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Introduction
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For a long time, scientists have been paying attention to gradient theories. Among
these theories, a special place is occupied by second-gradient theories with respect
to the displacement vector and the strain tensor. They have been researched by
Jaramillo, Mindlin, Toupin and etc.

Today scientist like Aifantis, Askes, F. dell’Isola, C. Polizzotto, H.Altenbach,
W.Muller, P.Seppech and etc., and the authors of this report continue to develop
gradient theories.

In particular, the authors, based on three-dimensional gradient theories, construct
the corresponding gradient theories of thin bodies. For this we use the method of
orthogonal polynomials. A thin body is a three-dimensional body, one dimension
of which is smaller than the others, or it is a three-dimensional body, two
dimensions of which are smaller than the third.

The presentation will mainly focus on the generalized second-gradient theory with
respect to the strain tensor and the velocity vector, for which the constitutive
relations and differential equations of motion and equilibrium are obtained. Then,
based on these equations, we get the corresponding equations of the
second-gradient theory of prismatic thin bodies with one small size.
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Micropolar Linear Theory of Elasticity

Energy density and constitutive relations
Energy density and constitutive relations in non-isotherma

TITATTRS
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Here "T"hereinafter means the operation of transposition
P is a stress tensor, p is a moment stress tensor
= Lo

® is an n-inner product
D(«,) is the energy density
¥=Vu-— C .y is a strain tensor,

%=V is a bending-torsion tensor
A, B, C, D are the fourth rank elastic modulus tensors
g is a third-rank discriminant tensor

u is the vector of displacements, ¢ is the vector of rotations
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Energy density and constitutive relations in non-isothermal processes

2 2 2 2
P=A®>K-ad)+BR(x—dv), p=Cx(y—ad)+D®(x—dv),

Here ¥ = T — Ty is the temperature difference

a,d are thermal expansion tensors

2 2 2
P=A®Vu+BoVep - ARC ¢ —bd,
~2 ~2 2
p=CR®Vu+DeVep - CRC ¢ — B9,

where for thermomechanical property tensors we introduced

2 2 2 2
b=A®a+B®d, B=C®a+Dad
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Geremillo material
2 3 2 3
P=ARe+’BRx%, p="BRe+Dex [=1/2(VutVu’), %=Veg],

P :Azgklakl_;'_Bz]k:lm%klm’ M’L]k —B z]klmalm + D”klmn%lmnv B'L]klm:Bklng'

If the material has a center of symmetry, then °B = 0, 5B’ = 0 and
2 y -
P=A®e (P7=Alkegy),
3 - iy
p=D®x (u*=DWkmng ).
Here 5B, 6D are fifth and sixth rank material tensors, respectively

€ is a strain tensor
p is a couple stress tensor
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Non-linear second-gradient type material
In this case, instead of € and »# = Vg in the previous material, we consider

G=F F", »=VG,

respectively, where
[}

F = Vr is the position (motion) gradient
G is the Green’s (Cauchy—Green’s) strain tensor
r is a position vector in actual configuration

o
V is a nabla-operator in reference configuration
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If the material has a center of symmetry then SB=0, 5B’ =0 and
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Geremillo material
Second-gradient type materials Non-linear second-gradient type material

Tupin’s material (gradient material)

Mindlin material

Mindlin and Eshel material
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1 2 2 1 2 2 1 36 3 2 2 25 3 25 3
©=e®ARe+ 70DOY o2 Hox+e@BY+e0 Co 210" F® %,

X is a macroradius vector, £ is a microradius vector, u is a macrodisplacement
vector, v is a microdisplacement vector,

€ is a macrostrain tensor, Y is a relative distortion tensor, 'x£) =Vevisa
microdistortion tensor, 3 = ng is a macrogradient of the microdistortion tensor

(these tensors are not depend on microcoordinates),
P is a symmetric stress tensor, Q is an asymmetric relative stress tensor,
y, is a couple stress tensor,

® is the strain energy per unit of volume.
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Mindlin and Eshel material
Elastic strain energy
1,2 2 3 3 1 T
=0ex) = (E®ABe + 20°Dwx), e=(VutVu'), z=VVu.
Constitutive relations
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1
€ij = §(Vzu] + Vjui), Hijk = HAjik = ViVjuk.

