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A B S T R A C T

The aim of this work is to verify applicability of the Kramers-Kronig relations between the attenuation coefficient
and phase velocity of longitudinal acoustic waves in carbon fiber reinforced plastic (CFRP) composites in a finite
megahertz frequency range. To measure these characteristics, the method of broadband acoustic spectroscopy
with a laser source of ultrasound is used. We have experimentally shown that absolute attenuation in CFRPs is
determined by both absorption in a polymer matrix and scattering on carbon fibers and gas pores of several
tenths of microns in size. We have also found that the increasing composite porosity leads to the decrease in the
absolute value of the ultrasonic velocity and to the increase in its relative dispersion in the entire studied
frequency range of 1–10MHz. The experimental results have shown that for the studied CFRPs in this range,
features of the mechanism causing attenuation and dispersion of longitudinal acoustic waves by propagation in
composites do not influence on applicability of the local Kramers-Kronig relations.

1. Introduction

It is well known that for electromagnetic and acoustic waves, the
frequency dependences of the attenuation coefficient and phase velo-
city are connected by the general integral Kramers-Kronig relations,
which are derived from the fundamental physical principles of causality
and linearity [1–3]. The Kramers-Kronig integral relations are for-
mulated in such a way that attenuation must be known at all fre-
quencies in order to determine dispersion at each frequency, or vice
versa [4]. For acoustic waves, these dispersion relations are written as
integrals over the infinite frequency range, in which the real and ima-
ginary parts of dynamic compressibility are as terms under integrals
[3,5]. Therefore, the main difficulty in applying the general Kramers-
Kronig relations directly to acoustic data is a limited bandwidth in-
herent in experimentally measured spectra of ultrasonic attenuation
and the phase velocity. First of all, this bandwidth is determined by the
operational parameters of the ultrasonic emitters and receivers such as
a central frequency and effectively generated and detected frequency
band, and also by a frequency transmission band for a medium under
study, where ultrasonic parameters can be measured with sufficient
accuracy. By restricting the integration domain to the measured spec-
trum, errors could occur that can seriously influence on the calculation
results. Hence, from the scientific point of view it is interesting and

worthwhile to analyze the applicability of the Kramers-Kronig relations
in a limited acoustic frequency range (see, for example, [3,5,6]). The
approximate relations called as local can be obtained for a limited
frequency range from the general relations under condition of no re-
sonances in acoustic attenuation and velocity dispersion in the studied
frequency range [2,3,5]. Detailed explanation of why resonances are a
fundamental restriction is given in Section 2 by deriving expression (6).

In general, attenuation of acoustic waves in a medium can be caused
by absorption, scattering, beam divergence due to diffraction, or a
combination of these mechanisms. The Kramers-Kronig relations should
be fulfilled independent on a particular physical reason causing at-
tenuation and dispersion of acoustic waves in a medium [3,5]. To verify
validity of the Kramers-Kronig relations in a limited frequency range,
the broadband acoustic spectroscopy method is appropriate (see, for
example, [7]). This method makes it possible to study dynamic pro-
cesses in materials occurring in the ultrasonic field, as well as to per-
form nondestructive evaluation of the internal structure of various
condensed media [8–10]. In the past decades, an extremely large
number of works especially devoted to the broadband acoustic spec-
troscopy of a variety of homogeneous viscoelastic materials were pub-
lished (see, for example, [4,11–14] and references sited therein). But
the detailed review of these studies is out of the frames of this work.

The natural resonance behavior of piezoelectric transducers of
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ultrasound [15] causes certain engineering difficulties by broadband
measurements of ultrasonic attenuation and velocity. As a rule, to
perform ultrasonic measurements in a broad spectral range, a set of
several piezoelectric transducers with various central frequencies is
used (see, for example, [9,10,16]). The multiple rearrangement of
transducers could introduce additional errors by time-of-flight mea-
surements for waves propagating over the acoustic path and, corre-
spondingly, by calculations of the phase shifts and phase velocity. This
is true solely for the pitch-catch/through-transmission method, and in
the pulse-echo method there is far less apparatus inconsistency and
corresponding configuration unrepeatability. But in the last case, ad-
ditional attenuation of an ultrasonic pulse during double-pass through a
specimen occurs. Therefore, effective narrowing of the operating fre-
quency bandwidth and corresponding extra measurement errors for
high-frequency harmonics as compared with the through-transmission
method are inherent in the pulse-echo method.

