,
(r, z) whoseleft-hand side lies on the z axis, the 1978). In this case, it is helpful to set up a con-
uppersideis in theatmosphere,andthelowerside servativeschemearounda nine-pointpattern.
is locatedin the underlyingbasement(Fig. 1). On
the boundariesof the domain ~ the following 3.1. Discreteequations
boundaryconditionsare specified.

(a) On the upperboundaryin the atmosphere Introducea grid ~ on aplane(r, z): (r,, z~.)E
(and on the lower boundary if the underlying ~, 1 <i <I, 1 <j <~
basement is highly resistive) the first-order
asymptoticboundaryconditionsfor an anomalous Unit cells are rectanglesSki (k = 1, 2,..., I; 1=
field 1, 2,...,J) whoseverticesare in the middleof the

cells of the grid ~ that are adjacentto grid points
(1+r.~_+z~_)(u_uP1)=O (r,, z

3) (Fig. 2).
Integratingeqns.(10) overan areaof the cells

(1 + r-~—+ z-~--’I(v— v~)= 0 Ski andusingthe Ostrogradsky—GaussandStokes\ a~ az two-dimensional formulae (Berdichevsky and
Zhdanov,1984),we obtain thebalanceequations

are valid, whereu andv are the azimuthalcompo-
nentsof harmonicsof thetotal field, while u” and j ar(bu)v dl+ f ( au dS— inf (i)v)I dl= 0
v” are thoseof the normal field. Theseconditions Ski ~Ski Ski

are readily established from the asymptotic
boundaryconditionsderived by Zhdanovet a!. f i~0r(bv)v dl + Jf ico,.t0v dS (12)
(1982)andSpichak(1985). Ski Ski

(b) At the interface of a highly conducting
underlyingbasement,which can be roughly con- — inf (bu )l dl =0
sidered as a perfect conductor, the horizontal Ski
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where5ki is the boundaryof the cell 5k/’ v and I — r
are the unit vectors directed along an outward

ij —1pointing normal and a tangent to the boundary i-i,j-1 1____,—___..i+1.J~1
Ski, respectively; the contour 5ki is traversed I I
counterclockwise.

Wewill seeku and v asanexpansionin terms

i—t,j ~— — — .__fi+1,Jof finite basisfunctions I I
I J I

u(r, z) = ~ u.~4)
1~(r,z)

i=1 1=1 11, ~ L —— ~ __4i+i,~+i
(13)I J

v(r, z) = ~ v.~4)~(r,z)
i=lj=1 z

Fig. 2. Unit cell 5,, of therectangularmesh.
where 4),~ (r, z) = 0, if (r, z) ~ [r,_1, r,÷1]X
[z1_1, z1~~].

Substitutingeqn.(13) into eqn.(12) we write

k +1 1+1 the horizontal and exponentially in the vertical,
~ (A~J,u,~+ B~v~)= 0 we can introducethefollowing basisfunctions

i=k—1 f—i—I
(14) 4).~(r,z)=~11(r)~~(z) (15)

k±1 1+1

~ ~ ~ + c~v.~)= 0 where
i=k—1 j=.i—l

10
(k=1,2...,I; l=1,2,...,J) II r—i_~

r,1 ~r~r1
where J
A’i~i=f a(r, z)r(b4)~1)vdl I r—r rj~r~rj~1

Ski I

+ff a(r, z)4)ff5k1 0 z~zj_I

B~=_inf (b4)~f)1dl siflh(k,~(zz~_
1))

Ski sinh(kt(zf—zfl)) zJ_1~z~zJ
~,1(r z)=

sinh(k~(z—zf±l))
c~=i~Ljfr(b4)If)vdl+ff

4)if dS] sinh(k~(z~—z~÷
1))~

~ Ski Ski

Definite integrals entering the formulas for the 0 z~+ 1 ~ z
coefficients A~’1, B~,and C~ are calculated
numerically, where

kt = ~I—i~s0a,~, k~=

3.2. Basisfunctions
are the averageconductivities in the upperand

As is known,allowancefor the field behaviour lowerhalvesof a cell respectively.
contributesto the accuracyof equationapproxi- Derived basisfunctionspossessfairly good ap-
mation. Assumingthat in the neighbourhoodof proximationproperties.In particular, the normal
eachpoint of the grid, total fields vary linearly in field calculatedfor a one-dimensionalconducting
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medium from a systemof eqns. (14) with due N
accountof eqn.(15)coincideswith that calculated
analytically. It should be noted that if k,3 —‘ 0,
771f(X) reducesto the function E.(x).