Aijrt = Ajikt = Aijik = Aktijs  Dijkimn = Djikimn = Dijkmin = Dimnijk
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The arbitrary isotropic tensors A and 6D have representations

A =a1Cn) +a2C2) +a3Cs),

GD = b0 EEE + bQEQ(z) + b3EQ(3) —+ b4g(2)E -+ b5rirjrirkrjrk + barirjriErj—i—

+b7g(3)E + bgri1']-1'k1'irjr’C + bgrirjrkrirkrj + bmriEr]-rirj + bllrirjrkrjrirk+
+b12rirj]jrirj + blgrig(l)ri + b14r7;(:3(2)ri + b15rig(3)ri.

Here E is the second rank unit tensor

g(l)., 9(2) and 9(3) are isotropic tensors of the fourth rank

r;,r’ are covariant and contravariant basis vectors, respectively
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Taking into account the symmetries of the components of the tensors A and D,
az = a3, dy =by =by=0bs=0b13, d2 =bs=bs=by =Dy,

we obtain
d3 = b3, da=bg=0b11, ds=bg=b12=b1a = b5,
A =a1C() +a2(Cz) + Ca)),
%D = d; (EEE + EC(Q) + rirjriErj + riC(l)ri) + d2(2EE + rirjrirkrjrk + riljgrjrier
+d3EC(3) +ds(°E + rlrjrkrjrlrk) + d5(2rzEr + rirrpr’ ipkyd 4 rirj]grirj),
where E is the fourth rank unit tensor with respect to the inner 2-product
operation o
SE = r;rjrprir r* is the sixth rank unit tensor with respect to the inner
3-product operation
If the components of the tensor D have the symmetry Dijkimn = Dijikmn, then
d; = d3 = ds,ds = d4, and the tensor 6]_:) is represented as
6D = dl[E( (1) + C(g) —+ C(B)) + rz(C(l) —+ C(g) —+ C(3)) + rr;r EI‘J + rlrjrkrlrkrj—ﬂ-
+rir; Er’ rJ] + d2[6E +(C C2) + C(3 JE 4 r;r;r ipprirk 4 r;Er;r’ ipd 4 r,rjrkrﬂr’rk}
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A Second Strain Gradient Elasticity Theory with Second Velocity
Gradient Inertia
The elastic strain energy and kinetic energy are represented as

® = ®(e,Ve,VVe), K =K(v,Vv,VVvV)

where € is the strain tensor
v is the velocity vector

Expanding the functions ®(g,Ve,VVe) and K(v,Vv,VVv) to the Maclaurin
series, we will have

P = ®(g,Ve,VVe) = §i( 23+Ve®i+vv ® 0 )(k><1>
S ] 9 Ve OVVe )y

< 1 9 9 o \®
K= K(V,VV,VVV) Z: kf 67 + Vv ® W + VVv ® 8VVV K
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Neglecting terms of the second order in the relations, we obtain
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where the following notations v = Vg, % = VVg, v = Vv and v = VVv are
introduced.
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Elastic strain energy and kinetic energy

Second-gradient theory of elasticity with respect to the stra - .
Constitutive relations
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Note that for ¢ = 0, v = 0 and » = 0 the elastic strain energy, and for v = 0,

v =0 and v = 0 the kinetic energy, takes on a minimum value, which is zero. In

this regard, the values of the first derivatives of the elastic strain energy and
kinetic energy in their arguments are also equal to zero. So these two relations can
be represented as

1 4 5 6
Pley %) = (AU @ ee +2°A0 Gey + 2640 @ ext

6 7 8
+ACD @y + 24D @ 72+ SACY) © )

2 3 4
K(vv.y) = % (*BUY @ vv +29B02 @ vy +2°BUY) @ vy +

3 5 6
+1B(2) g yy + 29B(23) @ vy + 6B(33) g XX)'
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Here we introduced the following notation

2
(11) — AQD GGkl - AL G5kl oo
A Aijklr rirfrt = A ortrirfr ( )(0)’

“ Oede
22 ) 22 i j >
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- Y0y /(0)
2
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The following symmetries take place

Afjiim = Agintm = Aiont Akt = Wikt = Alikmn = ALk
Gtmnp =Aiistmnp = Al iming = Alskimpns AGa1 = Agial = A = Afdi).