It should be noted that verification of the dispersion relations was
previously performed mainly for liquids and gases. Probably, this is
because of liquids and gases under study can serve itself as an acoustic
immersion contact between an emitter and receiver. This allows one to
measure ultrasonic parameters for such media with a sufficient accu-
racy.

Below, we review briefly the earliest and most representative works
concerning verification of validity of the local Kramers-Kronig relations
between ultrasonic attenuation and phase-velocity dispersion in sub-
stances of different nature (liquids, gases, solids, and biological tissues).
In almost all these media, sound attenuation was mainly caused by
absorption and practically no scattering was observed.

The authors of [3,17] have performed verification these relations in
the human blood solutions of different concentrations. For this medium,
ultrasonic absorption depends on concentrations of hemoglobin and
albumin. To measure ultrasonic absorption and velocity dispersion in
the spectral range of 1–10MHz, a set of several barium titanate based
piezoelectric transducers was used. Another study of biological tissues
is described in [18], where the dispersion relations are considered for
porcine ventricular myocardium in the range of 2.5–13MHz. In both
cases, the authors have confirmed applicability of the Kramers-Kronig
relations in the studied frequency ranges.

The authors of [5,19] obtained the frequency dependences of ab-
sorption and velocity dispersion of ultrasound for the cobalt copperas
solution and polyethylene in the range of 1–10MHz using the technique
similar to that described in [17]. Although different mechanisms of
absorption of ultrasound exist in these media, it was confirmed that the
approximate form of the Kramers-Kronig relations can be used to find
the relationship between these ultrasonic parameters. Similar studies
were performed in [16] for amorphous (PMMA) and polycrystalline
(polyamide, polyethylene, polypropylene) polymers in the frequency
range of 5–25MHz. Here, also different interaction mechanisms of ul-
trasound with the internal structure of polymers cause absorption in
amorphous and additional scattering in polycrystalline polymers, but
also a good agreement between the theory and experimental results was
obtained.

In addition to the aforementioned cases, the experimental studies of
the dispersion relations were performed for a number of organic liquids,
such as castor- and carbon-based oils, and for gelatin-based phantoms
with different concentrations of graphite particles [20,21]. It has been
shown that for oils, the Kramers-Kronig relations are met in the range of
1.5–20MHz, and for model phantoms in the range 1.2–6MHz.

Similar studies were performed for air of different humidity [22].
Attenuation and the phase velocity of sound were measured in the
range 100 Hz–1MHz; the dispersion relations were satisfied up to
10 kHz, but for higher frequencies, discrepancy between the theory and
experimental results was observed. Dependences of the sound velocity
in air on its humidity, pressure, and temperature were mentioned as
possible reasons of this discrepancy.

Especially, work [23] should be noted, the authors of which were

probably the first to study the local Kramers-Kronig relations between
the ultrasonic attenuation coefficient and phase velocity in CFRPs. In
such material, two mechanisms of decay in the acoustic-wave energy
are simultaneously realized, namely, absorption in a polymer matrix
and scattering on carbon fibers. However, the authors presented the
calculation results for the dispersion relations only for several discrete
frequency points in the range from 3 to 8MHz. In addition, to calculate
dispersion of the ultrasonic velocity, not the experimental frequency
dependences of the attenuation coefficient, but their linear approx-
imations were used. Obviously, it reduces applicability of the Kramers-
Kronig relations.

