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A method for numerical modeling of quasi-stationary electromagnetic fields in axially symmetric media is proposed.
It is based on the direct finite-element method and the use of special basis functions. Assuming cylindrical coordinates
r, ¢, z, the three-dimensional solution is presented as a superposition of fields with the azimuthal dependence
exp(in¢). For each case this results in a system of two equations of elliptical type in two scalar functions in the (r, z)

plane.

The discretization leads to the conservative nine-points difference scheme. The system of linear equations is solved
by means of the LU-decomposition technique, the band structure of the matrix being taken into account.

The program is tested using analytical results (DC asymptote) for a near-surface inhomogeneity. Comparison also is
made with 2D results ( H-polarization) for the model of a local well conducting inclusion in a three-layered Earth.

1. Introduction

Analysis and interpretation of transient electro-
magnetic field anomalies in the Earth, investiga-
tion of the resolution of soundings as well as a
number of other problems encountered today in
geoelectrics (Berdichevsky and Zhdanov, 1984) re-
quire computer-assisted calculation of many dif-
ferent models. These problems can be solved in
principle by using existing methods of numerical
modeling of electromagnetic fields in media that
include arbitrary three-dimensional inhomogenei-
ties (e.g., review paper by Hohmann (1983)). How-
ever, this objective can be achieved with reduced
computer resources if we restrict ourselves to
models of a specific type of symmetry. In particu-
lar, axially symmetric three-dimensional models
reduce the vector problem to a series of indepen-
dent problems in a plane for two scalar functions
(Zakharov, 1978). In this case, the reduction to a
discrete system may be accomplished either by the
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integral equation method (Zakharov, 1978;
Barashkov and Dmitriev, 1982) or by one of the
differential equation methods (Zhdanov et al,
1984).

In this work we suggest an algorithm for the
numerical modeling of quasi-stationary electro-
magnetic fields in axially symmetric three-dimen-
sional media. The algorithm relies on finite-ele-
ment modification of the balance method which
has shown good results for the solution of two-
and three-dimensional problems (Zhdanov et al.,
1982; Spichak, 1983).

2. Basic equations and boundary conditions

2.1. Problem statement

Consider an electromagnetic field excited by a
plane vertically incident wave in a layered medium
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Fig. 1. Model of the geoelectric section (in cylindrical coordi-
nates); € is the domain of modeling.

that includes a three-dimensional axially symmet-
ric inhomogeneity (Fig. 1). The medium is as-
sumed to be isotropic and non-magnetic. The
magnetic permeability in the whole space is taken
to be equal to permeability of free space (p = pg).
Displacement currents are neglected, i.e., the field
is assumed to be quasi-stationary. The time depen-
dence of the fields is defined by the factor
exp(—iwt). Maxwell’s equations for quasi-sta-
tionary field harmonics then have the form

curl H=0E
curl E =iwpH

1)

We will introduce a cylindrical coordinate sys-
tem (r, ¢, z) whose axis coincides with the axis of
symmetry of the inhomogeneity and is positive
vertically downwards (Fig. 1).

2.2. Differential equations for azimuthal compo-
nents of harmonics

Following Zakharov (1978), we will represent
the components of the vectors E, H as Fourier
series

+ oo
Er‘¢,z = Z Er(,';),z exp(in¢)

e (2)
Hr,¢,z = Z Hr(,':p),z exp(in¢)
n=—o00
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Substituting these expansions into Maxwell’s
equations we derive the following system of equa-
tions for harmonics

(n)

i_r'le(") - Bz =oE™ (3)
M - @
p s S o)
g T oy ©
agin) B a]gz;n) =inoH4(>") @)
%Eé,”) + il;;f"i - irﬁE,(") =iwpoH™ (8)

Let u=E{" and v=H{". Using eqns. (3), (8)
and (5), (6) we express the components E(™, H{™
and E{, H™ in terms of u and v

E™ =inDu —iwprDp
EM™ =inD,u+iwp,rDp
H™ = —orD,u+inby
H™ =orDu+inDy

)

where
A r{od 1 A r a
calarr)  bim

are the components of the vector differential oper-
ator

and a =iwpor? —n?.

Substituting these expressions into (4) and (7)
gives equations in u and v
div, (6rDu) + ou — in - curl,(Dv) = 0 (10)
div, (iwp,orﬁv) +iwpg — in curl,(Du) =0
where
d 9
'a—r + eza
az ‘or

div, = e,

curl, =e,
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where e, and e, are the unit vectors of the cylin-
drical coordinate system.