A kmn = A tmn = A thm = Almnigts Bkt =BGl BGitm = Blikms

By =BV, B = B B = Bitmn = Biitnm = Blmnise
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Second-gradient theory of elasticity with respect to the stra . . A
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Constitutive relations

E:aag =4é(11)é§+5é(12)%7+65(13)é2§,
5 R =
P = 9% 5p2)T G 0aCD § s AEY &y
=~ oVe s =
o0 2 3 aoy 4
PO@ — — (6A(IBNT A (23))T 8A (33) .
P avve CAT)  @e+ (™) @y +" A ® x;
_ E;TK 2B Gy £ 3B Sy 1 1BUD &y
A'S -~ -~ -~ -~ o~
0 = 98 spanyrdy i Gy 15RO &y,
oVv ~
o2 - 9K _ (BUBNT vt (CBENT dvioBG3 Sy,
T T avwv L7 = R X

Introducing tensor columns and tensor-block matrices the constitutive relations
can be written in short form |1{ =MoX |, |Y: N@Ul
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4 (11) 5A(12) 6A (13) c P
M= (54;(12))T 6;(22) 7;(23)  X= i y= 1:3(1) ,
(aé(ls))T (76(23))T 85(33) % 8(2)
2g(11) 3g(12)  4g(3) v n
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Here the following product-operators are introduced

2 1
® 0 0 ® 0 O
3 2
4 3
0 0 ® 0 0 ®
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Let us present the elements of matrices as

4 4 6 4
A gee=Avee, AP @yy=A® 71" a1y,
8 4 2 2 5 — 4
A ©xx=A0 " 02 dx), AP ey =40 (a 1),

_ 4 2 7
6&(13) ®ex = é ® (@(3) ®,:{)7 7&(23) ® v

2 2
2B @vv=B&vv, *B(Z ® vv=B ® (vT - . v),

6 2 2 2 2 3 _ 2
B oyvy=Ba(y' ®b® ay), B @vy=B&(vb-v),

4 _ 2 2 5 _ 2 2
45(13) e — B® (Vb(3) ® 2)7 53(23) Qvv = B® (!T . 2(4) ® X)’
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Here é = Ajjrieiejere; is the elasticity modulus tensor, Ak = Ariij = Ajik
A = Ajjrieiejerer, Aiju = Ajikt = Aijik, Aijl # Aklij

_ 1) _ (1 2) _ (2) _ @
a=ase;, al) = agj)eiej, g( ) = agjkleiejekel, a®® = agj)eiej and

3(4) =a® e;eje are the length scale tensors

2 ijk
@ _ @ @) _ (2 @3 _ @ _ @)
Qig- = Qi Y = Mg g T Ce = Yk

B = Bjje;e;, B = Bjjeie;
b= bie'iv b(l) = b§]1-)eie]', §(2) = bg‘l)cleiejekel’ b(s) = bg?eiej and

Q<4) = bz(.;.l}geiejek are the tensors for inertia effects

(1) (1) 42 — B B (3) _ 3 @) _ (@)
bij 7 bji ) bijk Bij = Bji, Bij # Bji, bij = bji ) bijk - bz‘kj

_ (2 _ (2
1= O = b5k
1

1
T _ T _

v' = (vijreiejer)’ = vijrejere;
T 7

X = (vijkeiejek) = vijkekeiej

T _ T _ _
= (”‘ijkleiejekel) = %ijki€L€eI€i€;, €; - €; = 5ij

R

0;; is the Kronecker delta, 7,5,k,l = 1,2,3
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1 4 1 2 2
D) = 5[A6 (e 9T a0 y+ 272G x)+

_ 4 2 1 2
+2A® (say +ea®ax+9T aW o x)] =
1 ijkl (I)mn (2)mn
= 5 [A J <5ij5kl + Ymij @ Ynkl + Hmnij @ pq%qul)+

+2 Atikl <5ijam')/mkl + ;a3 ™ st + ’Ymij“(‘l)mnp%"”“)] :