To solve the problem of reliable measurements of ultrasonic para-
meters in a wide frequency range, the application of laser ultrasonics
[24,25] is very promising. The amplitude and temporal profile and
consequently the acoustic frequency spectrum of an ultrasonic pulse
thermally induced by absorption of a laser pulse are determined by a
time profile of the laser intensity, and by the light absorption coeffi-
cient, volume thermal expansion coefficient, heat capacity, thermal
conductivity, and acoustic boundary conditions at the surface of a
medium, which serves as a source of ultrasound. By absorption of na-
nosecond pulses of a Q-switched laser with energy of several mJ, the
amplitude of thermooptically induced ultrasonic pulses may reach
several hundreds of MPa in a frequency range from hundreds of kHz to
hundreds of MHz [26–29]. The setup for the broadband acoustic
spectroscopy with a specially designed laser source of ultrasound (the
so-called laser-ultrasonic spectroscopy) was firstly proposed and de-
signed in [30] to study acoustic properties of heterogeneous colloid
water solutions of bentonite clays in the frequency range of 1–50MHz.
Further, this technique was successfully used to analyze fatigue struc-
tural changes in glass-fiber-reinforced-plastics using the attenuation
spectra of longitudinal ultrasonic waves [31] and to study the influence
of structural defects like porosity and delaminations in CFRPs on the
resonance attenuation features of longitudinal ultrasonic waves [32]. In
our opinion, the main advantage of laser excitation of ultrasound as
compared with piezoelectric excitation is the ratio of the highest and
the lowest frequencies, f f/max min , of the spectral bandwidth of laser-
induced ultrasonic pulses. This ratio can be 10–20 times higher than
that for piezoelectric transducers. The ratio f f/max min for laser-induced
ultrasonic pulses depends mainly on the laser-pulse duration and the
light absorption coefficient of a source of ultrasound. For example, in
the experimental setup described in [30] the ratio f f/max min was ap-
proximately 50. The additional advantages include the absence of
ringing in a reference laser-induced ultrasonic pulse and its side-lobe
free directivity pattern.

This work aims to experimentally verify applicability of the local
Kramers-Kronig relations in CFRPs using the method of acoustic spec-
troscopy with a laser source of ultrasound and high-sensitivity piezo-
electric detection of broadband acoustic pulses. Since CFRPs intensely
absorb and scatter ultrasound in the megahertz range, this method is
appropriate to carry out high-precision measurements of the frequency-
dependent attenuation coefficient and phase velocity in this range.
Using the experimentally measured ultrasonic attenuation coefficient in
the frequency range of 1–10MHz, we calculated the phase-velocity
dispersion in the same range with an approximate local form of
Kramers-Kronig relations and compared it with the experimentally
obtained phase velocity. The main idea of our work was to demonstrate
the possibility to apply the local Kramers-Kronig relations in the limited
frequency range for materials, which not only effectively absorb but
also scatter ultrasonic waves.

2. Formulation of the problem

For acoustic waves in an isotropic medium obeying the general
Hook's law, the Kramers-Kronig relations for the real and imaginary
parts of dynamic compressibility are written as
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where = +K K iK1 2 is reciprocal to the bulk elastic modulus [33],
=ω πf2 , f is the frequency of an acoustic wave.
Using the known dispersion relation for acoustic waves
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the relations between compressibility, attenuation coefficient α ω( ), and
phase velocity C ω( ) are written as (see equations (14a) and (14b) in
[5]):
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( ) ( ) called as the sound approximation and
fulfilled in the megahertz frequency range (equations (15a) and (15b)
in [5]):
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Taking into account (1), expressions (5) describe the relation be-
tween attenuation and phase-velocity dispersion and of acoustic waves
in the infinite frequency range. They could only be used when a major
contribution to infinite integrals is strictly frequency-localized [5].
Actually, infinite limits of integration in (1) are “conditional”, since the
sound approximation is fulfilled only for wavelengths, which con-
siderably exceed atomic spacing and for solids, calculations are only
performed using expressions (5) up to frequencies of about 1014 Hz [2].

