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Abstract. This paper studies the applicability of various versions of the regularized 13-moment system (R13) as applied 
to the problem of the shock wave structure in a monatomic Maxwell gas in a wide range of Mach numbers (1.0<M<8.0). 
Over time, several versions of the R13 equations were presented, which differ in non-linear contributions for high-order 
moments. The challenge of this study is to determine the range of applicability of each variant of the moment equations 
as applied to non-equilibrium supersonic flows, depending on the Mach number and local Knudsen number. Numerical 
results obtained for the R13 system are compared to DSMC data computed by the SMILE++ software system. 

INTRODUCTION  

Macroscopic equations for rarefied flows can be derived as approximations to the Boltzmann equation, with the 
goal to have faster numerical calculations, or even exact solutions, while allowing for some inaccuracy due to the 
approximation. The Navier-Stokes and Fourier equations of classical hydrodynamics serve this purpose well only 
for sufficiently small Knudsen numbers Kn. For processes in the transition regime, successful extensions of the 
hydrodynamic equations are based on Grad’s moment method [1], and in the following we consider the regularized 
13 moment (R13) equations, which correct Grad’s celebrated 13 moment system by accounting for the influence of 
higher moments [2]. The R13 equations were shown to give a good description of all relevant rarefactions effects, 
such as jump and slip, transpiration flow, Knudsen layers, thermal stresses, non-Fourier heat flux, shock structures, 
etc. 

Over the years, due to refinement of the derivation of the equations, there appeared a number of different 
variants of the R13 equations, with differences particularly in the non-linear contributions to higher moments. All 
variants agree in the sense that their Chapman-Enskog expansion [3] to super-Burnett order, i.e., third order in Kn, 
yields the same result. Moreover, the R13 equations show great success for microflows, for which the non-linear 
terms play only a minor role, and can often be ignored. However, the full non-linear equations differ, and hence 
show different behavior for flows in which non-linarites play a marked role. The goal of the present study is to 
examine the different variants for their ability to describe shock structures in good agreement to solutions of the 
Boltzmann equation, which here are produced by DSMC simulations.   
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FORMULATION OF THE PROBLEM  

A one-dimensional plane shock wave problem is considered (flow from left to right), where the free-stream gas-
dynamic variables 1 , 1xv , and  (on the left) are input parameters. To impose the boundary conditions on the 
subsonic right boundary, the corresponding values , 2xv , and  are calculated from the free-stream parameters 

, , and  with the use of conservation equations (Rankine-Hugoniot conditions)  

 
2

2,  ,  .
2
x

x x
v

v const v p const h const   (1) 

where ρ is density, vx is velocity, p is pressure, and h is; for a monatomic gas , where . 
All results presented further are in the dimensionless form. The temperature and density are normalized in 

accordance with the formulas  

  

With this, the macroparameters on the upstream and downstream boundaries have the values of 0 and 1, 
respectively. 

R13 VARIANTS 

Regularization of the Grad’s original 13-moment system [1] was derived in 2003 [2] by Chapman-Enskog 
expansion [3] of higher moment equations only, based on the artificial assumption of faster relaxation times for 
higher moments. The tensor form of the regularized 13-moment system (R13) can be written as 
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where the density , velocity , temperature in energy units k
m T  (  is the Boltzmann constant), viscous stress 

tensor , and heat flux  form 13 primitive variables; the 14th variable is the pressure p , where 
/ p   is the relaxation time, and  is the viscosity coefficient. The angular brackets in the subscripts indicate 

the trace-free and symmetric part of the tensor. Equations (2) – (4) are the conservation laws for mass, momentum 
and energy; equations (5) and (6) are the moment equations for stress tensor and heat flux vector, respectively. 
These 13 equations must be closed by constitutive relations for the higher moments Rij, , mijk, and these differ 
based on the method of (regularizing) closure, as discussed next. For Grad’s original 13 moment equations [1], Rij = 

 = mijk=0. 

Original Variant (2003) 

The original variant of the R13 system obtained by Struchtrup and Torrilhon [2] in 2003 can be written as  

1T
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Relations (7)-(9) are written in a compact form by using the equation of state for an ideal gas and the Navier-

Stokes and Fourier laws, with 2 iNSF
ij

j

v

x
,  15
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pp
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Linearization around equilibrium reduces the equations to  

 2412 ,  ,  2 .
5

i ijl
ij ijk

l j k

qq
R m

x x x
  (10) 

These terms provide the main gradient transport mechanisms (GTM) [4] for the stress tensor and heat flux. The 
terms omitted in the linear case form the so-called non-gradient transport mechanisms (NGTM) [5]. The linear 
variant (10) and the original nonlinear variant (7)-(9) were studied for shock structures in [6-8].  