1 2 22 2
Kvyy) =5[Be (wyT M- v+yTop® G y)+

2B (vboy +vb@dy +vT bW dy)| =

R<

1 -
=3 [B” (ij + v bWy 4 Uklz'b@)klmnvmnj)"‘
+2BU (vibkvkj + ’l}ib(?’)klvklj + vkib(‘l)klm’vlmj)];
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P = ‘?93 =ARe+A®(a v+a® @),
e = = = =
P = 9% ATE e ta).y B A+ (aWEXEA
~ dVe = ~ =~ ~
P _r2 1 2 _
pe) = %v; —a@ATde+ (@)1 4 A+ (@®&x) & A;
_ 2
r=28 BB (boy+b®dy)
ov =
K _ 2 _
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If the material has a center of symmetry, then the odd-rank material tensors are
equal to zero

4 1 2 2 4 2
Pleyx) = ;A0 e+ 2V y+x"0aP 8 x) + A (Vo) =
= 514““ (eijkt + Ymig @D ™ Vgt + stmnigaP P, )+ AR q B
1 2 T 1 % 2 9) 2 _ 2 3) 2
K(vyy) =;B& (vw+ty bYW v+ vT@bP @v) +BovbP oy =

1
EBZJ (vlvj + v b(l)klvl + Vii; b(Q)klm"vmn ) + Biy; b(g)klvkl

p_92_Ad. e+Ad@® by, p =9 _w.,éA

~ O = = ~ ovVe ~ 0=

P = 2 _@ATEe+ @@dx)BA, (@F)T =a®)

= adVVE NOOK 1,
=——=B-v+B- (b® @ =22 _ Zp® 4 pWT).v.B

4 ov v ( ®V) T ovVv 2(~ +(®) ) =

oK

@ = 9K _pov. B+ b B. (bT — p(®

1) = 2o —b@v B+ (P y) B, (W) =b
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If A =0 and B = 0, then we get

P

>
[N

™

e, PO =a).vp

P® — a®»& vVP
B-v, =) =bM . vnr,
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Following Polizzotto (C.Polizzotto "A second strain gradient elasticity theory
with second velocity gradient inertia"— Part I and II), we introduce the symmetric
stress tensor P and the (basic) momentum vector (body momentum) p as a
function of the velocity and velocity gradients, which in this case can be present as

2 2 4
T=P-V-PO4+VVRP?® =(1-aMeVVv+aP@VVVV)P,

2 2 4
p=m-V.-2M4+Vvve@r® =1-bVaVVv+bPeVVVvV)r

Here P is the Cauchy stress tensor,
p is the momentum vector,
7 = pv, B = pE, p is a density,
a(l) and a® are length scale tensors for statics,
(1) and B(Q) are length scale tensors for inertia effects (dynamics)
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The case of an isotropic material
A =a1C(1)+a2(C2) +C3)), A =0,a) = LE, a® = 15C(1) +15(C2) + C(3));

B =E, B=0,b") = d:E and b® = d;Cyy + d5(C(2) + C(s))

Taking into account these relations we can represent the constitutive relations, the
stress tensor T and the momentum vector p in the form

2
A®e, PO =4VP, PO® = (LEA +2l,VV)P,

P
a=B-v, 10 =a;vr, 1? = (dEA +2d,VV)m,

T=(1-U1A+1LAYP, Iy =1)+2l4,
p=1-diA+d2A?)7w, dp=d}+dj,

where I7 and 2 are length scale parameters for statics, di and d2 length scale
parameters for inertia effects.
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The case of a transversally-isotropic material
The linearly independent transversally-isotropic tensors of the second rank are the
tensors

I=e,e €

— 3) — —
I 1€, €=¢€, €€, '1()—99 <IJ=12>.

3737

Therefore, the general form of a transversal-isotropic tensor of the second rank a,
when components do not have any symmetry, is a linear combination of these
tensors

a=ULI+letlzeze,.

If a is a symmetric tensor (a = a”), then I = 0 and from we get the following
representation
a=h1I+1lzeze,,
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Any transversally-isotropic tensor of fourth rank A which components have the
next symmetries Aijkl = Aklij = Aijlk’ has five independent components and can
be represented as

A = A1C) +2(A1 — A2)(C(2) + C(s)) + As(lege; +ege D)+
+Asezeieje, + A5(eje3eje3 +ere;ejer +ejejeje, + e3eJe3eJ).

Therefore, in this case, the stress tensor and the momentum vector will take the
form

T =[1+ (I3A —11)A + (a2 — 12)03 + 1505]P = aP,

a=1+ (I3A —11)A + (LA — 12)92 + 1504

P = p[l + (d3A — d1)A + (daA — d2)3 + d503]v = pv,

o' = p[l+ (dsA — d1)A + (dsA — d2)02 + d503]

13 =1 + 2P, 1y =20 + 2, 15=1?,

dg = dP +2dP, dy =2 +2d4?), ds=d?, A=0,0.