3.3. Numericalsolution ofdiscreteequations

The systemof linear algebraicequationsresult -__________
ing from discretizationis solvedby employingthe
Crout algorithm of expandinga matrix into the
productof the upperandlowertriangularmatrices
(Tewarson,1973). Below is a brief outline of the
aloorithm Fig. 3. Structureof thesystemmatrix: N is thematrixsize, M

b ‘ . is thebandwidth.
Representthe matnx A (N X N) of the system

in the form

T lower triangularmatrix and a row of the upper
A = d ~ triangular matrix. This permitsmatrix expansion

V G by parts, utilizing a disk direct-accessfile and a

where d is a scalar,v is a column vector, ~ is a small portionof the corememory.
row vector, G is an(N — 1)th order squarematrix. The algorithmhasbeenimplementedfor corn-
Onecanseethat for d * 0, the following represen- plex matricesin realarithmetic.
tation

A = d 0T , ~ O~ 1 ~T/d 4. Programtesting
V ‘N-I 0 Gj 0 ‘N—i

holds,wherethe (N — 1)th order squarematrix G’ 4.1. The FDMS-3Dprogram
is definedby

T The abovealgorithmhasbeenusedto develop
= G — ~. a programof numericalmodelingof monochro-

d matic electromagneticfields in the Earthcontain-

‘N-i is an (N — 1)th order identity matrix, 0 is a ing an axially symmetric three-dimensionalinho-
zero column vector. In the next step, the matrix mogeneity.Theprogramis written in FORTRAN-
G’ is expandedin the sameway, etc. As a result, IV. It is applicable to computerswith a core
in N steps,the initial matrix is expandedinto the memory greater than 128 kbytes. Its execution
productof theupperandlowertriangularmatrices. requiresalso magneticdisk spaceas large as 500
Upon expansion,the lower and upper triangular to 4000kbytes (dependingon the numberof grid
systemof equationsare solved, points).

The systemof linearalgebraicequationsresult- The FDMS-3D program was employed to
ing from discretizationhasabandedstructure(the calculatethe responseof a model of a cylindrical
bandwidth M =4+ 2 ‘min(I, J), where1 and J insert for which an approximateanalyticalsolu-
are the numbersof grid points in the verticaland tion is available in the case of DC-asymptotics
in thehorizontal, respectively).The applicationof (BerdichevskyandDmitriev, 1976).
the Crout algorithmto this matrix is distinguished
by the following feature. In each step of the 4.2. Fixed-depthisometricdepression(cylindical in-
algorithm all operationsare performed on the sert)
matrix elementslying insidea squareA(M x M)
which slides diagonally downwards (Fig. 3). In The model is shownin Fig. 4. It consistsof a
doing so, we obtain the relevant column of the thin layer, h1 of aconstantresistivityp~(integral
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Calculationsweremadefor the following model
parameters:h1 = 0.5 km; h2 = 10 km; a = 5 km;

S>at,n° ____ S~’5005; S~=25005; u2—10 S m~ CJ3=

I 9 io~S m~at periodsT= 21, 84 and 360 s.
Figure 5 gives normalized values of the

azimuthal component of the electric field for
2 severalperiodscalculatedby the FDMS-3D pro-

gram and defined by asymptotic formula (16)
(T=cc).

95~0 It is evidentfrom Fig. 5 that at T= 84 s, theE4’

plot differs from the asymptoticcurve by amaxi-

mum2—3% wherethekneeon theboundaryof the
inclusion is smoothed.The curve for T= 21 s

Fig. 4. Modelof a cylindrical insert with resistivityP~i. differs markedlyfrom the asymptoticcurve over
the anomaly,which is due to theinductioneffect.

conductivity Sr), a non-conductingintermediate But startingfrom r = 5.5 km (r/a = 1.1)the curves
layer (P2 = cc) of thickness h2, and a perfectly comeclosertogetherand differ by not morethan
conductingunderlyingbasement(p3 = 0). The up- 2—4%.
per layerincludesacylindrical insert of resistivity Figure 6 shows values of the quantity
p’1 andradiusa which is the samethicknessas the I H~I/I H~anal (0)1 found by executingtheFDMS-
upperlayer(integral conductivitySi).

For DC-asymptoticsthis model hasan analyti-
cal solution (Berdichevsky and Dmitriev, 1976)
implying that

E0=p,E:, a=r,4) (16)

whereEr4’ standsfor the componentsof the total
field, while E~”4’designatesthe componentsof the
normal field

s1
1—s~ T.21~

1— . 0~r~a
S~+S 7/ T
S~—S~a2

1+ . — r~’a T.84~
S~-~-S~r2

at.

si — se1— ~ 1 0~r~a

SI’ + S~
F

4’ SI’S~ a2 -

1— — r>a
SI’ +S~r

2
a

The value of an anomalousmagneticfield for 10

the DC-asymptotics is defined, according to
Berdichevskyand Dmitnev (1976),by the asymp- . . ,

Fig. 5. NormalizedE
4, valuesat theEarths surfacewithin the

totic formula modelof a cylindrical insert,shownin Fig. 4; the solid curves
Hae =