It is evident that when the field is excited by a
plane wave it is sufficient to solve the problem for
harmonics n= £1 (Barashkov and Dmitriev,
1982). If the normal field is polarized linearly
(with the magnetic field in the ¢ = 7 /2 azimuth),
the harmonics n =1 and n= —1 are related by

E{V(r, z) = —E{P(r, z2)
H},_l)(r, z) =H¢(,l)(r, z)

(11)

Hence, to determine the electromagnetic field
components within an axially symmetric three-di-
mensional model, it is sufficient to define the «
and v functions corresponding to value n =1 and
then to determine the required field by formula (2)
with reference to relations (9) and (11).

2.3. Boundary conditions

Without loss of generality, the domain of mod-
eling is assumed to be a rectangle £ on the plane
(r, z) whose left-hand side lies on the z axis, the
upper side is in the atmosphere, and the lower side
is located in the underlying basement (Fig. 1). On
the boundaries of the domain @ the following
boundary conditions are specified.

(a) On the upper boundary in the atmosphere
(and on the lower boundary if the underlying
basement is highly resistive) the first-order
asymptotic boundary conditions for an anomalous
field

3 . @ .
(1+r5r-+z$)(u—u )=0

(1 +r-aa—r +z§z—)(v—v") =0
are valid, where u and v are the azimuthal compo-
nents of harmonics of the total field, while 4" and
v" are those of the normal field. These conditions
are readily established from the asymptotic
boundary conditions derived by Zhdanov et al.
(1982) and Spichak (1985).

(b) At the interface of a highly conducting
underlying basement, which can be roughly con-
sidered as a perfect conductor, the horizontal

\

components of the electric field are zero. This
leads to the boundary conditions

v
u=0 E =0
(c) On the axis of symmetry, the exact relations
du av
5= 0 i 0

are satisfied.

(d) On the right-hand boundary of the mod-
eling domain, the total field is locally approxi-
mated by a plane vertically incident wave. In this
case, the boundary conditions are

ou ov

3. Formulation of discrete equations and their
numerical solution

To derive discrete equations, we will utilize a
direct finite-element method (Norrie and de Vries,
1978). In this case, it is helpful to set up a con-
servative scheme around a nine-point pattern.

3.1. Discrete equations

Introduce a grid 2 on a plane (r, 2): (r;, z;) €
2, 1<i<], 1<j<J

Unit cells are rectangles S, (k=1,2,..., I, I=
1, 2,..., J) whose vertices are in the middle of the
cells of the grid 3 that are adjacent to grid points
(r,, z;) (Fig. 2).

Integrating eqns. (10) over an area of the cells
Sk, and using the Ostrogradsky-Gauss and Stokes
two-dimensional formulae (Berdichevsky and
Zhdanov, 1984), we obtain the balance equations

f lor(i)u)v dl+ffs’dou dS—infS“(f)v)l di=0

Sk

f iwpor(Dv)v dl+ff iopgr dS (12)
Skl

Sir

—inf (bu)di=0
S,

ki
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where §,, is the boundary of the cell S,,, v and |
are the unit vectors directed along an outward
pointing normal and a tangent to the boundary
S,,, respectively; the contour S, is traversed
counterclockwise.

We will seek # and v as an expansion in terms
of finite basis functions

I J
u(r,z)= X X u9,(r, z)

i=1 j=1

. (13)
U(r9 Z)= Z Zuijd)lj(r’ Z)

i=1j=1

where ¢ij (r’ Z)=0, if (r’ Z)é[ri—l’ ri+1]X
[zj—la zj+1]'

Substituting eqn. (13) into eqn. (12) we write

k+1 I+1

Z Z ( klu1]+Bklv) 0

i=k—1 j=I-1

k+1 1+1 (14)

Y X (BYu,+Civ,)=0

i=k—1 j=I-1
(k=1,2...,1;1=1,2,...,J)

where

A’){,=/S o(r, z)r(i)qb,»j)v di
+fj; o(r, z)¢;; dS

B = —inf (D, 1 dl
RY

ki

C,i{=iwu0‘{./; r(Dg;,)v d1+ffs &, dS]
ki kit

Definite integrals entering the formulas for the
coefficients AY,, B}j, and Cj}, are calculated
numerically.

3.2. Basis functions

As is known, allowance for the field behaviour
contributes to the accuracy of equation approxi-
mation. Assuming that in the neighbourhood of
each point of the grid, total fields vary linearly in
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Fig. 2. Unit cell S;; of the rectangular mesh.

the horizontal and exponentially in the vertical,
we can introduce the following basis functions

¢ (r, 2) = &,;(r)n;;(z) (15)
where

0 r<r._,

% r_ <r<r,

¥, —r
1
= rz<r<rl+l
2 12
i+1 i
0 iyl ST
0 z<z

1’4.("’ z) =
N ) sinh(k;; (z—2z;,,))
= z,<z<z;,
smh(k,.j(zj Zi )
0 z;,1<2
where
k= —iopeo; , k;; = —iopo;;

are the average conductivities in the upper and
lower halves of a cell respectively.