M.Nikabadzel, A.Ulukhanian?, N.Mardaleishvili® SOME ISSUES OF THE THEORIES OF THIN BODIES



Equations of motion of isotropic bodies with respect to disg
Equations of the qua
Equations of the q

atic isotropic bodies with re

ic prismatic bodies of con
Equations of motion of second strain gradient elasticity the

TITATTRS

Equations of motion of second strain gradient elasticity theory with
respect to displacement vector for the considered body can be written as

(V~I+0F:p%’) =

2 4 2 4 d
((1 ~aW@VV +a@@VVVV)V- P+ oF = (1 - bD@VV + p@)@vvvwd—’t’)
This equations can be written in short form
M’ -u+ pF =0,
where we introduced
3
é ® VVu = L -u, L = eielAijMBj@k,
M =L - pEd}, L' =adL,
2 4
a=1-aM@vVVv+a®evvvvy),
2 - 4
P =p(1-bD@VV+bERVVVVY).

Note that the last equation is the equation of motion with respect to the
displacement vector of the second-gradient linear theory with respect to the strain
tensor and the velocity vector for arbitrarily anisotropic homogeneous medium.

M’ is a second rank differential tensor operator.
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M’ =EQ,) + (N +p)VV, M= (EQ| — (N +u)VV)Q; =N'Qy, 1/ = ua,
N =EQ| — (N +p)VV, Q=05+ N +p)A=N+2u)A—p'd2, N =Aa,
'A=p'dF, a=1-ULA+1A% p=p(l-diA+dA%), N M =EQ|Q,

We obtain the following splitted equations
Q1Q5u+ N’ (pF) =0.
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Equations of the quasi-static isotropic bodies with respect to
displacement vector
aA2u+G =0, a=1—-U1A+13A2,

“(pF), N=(A+2p)A - (A+p)VV

1
= N N
A+ p)p
which is reduced to the form

(12A% — ;A3 + A2)u+ G =0.
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Equations of the quasi-static second strain gradient theory of isotropic
prismatic bodies of constant thickness with respect to displacement
vector and with respect to moments of the displacement vector

We consider a prismatic body of constant thickness 2h and take the middle plane
as the base plane. Then the nabla-operator and the Laplacian we represent in the
form

VF = (rP8p +1r383)F = (rP0p + h~1nd)F, —1<a? <1,
AF = (gPR0p0g + ¢33 02)F = (A + h™202)F, A =g"?9p0q.
Thus, the equation for the prismatic bodies can be represented as
[(12A2 — 15 A + 1)A2 4 h=2(41,A% — 31, A + 2)A02+
+h=4(612A2 — 311A — 1)05 + h=6(4l2A — 11)05 + 2 81205]lu + G = 0.
Applying the kth moment operator of any system of orthogonal polynomials

(Legendre, Chebyshev) to the equation, we obtain the following equations in
moments of displacement vector

(12A2 — ;A + 1)A2(ﬁ) +h™2(41,A% — 31, A + 2)5(3)” + h™%(612A2 — 31, A — 1)(1’3)”+
_ k k
+h=6(4leA — l1)<u)w + 2h*8l28§<u)w” +G =0, keNp (Ng={0,1,2,...}).
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Equations of the quasi-static second strain gradient theory of isotropic
prismatic bodies of constant thickness in moments of displacement
vector with respect to the system of Legendre polynomials

k
To obtain the desired systems of equations we need to find expression for <u)”
k k k
<u)IV, <u)VI and (u)VIH when —1 < 23 < 1.
In this case they are defined using the following relationship

m 0 2m—1 2k+2m—2
®e '>(x’)=(2n+1)2 crmt, I (2n42k+25— 1) "THEP

= 2L S o @m (- >"+k(a§m*’“u>—1pff*1(1>+(ﬁ)<2m>,
X [n/2—m+1] n—2k—2m
Wem =@y ot H N(on—2k—2s+3) "G,

Here Ng = NU {0}, N is the set of natural numbers, Cii‘;ﬂi_z are binomial
coefficients, (95u)* = (95u)| seN, neNg, meN.