1(sE — SeE~J) (17) representtheresultscalculatedby theFDMS-3D program,the
z 2’. i I dashedcurve designatesthe resultsobtainedby the analytical

whereSI’ = S~,if 0 ~ r ~ a and S~= S
1, if r ~i a. formula.
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I H ~) 4.3. Cylindrical conductinginclusion
T~~(o)I

Our calculationsrelateto amodel within which
a highly conductinglayer of resistivity p1 and a

poorly conductinglayerof resistivityp2 are on a
.1 ~ planesurfaceof a perfectconductor.The P2 layer

containsa cylindrical inclusion(Fig. 7). A two-di-
mensionalstatementof the problem was consid-

10~0
ered by Berdichevskyet al. (1982). Calculations
were made for the following parameters:h1 = 1

o.n km, p1 = 1 ~lm, h2 = 50 km, p2 = 100 ~2m, p3 =

0, p4 = 0.1 ~2m, h3 = 5 km, h4 = 4 km. Two cases:
d = 4 km andd = 50 km, wereconsidered.

\ T360s With d = 4 km, the conductinglayer exertsa

~ strongscreeningeffecton thethin well conducting

T~2i~ inclusion. At thesurfaceof the Earththe anomaly

‘S
‘S

S.

9oLm
o

0 ~,km ~ It4
S 40

Fig. 6. Normalizedvaluesof theanomalousmagneticfield at
the Earth’s surfacewithin the model of a cylindrical insert
shownin Fig. 4; the solid curvesrepresentthe resultscalcu-

designates ~ J~h4

3D programfor periods21, 85 and360 sand the cL
asymptoticformula (17) (T= cc).

Becauseof inductive interaction, the H4’ curve
for T = 21 s differs markedlyfrom the asymptotic
one(at the centerof theanomaly)by 30%.As the —

period becomeslonger, inductive interactionde-
creases.Thus, the curve for T = 84 s differs from Z
theasymptoticoneby 12%,while thecurveplotted = ~ b I ~

for T= 360 s follows virtually the asymptotic 1 ‘ 1.P2 100 0Iai.~, h2 . 50
curve,with the only differencethat theformeris a
smootherversion of the latter; the differenceis 0 Is3 = 5 k~

0.2% at the center of the anomaly,3% for r = 7 9. = 0,1 ~ a4 4 k~

km (r/a = 1.4), and 8% on the boundaryof the -

anomaly(forr=Skm). b) d 5o~

It is noteworthy that calculationshave been Fig. 7. The testing model from Berdichevskyand Dmitriev

carriedout for a relativelysmall grid 20 x 30. (1976).
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Fig. 8. ApparentresistivityP~/Pi for themodel shownin Fig. 2 ~ 5 6 ~ ~
7, with d = 4 km (solid lines are3D results;dashedline is 2D
results, H-polarization; p~’,p~,apparentresistivities for 1D-
normalsectionwithoutinsertionandwith insertionwith d = Fig. 9. Apparent resistivity p~~/p~for the model, shownin
respectively). Fig. 7, with d = 50 km (4~= 0; rId = 0; 0.5; 0.9).

is hardly detectable(Fig. 8). In this case, the
three-dimensionalsituationis approximatedfairly hibiting an axial symmetry.The FDMS-3D pro-
well by a two-dimensionalmodel of H-polariza- gram does not require appreciablecomputer re-
tion. sourcesand appliesequally to purely methodical

As d increases,along with conductiveredistri- calculationsand to the solution of a fairly wide
bution of the current, magnetic and inductive rangeof practicalgeoelectricalproblems.
effectsof the current flowing into the inclusion
becomeimportant.Figures9 and10 show plots of
apparent resistivities for d = 50 km along two

Iiorthogonalazimuths4) = 0 and 4) = IT/

2 (the nor- 5 .P~ 9
mal electric field is linearly polarizedat azimuth 2

4) = 0). A comparisonof thesefindings with the
curvesfor E- andH-polarization(Berdichevskyet 10 Li
a!., 1982) suggestthat for d = 50 km the behavior a

7 09
of the curves along azimuths 4) = 0, ?r/2 re-
semblesqualitatively that of apparentresistivity 5 0

curves for H- and E- polarizations, respectively.
5
2

5. Conclusions
10

The results of test calculationsand practical
experiencewith the FDMS-3D programdemon-
stratethat the direct finite-element method with 10 2 31,567~fQ2 2 31,567,5 -

specialbasis functions is an effective meansof A/b,
numerical modeling of quasi-stationaryelectro- Fig. 10. Apparentresistivity p~~/p

1for themodel, shownin
magnetic fields in three-dimensionalmedia ex- Fig. 7, with d =50 km (4 = zr/2; r/d =0; 0.5; 0.9; 1.1).
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