Derived basis functions possess fairly good ap-
proximation properties. In particular, the normal
field calculated for a one-dimensional conducting
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medium from a system of eqms. (14) with due
account of eqn. (15) coincides with that calculated
analytically. It should be noted that if k;;— 0,
7;;(x) reduces to the function §;(x).

3.3. Numerical solution of discrete equations

The system of linear algebraic equations result-
ing from discretization is solved by employing the
Crout algorithm of expanding a matrix into the
product of the upper and lower triangular matrices
(Tewarson, 1973). Below is a brief outline of the
algorithm.

Represent the matrix 4 (N X N) of the system
in the form

v G
where d is a scalar, v is a column vector, &' is a
row vector, G is an (N — 1)th order square matrix.

One can see that for d # 0, the following represen-
tation

P I O B O I R

holds, where the (N — 1)th order square matrix G’
is defined by

va

G=6-—

I,_, is an (N — 1)th order identity matrix, 0 is a-

zero column vector. In the next step, the matrix
G’ is expanded in the same way, etc. As a result,
in N steps, the initial matrix is expanded into the
product of the upper and lower triangular matrices.
Upon expansion, the lower and upper triangular
system of equations are solved.

The system of linear algebraic equations result-
ing from discretization has a banded structure (the
band width M =4+ 2. min(Z, J), where I and J
are the numbers of grid points in the vertical and
in the horizontal, respectively). The application of
the Crout algorithm to this matrix is distinguished
by the following feature. In each step of the
algorithm all operations are performed on the
matrix elements lying inside a square A(M X M)
which slides diagonally downwards (Fig. 3). In
doing so, we obtain the relevant column of the

N

N

v

=

A\

0\

Fig. 3. Structure of the system matrix: N is the matrix size, M
is the band width.

lower triangular matrix and a row of the upper
triangular matrix, This permits matrix expansion
by parts, utilizing a disk direct-access file and a
small portion of the core memory.

The algorithm has been implemented for com-
plex matrices in real arithmetic.

4. Program testing
4.1. The FDMS-3D program

The above algorithm has been used to develop
a program of numerical modeling of monochro-
matic electromagnetic fields in the Earth contain-
ing an axially symmetric three-dimensional inho-
mogeneity. The program is written in FORTRAN-
IV. It is applicable to computers with a core
memory greater than 128 kbytes. Its execution
requires also magnetic disk space as large as 500
to 4000 kbytes (depending on the number of grid
points).

The FDMS-3D program was employed to
calculate the response of a model of a cylindrical
insert for which an approximate analytical solu-
tion is available in the case of DC-asymptotics
(Berdichevsky and Dmitriev, 1976).

4.2. Fixed-depth isometric depression (cylindical in-
sert)

The model is shown in Fig. 4. It consists of a
thin layer, 2, of a constant resistivity p§ (integral
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Fig. 4. Model of a cylindrical insert with resistivity p}.

conductivity S7), a non-conducting intermediate
layer (p, = co0) of thickness %,, and a perfectly
conducting underlying basement (p; = 0). The up-
per layer includes a cylindrical insert of resistivity
p, and radius a which is the same thickness as the
upper layer (integral conductivity S}).

For DC-asymptotics this model has an analyti-
cal solution (Berdichevsky and Dmitriev, 1976)
implying that

E,=FE/, a=r,¢ (16)

where E, , stands for the components of the total
field, while E;, designates the components of the
normal field

Si=8 0
Si+ S5
Si~Sf a?

S;+ 8¢ r?

1+

Si_se
Si+ 8¢

¢ I_Si—sla_z
Si+585r?

The value of an anomalous magnetic field for
the DC-asymptotics is defined, according to
Berdichevsky and Dmitriev (1976), by the asymp-
totic formula
H%, = 1(S,E— S{fE") 17)

where Si=8,,if0<r<a and S{=3S5,, if r > a.

M.S. ZHDANOV ET AL.

Calculations were made for the following model
parameters: A, =0.5 km; s, =10 km; a=5 km;
S§$=5008S; $i=25008; 0,=10"°Sm™}; g, =
10°S m~!; at periods T = 21, 84 and 360 s.

Figure 5 gives normalized values of the
azimuthal component of the electric field for
several periods calculated by the FDMS-3D pro-
gram and defined by asymptotic formula (16)
(T = o).