To make a comparison with experimental data obtained in a limited
frequency range, we should go from the general Kramers-Kronig rela-
tions to its local form. In certain frequency range ω ω[ , ]0 , the approx-
imate local relations could be derived, if in this range the frequency
dependences of the ultrasonic attenuation coefficient and phase velo-
city are monotonic, i.e., have no local extremes and resonances [5]. In
this case, the imaginary part of dynamic compressibility K ω( )2 in (1)
could be expanded to series over frequency in the vicinity of ω0, and
terms in this series corresponding to derivatives of higher orders could
be neglected [5]. Then, the relation between the imaginary part of
compressibility and the local rate of change of its real part at the same
frequency is written as

= −K ω π ω dK ω
dω

( )
2

( ) .2
1
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Using formulas (4) and (6), we obtain the local Kramers-Kronig
relations in frequency range ω ω[ , ]0 :
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Hence, expressions (7) and (8) describe the relationship between the
attenuation coefficient and phase velocity dispersion of longitudinal
acoustic waves in given limited range ω ω[ , ]0 . By performing experi-
ments, it corresponds to the operating frequency range where α ω( ) and

C ω( ) are measured. These expressions show the relation between α ω( )
and C ω( ) without referring to their particular functional dependence on
frequency, for instance, such as different power-law approximations for
viscoelastic homogeneous polymers (see, for example [34] and refer-
ences sited therein). Demonstration of the applicability of such parti-
cular approximations of acoustic characteristics for the CFRP compo-
sites, which contain only 30–50% of a viscoelastic matrix and the rest is
the rigid carbon fibers with acoustic properties absolutely differing
from that of viscoelastic polymers, is beyond the scope of this work.

3. Methodology and materials

3.1. Parameters of CFRP specimens

The specimens under study are epoxy-based uni-directional CFRP
laminates cut as rectangular parallelepipeds with lateral dimensions
70mm×20mm and thickness H=10.4–12.4 mm. The diameter of a
single carbon fiber is 5 μm and the mean thickness of each ply is
200 μm. For the ultrasonic spectroscopy procedure composite speci-
mens are placed so that the reference ultrasonic pulse propagates in the
plane of the specimen isotropy normal to the fiber plies.

The ultrasonic attenuation in CFRPs is caused by absorption in the
epoxy matrix and scattering on carbon fibers. The matrix is an amor-
phous polymer, in which ultrasonic absorption occurs due to the
transformation of the acoustic energy into the energy of vibrational and
rotational modes of molecular chains. The frequency dependences of
the attenuation coefficient and phase velocity of longitudinal acoustic
waves are determined by energies of the intramolecular and inter-
molecular interaction, parameters of the relaxation processes, and by a
pattern and intensity of molecular motions [35]. Peculiarities of the
intermolecular interaction in the presence of long molecular chains lead
to occurrence of a spectrum of relaxation times, which in turn leads to
occurrence of related frequency-dependent ultrasonic attenuation and
phase-velocity dispersion.

Along with scattering of acoustic waves on carbon fibers, additional
scattering could occur in CFRPs caused by small gas pores in the ma-
terial. These pores are typically 10–50 μm in size, which was de-
termined with the X-ray computer tomography. The representative X-
ray image of a cross-section of one of the studied specimens showing an
irregular distribution of pores within epoxy layers is presented in Fig. 2.
Porosity P (the volume content of pores) in CFRPs is formed by air
inclusions, volatile products, and extra moisture during fabrication
[36]. It is known that pores scatter ultrasound very effectively; there-
fore, porosity will cause additional ultrasonic attenuation in CFRP
specimens. Porosity P averaged over the entire specimen volume is
determined as:

Fig. 1. Diagram of the opto-acoustic cell used in the broadband laser-ultrasonic
spectrometer.
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where actual specimen density ρ is measured using hydrostatic
weighing in distilled water (Archimedes’ principle); density ρ0 of the
specimen’s solid phase or a pore-free composite is calculated using the
rule of mixtures with the known densities of the epoxy matrix and
carbon fibers, ρm =1210 kg/m3, and ρf =1740 kg/m3, and their vo-
lume contents in the given specimen, nm and nf :

= +ρ n ρ n ρ .m m f f0 (10)

The specimens under study differed from each other by the volume
content of the epoxy matrix, fibers, and porosity. The technological
parameters of all CFRP specimens are summarized in Table 1. The
epoxy matrix specimen had the same lateral dimensions as composites,
but its thickness was H0 =(6.1 ± 0.06) mm.