The underlined terms of Eqs. (7)-(9) are terms of the 4th order in Knudsen number, which do not contribute to 
the super-Burnett order. It should be noted that full balance laws for , , and  should be used to reach the 
rigorous equations at 4th order.  

Order of Magnitude Closure (2005) 

Struchtrup [6] proposed a new variant of relations for high-order moments, based on a careful examination of the 
order of magnitude in Knudsen number of all terms in the equations. Here, and in all variants discussed further, the 
fourth-order terms with respect to the Knudsen number are removed. Additional nonlinear terms appear in the 
relations for , as compared to Eqs. (7)-(9), which were ignored in the original derivation, where only linear 
production terms for Maxwell molecules were used. Their omission in the original equations is the reason why there 
were discrepancies in the super-Burnett coefficients [9]. The resulting system reads 
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The First Modification for Boundary Conditions (2008) 

This modification appeared in the course of solving the problem of a steady gas flow in a channel in the 
transitional regime with essentially subsonic velocities. The question of formulating proper boundary conditions for 
the R13 equations is under ongoing investigation [10]. Torrilhon and Struchtrup [11] proposed a system of boundary 
conditions for simulating gas interaction with the solid wall at a given temperature for obtaining a simpler variant of 
analytical expressions for , , and  than those described above. This variant is based on several 
simplifications. First of all, the nonlinear terms that appeared in Eqs. (11) and (12) are omitted. The second 

ijR ijkm

, ijR

ijR ijkm
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significant simplification is setting the pressure derivatives to zero, which is fairly applicable for the particular 
problems considered in [11]. Thus, Eqs. (11)-(13) reduce to 
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The next step in simplifications is the replacement of  by  in Eqs. (14)-(16), which does not 
change the order of magnitude of these equations, i.e., they still yield the correct super-Burnett equations. However, 
it alters the mathematical properties of the equations such that linear and non-linear equations require the same 
number of boundary conditions. This nonlinear variant of the R13 equations is the roughest one because of the 
above-mentioned simplifications, in particular the assumption of constant pressure, which, however, was justified 
for the processes simulated in [11]. On the other hand, it is obvious that this modification is problematic for studying 
nonlinear problems such as shock structures. Nevertheless, we decided to check the area of applicability of this 
variant and the variant with replacement of  by .   

Modified Order of Magnitude Closure (2013) 

The most recent variant of the R13 equations is based on the variant of 2005 (11)-(13), only that  is 

again replaced by  in order to preserve the order of accuracy of the equations. With this, linear and non-
linear equations require the same number of boundary conditions. Compared to the equations in the previous 
section, the pressure is not restricted. This variant was successfully applied for the first time for simulating a slow 
steady transitional flow in a cavity [12]: 
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NUMERICAL SCHEME 

The numerical method used for solving the various variants of the R13 system in this work was described in 
detail in [8]. A high-order Godunov scheme is used for computing the internal spatial cells. The viscosity coefficient 
in calculated by the power-law formula 

 0
0

T
T

  (20) 

where . The values  and  correspond to the models of hard spheres and Maxwell 
molecules, respectively [6]. The convergence of numerical scheme of R13 has been demonstrated in [8]. All 
computations described in this paper were performed for Maxwell molecules.  

The DSMC computations were performed by the SMILE++ software system [13,14] based on the majorant 
frequency scheme [15]. Molecular interaction was described by the Variable Hard Sphere (VHS) model [16], which 
corresponds to the model of hard spheres for ω = 0.5 and to the model of pseudo-Maxwell molecules for ω = 1; in 
the latter case, molecular scattering is isotropic, in contrast to the model of Maxwell molecules. Further in the paper, 
all results for Maxwell molecules were obtained by the DSMC method with the VHS model for ω = 1. The 
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parameters of the numerical method in the DSMC computations (the collision cell size, the number of simulated 
particles, the time step) were chosen in such a way that they ensured an accurate result and were similar to [8]. 