k
We see that <u) (u)IV, ..., are represented as an infinite sum of moments of

displacement vector. So, we get different representations of the systems of
equations of the quasi-static second strain gradient theory of isotropic prismatic
thin bodies of constant thickness in moments.
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Equations of the quasi-static second strain gradient elasticity theory of
transversal-isotropic bodies with respect to displacement vector

In case of transversal-isotropic medium the tensor-operator L, tensor-operator o
algebraic cofactors Ly for L and the determinant |L| have the form

2L = [(A1 — A2)I + 2A45ese3] A + (A1 + A2)VOVO+
+2(A3 4 A5)[e3 V0 + (e3V?)T]03 + 2(As1 + Asezes)d3;
2L, = 2I{A1 AsA? + [A1 Ay — A3(As + 2A5)|A03 + Ay A503}—
—{(A1 + A2)As A + [(A1 + A2) Ay — 2(As + A5)?]02}VOVO—
—[(A1 — A2)(As + A5)A + 2(A3 + A5)A502][e3 VO + (esVO)T)03+
+es[A1 (A1 — A2)A? + (3A1 — A2)AsAS? + 2A203);
L-L.=L. -L=E[L| |L| =detL, V° =e;0r, I=ere;, A=0;9r;
IL| = AA3 + BA202 + CAd% + DOS = k(A + k102)(A + k202)(A + k303);
k= A, ki +ko+ ks = B/A, kika + kiks + kaks = C/A, kikaks = D/A,
A=(1/2)(A1—A2)A1 A5, B = (1/2){(A1—A2)[A1As— A3(A3+2A5)] + 24,1 A2},
C=(1/2)[(3A1—A2) Ay A5 —2A3A5(A3+245)], D=A4A2.
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Neglecting inertial terms we will have

[ utpF=0 L =aL

The splitted equations of the classic theory of elasticity are

[ILlu+L. - (oF) = 0|
or if we will look for a solution as u = L. -v where v is an arbitrary vector, then
we get

Multiplying the equation by L. on the left, we get

ILI'u+ Lo (0F) =0, |LI' =alLl, a=1+ (A —1)A + (1A — 12)33 + 1503
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Equations of the quasi-static second strain gradient elasticity theory of
transversal-isotropic bodies with respect to the displacement vector
Taking into account the relation for |L| we obtain the following vector equation
splitted over the components of the displacement vector
{A(I3A% — 1A + 1)A3 4 [(Bl3 + Aly)A? — (Bly + Alg)A + B]A%92+
+[(Als + Bly + Cl3)A% — (Bly + Cl1)A + C]Ad4 + [(Bls + Cly + DIg)AZ—
—(Cla + D(I1 — l4)) A 4+ D(1 — 12)]85 + ClsAdS + Di583° }u + L. (pF) = 0,
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Equations of the quasi-static second strain gradient theory of
transversal-isotropic prismatic bodies of constant thickness with
respect to displacement vector and with respect to moments of the
displacement vector

Here we have the next equation for prismatic bodies

{A(13A% — 11 A + 1)A% + h=2[(Bl3 + Aly)A? — (Bly + Al2)A + B]A203+

+h~%4[(Als + Bl4 + Cl3)A? — (Bly + Cl1)A + C]Ad4 + h=C[(Bl5 + Cls + DI3g)A%—

—(Cla + D(l1 — 14))A + D(1 — 12)]3§ + h=8C15A05 + h~19DI503°}u + L. - (oF) = 0.
Applying the kth moment operator of any system of orthogonal polynomials

(Legendre, Chebyshev) to the equation, we obtain the following equations in
moments of displacement vector

A(3A2 — 1 A+ 1)A3Y + h=2[(Bls + Ala)A% — (Bl + Al2)A + BJA2H " +

— — —(k —
+h~4[(Als 4+ Bly + Cl3)A2 — (Bla + Cl1)A + C]A(u)”/ + h=S[(Bls + Cl4 + DI3)A2—