It is evident from Fig. 5 that at T'= 84 s, the E,
plot differs from the asymptotic curve by a maxi-
mum 2-3% where the knee on the boundary of the
inclusion is smoothed. The curve for T=21 s
differs markedly from the asymptotic curve over
the anomaly, which is due to the induction effect.
But starting from r = 5.5 km (r/a = 1.1) the curves
come closer together and differ by not more than
2-4%.

Figure 6 shows values of the quantity
[ HS |/| Hg 30a (0) | found by executing the FDMS-

2,km

Q2 5

Fig. 5. Normalized E, values at the Earth’s surface within the
model of a cylindrical insert, shown in Fig. 4; the solid curves
represent the results calculated by the FDMS-3D program, the
dashed curve designates the results obtained by the analytical
formula.
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Fig. 6. Normalized values of the anomalous magnetic field at
the Earth’s surface within the model of a cylindrical insert
shown in Fig. 4; the solid curves represent the results calcu-
lated by the FDMS-3D program, the dashed curve designates
the results obtained by the analytical formula.

3D program for periods 21, 85 and 360 s and the
asymptotic formula (17) (T = o0).

Because of inductive interaction, the H, curve
for T=21 s differs markedly from the asymptotic
one (at the center of the anomaly) by 30%. As the
period becomes longer, inductive interaction de-
creases. Thus, the curve for T = 84 s differs from
the asymptotic one by 12%, while the curve plotted
for T=360 s follows virtually the asymptotic
curve, with the only difference that the former is a
smoother version of the latter; the difference is
0.2% at the center of the anomaly, 3% for r=7
km (r/a=1.4), and 8% on the boundary of the
anomaly (for r =5 km).

It is noteworthy that calculations have been
carried out for a relatively small grid 20 X 30.

4.3. Cylindrical conducting inclusion

Our calculations relate to a model within which
a highly conducting layer of resistivity p, and a
poorly conducting layer of resistivity p, are on a
plane surface of a perfect conductor. The p, layer
contains a cylindrical inclusion (Fig. 7). A two-di-
mensional statement of the problem was consid-
ered by Berdichevsky et al. (1982). Calculations
were made for the following parameters: h, =1
km, p;=1Qm, h,=50 km, p, =100 @ m, p; =
0,0,=01Q m, h;=5km, h, =4 km. Two cases:
d=4 km and d = 50 km, were considered.

With d=4 km, the conducting layer exerts a
strong screening effect on the thin well conducting
inclusion. At the surface of the Earth the anomaly

.palm: oo
0 z
ALY
\hs
/ ‘ / h« .pz, h,
4
////
d
pr0
4
Jy=1 omem, hy = 1 )=
P35 » 100 obm-m, hy = 50 lm
f3=0 By= 5
P¢ =0, Obmem By« 4im

Q) d«4mm

b) d=5 m
Fig. 7. The testing model from Berdichevsky and Dmitriev
(1976). :
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Fig. 8. Apparent resistivity p,, /p; for the model shown in Fig,
7, with d = 4 km (solid lines are 3D results; dashed line is 2D
results, H-polarization; p, p}, apparent resistivities for 1D-
normal section without insertion and with insertion with d = oo,
respectively).
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is hardly detectable (Fig. 8). In this case, the
three-dimensional situation is approximated fairly
well by a two-dimensional model of H-polariza-
tion.

As d increases, along with conductive redistri-
bution of the current, magnetic and inductive
effects of the current flowing into the inclusion
become important. Figures 9 and 10 show plots of
apparent resistivities for d=50 km along two
orthogonal azimuths ¢ = 0 and ¢ = 7/2 (the nor-
mal electric field is linearly polarized at azimuth
¢ =0). A comparison of these findings with the
curves for E- and H-polarization (Berdichevsky et
al., 1982) suggest that for d =50 km the behavior
of the p,, curves along azimuths ¢ =0, 7/2 re-
sembles qualitatively that of apparent resistivity
curves for H- and E- polarizations, respectively.

5. Conclusions

The results of test calculations and practical
experience with the FDMS-3D program demon-
strate that the direct finite-element method with
special basis functions is an effective means of
numerical modeling of quasi-stationary electro-
magnetic fields in three-dimensional media ex-
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Fig. 9. Apparent resistivity p.,/p; for the model, shown in
Fig. 7, with d =50 km (¢ =0; r/d =0; 0.5; 0.9).

hibiting an axial symmetry. The FDMS-3D pro-
gram does not require appreciable computer re-
sources and applies equally to purely methodical
calculations and to the solution of a fairly wide
range of practical geoelectrical problems.

1A%

N L D

345678

AZh,
Fig. 10. Apparent resistivity p,, /o, for the model, shown in
Fig. 7, with d = 50 km (¢ = #/2; r/d =0; 0.5; 0.9; 1.1).
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