RESULTS AND DICUSSION 

Previously, only the linear variant of the R13 system (10) [6,17] and the nonlinear variant (7)-(9) were used for 
supersonic flows in general, and for the problem of the shock wave structure in particular, whereas the fourth-order 
terms with respect to the Knudsen numbers were neglected [7, 8]. Numerical results for the R13 system and DSMC 
computations were obtained in a wide range of Mach numbers (1.0<M<8.0). In this section, we report the results 
that could be obtained for all nonlinear variants of the R13 system discussed above. These results are compared with 
reference data computed by the DSMC method.  

M=2.0 

For weak shock waves, the results were obtained for all variants described above. The density and temperature 
profiles obtained by solving the R13 system are compared in Fig. 1 with the reference DSMC data for the Mach 
number M=2.0. It is seen that all R13 versions work well in this regime. It should be noted that the roughest 
modification (14)-(16) with replacement of  by , which was used in [11] for steady gas flows 
in microchannels, ensures good agreement with the DSMC results for this Mach number. A similar pattern is also 
observed for other macroparameters, including the streamwise heat flux and components of the viscous stress tensor.  

  
(a) (b) 

FIGURE 1. Comparison of R13 density and temperature profiles with DSMC data for M=2.0: (a) Original variant (2003 full), 
the same variant without 4th order corrections (2003 restricted), and order of magnitude closure modification (2005).                  

(b) Boundary condition modification (2008 with NSF), the same with  (2008 without NSF), and 

modified order of magnitude closure variant (2013). 

M=4.0 

The same comparison is performed in Fig. 2 for Mach number M=4.0. As the shock wave becomes stronger, 
nonlinear terms contribute more, and the pattern becomes appreciably different. As could be expected, the worst 
result is provided by the roughest variant, which is the modification of the R13 system applied to subsonic flows in 
microchannels in [11]. Replacement of  by , which is also used in the variant of 2013, yields 
significantly deteriorated results for the temperature profile. Concerning the earlier R13 variant, the original variant 
with allowance for the fourth-order terms with respect to the Knudsen number provides the best results, as could be 
expected. 

It is of interest that the emergence of the additional nonlinear terms 4
7, k j j kij ij  in Eqs. (11)-(13) does not 

exert any significant influence. It should be noted that a tendency of emerging of a point with a drastic change in the 
derivatives of both temperature and density in the middle of the shock wave is observed for this Mach number. The 
same behavior can be seen in the comparison of heat flux profiles for M=4.0 in Fig 3(a). 
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(a) (b) 

FIGURE 2. Comparison of R13 density and temperature profiles with DSMC data for M=4.0:  (a) Original variant (2003 full), 
the same variant without 4th order corrections (2003 restricted), and order of magnitude closure modification (2005).                 

(b) Boundary condition modification (2008 with NSF), the same with  (2008 without NSF), and 

modified order of magnitude closure variant (2013). 

 M=8.0 

For Mach numbers M>4.0, the numerical solution could not be obtained by using the original variant of 2003 
with allowance for the fourth-order terms. It is still not clear whether the reason is the chosen numerical scheme or 
the mathematical properties of the equations. Concerning other variants, the simplified versions of 2008 and 2013, 
which were already problematic for M=4.0, yield even worse results for M=8.0. The results of the earlier 
modifications of 2003 and 2005 can be hardly distinguished (Fig. 3(b)), similar to the situation for M=4.0. The 
difference between the R13 and DSMC becomes more significant. The point of the drastic change in the temperature 
and density derivatives at the center of the shock wave becomes even more noticeable. Nevertheless, the moment 
approach ensures reasonable qualitative agreement with DSMC results even for this Mach number. 

  
(a) (b) 

FIGURE 3. (a) Comparison of R13 heat flux profiles with DSMC data for M=4.0 (b): M=8.0. Density and temperature. 
Comparison of the original variant without 4th order corrections (2003 restricted) and order of magnitude closure modification 

(2005).  