—(Clz + D(l1 — 14))A+ D(1 12)]( VI =801 AW VI 4+ h10 s WX

+L«-(pF) =0, keNg (No={0,1,2,...}).
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Equations of the quasi-static second strain gradient theory of
transversal-isotropic prismatic bodies of constant thickness in moments
of displacement vector relative to the system of Legendre polynomials

k
To obtain the desired systems of equations we need to find expression for <u)”,

k k k k
(u)IV, <u)VI, (u)VIH and (u)X when —1 < 23 < 1. Here they are defined using the

following relationship

m 0 2m—1 2k+2m—2
@™ (@) =(2n+1) 3 crmt LTl (2n42k+25— 1) "THE
k=1 s=1

2n+1 2m k
= L S (CDR @™ w4 (<) R ) PR () + W e,
k=1
E [n/2—m+1] 2m—1 n—2k—2m
Wem —@ni1) ¥ 2t U @n-2k-25+3)" "0 neng, men.
k=1 s=1

Here Ng = NU {0}, N is the set of natural numbers, Cgi‘;ﬂi_z are binomial
coefficients, (95u)~ = (95u)| , and (B5u)t = (03u)| seN.

r3=— x3=1"
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Eigenvalue Problem and Construction of a Complete System of
Eigentensor Columns of Symmetric Tensor-Block Matrix

Above, we have written the relations using tensor-block matrices (TBM). Let me
introduce a definition of the TBM.

Block matrix, whose blocks are composed of the various rank tensors, is called the
TBM.

TBM of sizes ¢ X m can be written as

A A 0 Ay

M = (8.1)

Aql Aq2 e Aqm

where m and ¢ are some natural numbers; Ay, k = 1,q, | = 1,m are the arbitrary
tensors, also called the subtensors of TBM (8.1)
The matrix

T T T
Al Ay o Ay
MT = ,

is called transposed matrix with the TBM.
TBM, which coincides with its transpose matrix is called symmetric.
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TBM is said to be quadratic if the number of rows and columns are the same
(g =m).
Such matrices are often used in the application.

Column matrix (row matrix) whose elements are the tensors of various rank, is
called the tensor column (tensor row). The tensor column U whose elements are
the p-rank tensors, is represented in the form

T o itinei
U:(Ula---vU'm)T:(Ul,ilig--»ipy---1Um,i1i2~-ip) R1%2 %,

Now we can formulate the eigenvalue problem of the TBM

Eigenvalue problem. It is required to find all tensor columns
U= (Uy,...,.Un)"T (U7 = (Uy,...,Un)),

satisfying the equation
p
MU = AU,

where A is a scalar.
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1. The authors propose constitutive relations and derive the equations of motion
and equilibrium of the second-gradient linear theory of anisotropic inhomogeneous
elastic bodies with respect to the strain tensor and the three-dimensional velocity
vector. These relations generalize the corresponding relations obtained by
C.Polizzotto.

2. Authors derived the equations of motion and equilibrium of the second-gradient
linear theory of anisotropic homogeneous elastic bodies with respect to the
displacement vector. At the same time, the authors presented these equations
using the introduced differential tensor-operators of the second rank. As a special
case, equations are obtained for the cases of isotropic and transversely-isotropic
bodies.

3. For the differential tensor-operators indicated above, we have found expressions
for the differential tensor-operators of the cofactors. Based on them, the
corresponding equations splitted over the components of the displacement vector
are obtained. 4. In the case of isotropic and transversely-isotropic homogeneous
elastic bodies with respect to the displacement vector, three-dimensional splitted
equations for prismatic thin bodies with respect to the displacement vector are
obtained. To do this, the authors used the classical parametrization of the domain
of a prismatic thin body.
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5. Applying the method of orthogonal polynomials from the splitted quasi-static
equations indicated above, the quasi-static equations of the second-gradient theory
of isotropic and transversely isotropic homogeneous elastic prismatic thin bodies
in moments of displacement vector with respect to an arbitrary orthogonal system
of polynomials are obtained. As a special case, we obtain equations in moments
with respect to the system of Legendre polynomials.

It should be noted that the resulting systems of equations of various
approximations in moments of the displacement vector are splitted for each
moment of the displacement vector. As a result, we come to the high-order
elliptic-type equations. The Vekua method can be used to solve these equations.
Thus, one can obtain analytical solutions in the class of analytic functions of a
complex variable. A special case of the general solution of the 6-th order elliptic
equation can be found in the work

A.Ulukhanyan, Representation of Solutions to Equations of Hyperbolic Type.
Moscow University Mechanics Bulletin, 2010
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