Distribution of local Knudsen number as a function of Mach number  

The Knudsen number, which is the ratio of the mean free path of molecules to the reference linear scale of the 
considered problem, is one of the basic measures of gas rarefaction. It is also convenient to use this similarity 
parameter for estimating the degree of flow nonequilibrium. The difficulty in applying the classical definition of the 
Knudsen number in the problem of the shock wave structure is the absence of an obvious reference length scale. An 

alternative for the classical definition is the use of the local Knudsen number dQKn
Q dl

, where  is the mean 

free path, Q stands for a macroparameter of interest (density, temperature, etc.), and l is the spatial direction with the 

, ,NSF NSF
ij i ij iq q
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greatest growth of this parameter. Density is most often used as the parameter  in studying the shock wave 
structure. Based on the density gradient, the inverse thickness of the shock wave is obtained, which is an analogy of 
the maximum Knudsen number  in the shock wave [6, 18]. The value of  does not exceed 0.2 for the 
Maxwell gas, e.g., it is smaller than 0.3 for argon [6, 18]. Some publications describe  calculations on the basis 
of temperature profiles [19]. The value of  is significantly different from . For this reason, it is of interest 
to evaluate the local Knudsen number on the basis of other macroparameters of the flow.  

Here we use the idea of estimating the Knudsen number on the basis of the streamwise heat flux  and the 
viscous stress tensor component , which was proposed by Lockerby et al. [20]: 

 4 15,  ,  ,  
3 4max maxxx x

NSF NSF
xx xx x xNSF NSFx

xx q xNSF NSF
xx x

q qv
Kn Kn q

x xq
.  (21) 

This definition is the normalized deviation of the considered parameter from the same parameter calculated by the 
Navier-Stokes-Fourier relations. Figure 4 (a) shows the distribution of the maximum values of  and  as 
functions of the shock wave Mach number, which were calculated on the basis of DSMC data. As is seen from Fig. 
4 (а), the value of  does not experience significant changes with shock wave enhancement; like , it 

remains smaller than 0.2 in the examined range of Mach numbers. The behavior of  is more interesting. On the 

one hand, a clear minimum is observed at M=2.0; on the other hand,  monotonically increases in the 
considered range of Mach numbers at M>2.0. 

  
(a) (b) 

FIGURE 4. Distribution of the maximum local Knudsen number  and  as functions of the Mach number (a) and 

distribution of the maximum value of (b). The results are based on DSMC computations.  

The R13 moment equations are third-order equations with respect to the Knudsen number. Thus, the value of 
 has to be a small for the modeled flow if this moment approach is used. Figure 4 (b) shows the distribution of 
 over Mach number. The horizontal dashed line marks the value , which can be considered as 

being sufficiently small; this corresponds to a Knudsen number just below 0.5. Based on these considerations, we 
can conclude that the formal upper boundary of the area of applicability of the R13 system for supersonic flows is  

. As a whole, this conclusion is confirmed by comparisons of the macroparameter profiles given above. On 
the other hand, the full nonlinear variant of the R13 system offers a possibility of obtaining good qualitative 
agreement with DSMC data for stronger shock waves as well. 

CONCLUSIONS 

We summarize our findings on the applicability of the R13 variants to shock waves. Firstly, all nonlinear 
variants of the R13 system considered in this paper are applicable for simulations of weak shock waves, since the 
various modifications exert only minor effect on results for M=2.0. However, the pattern becomes significantly 
different toward the range of hypersonic velocities. If the influence of the fourth-order terms with respect to the 
Knudsen number is not considered, the original variant of the R13 system (2003) is preferable for supersonic flow 
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simulations. The nonlinear terms 4
7, k j j kij ij  proposed in 2005 [6], which allow obtaining correct coefficients 

for the super-Burnett equations, do not exert noticeable effects in the entire range of Mach numbers considered.  
Since the modifications proposed after 2005 were driven by the desire to use the same boundary conditions for 

linear and non-linear equations, the unsatisfactory results for strong shock waves calculated with these modifications 
indicate the necessity to revise the formulation of the boundary conditions of the R13 system on the solid wall for 
strongly supersonic flows.  

Concerning the fourth-order corrections with respect to the Knudsen numbers included into the high-order 
relations in Eqs. (7)-(9), they ensure significant improvement of results for . At the same time, the 
numerical solution for the shock wave structure for  could not be obtained by the method used in this study. 
A mathematical explanation of this observation is yet to be found.  

In the study, we obtained the Knudsen number distributions based on  and  as functions of the Mach 
number. These data allow us to argue that there is a formal upper boundary of the mathematical model of the R13 
equations. This formal boundary is confirmed by comparisons of the shock wave macroparameter profiles calculated 
with the use of the original R13 system with DSMC data for chosen Mach numbers. On the other hand, even beyond 
this upper boundary at , the original variant of the R13 system can be used for qualitative simulation of 
supersonic flows if there is no need for obtaining a detailed description of the internal structure of the shock wave.  
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