3.2. Broadband laser-ultrasonic spectroscopy technique

In this work, we use a broadband acoustic spectrometer with laser
excitation and piezoelectric detection of ultrasound, which includes a
Q-switched Nd:YAG laser operating at the fundamental wavelength
(1064 nm), an opto-acoustic (OA) cell, two-channel digital oscilloscope,
and PC. The block diagram of the OA cell is shown in Fig. 1. The
temporal profile of laser pulses is close to the Gaussian one with the
characteristic laser pulse duration of 10–11 ns, the maximum energy is
10 mJ, the pulse repetition rate is 10 Hz, and the characteristic beam
diameter is 5 mm.

The absorption of a laser pulse in a special source of sound (OA
source) causes nonuniform nonstationary heating and subsequent
thermal expansion of its subsurface layer, resulting in the mechanical

stress in this layer, which in turn is the origin of longitudinal acoustic
waves. A broadband ultrasonic pulse excited in the OA source serves as
a reference signal in this spectrometer. In this work, an aqueous solu-
tion of Indian black ink was used as the OA source, which was directly
placed at a studied specimen. This excluded necessity of using an im-
mersion layer between the OA source and specimen. For the typical
CFRP materials with the porosity of about 1–2% the ultrasonic at-
tenuation coefficient varies approximately from 1 to 6 cm−1 in the
range of 1–10MHz (see, for example, [23]). Therefore, the ink con-
centration in the solution was selected in such a way to provide effec-
tive laser excitation of reference ultrasonic pulses in a frequency range
up to approximately 15MHz at the 1/e level [25]. This makes it pos-
sible to perform reliable measurements of ultrasonic characteristics in
our CFRP specimens with the given thicknesses of 10.4–12.4 mm.

The heating of the OA cell under the laser-pulse action is de-
termined by the maximum heating of the subsurface layer of the aqu-
eous solution of ink (OA source) by absorption of these pulses. The light
absorption coefficient in this solution at the wavelength of 1064 nm
measured by the laser opto-acoustic method [25] was 450 cm−1. The
estimation of the corresponding maximum heating of the OA source
under a single laser-pulse action using expression (1.10) in [25] gives

′≈T 6×10−4 K. To obtain spectra of all ultrasonic pulses, signal
averaging over 128 time realizations (128 laser pulses) is carried out,
and therefore, the total heating of the OA source during one measure-
ment run is estimated at a level of 0.1 K. This estimation is reliable,
since the aqueous solution of ink can be considered as a thermally non-
conductive medium (we set its thermal diffusivity equal to that for
water χ=1.4× 10−3 cm2/s [37]). In addition, it can be suggested that
during the averaging time (12.8 s), excessive heat does not propagate
outward the OA source and other components of the OA cell including a
composite specimen remain practically non-heated. Therefore, we
consider that all measurements are performed at room temperature.

Broadband ultrasonic pulses are received by a specially designed
well-damped piezoelectric 30-μm-thick PVDF-film detector. The re-
sonance frequency of the film is about 28MHz, but damping makes it
possible to provide a quite flat amplitude-frequency response in a fre-
quency range below the resonance. The detector is assembled with a
charge preamplifier and operates in an open-circuit mode. The max-
imum low-frequency sensitivity of this assembly is 2.8 V/bar, its op-
erational bandwidth is 0.5–25MHz at the 1/e level. The calibration
procedure of the detector is described in detail in [38]. The acoustic

Fig. 2. Example of the X-ray tomography image of the cross-section of composite specimen #4.

Table 1
Technological parameters of studied CFRP specimens.

Specimen # Thickness, mm Volume content of carbon fibers
nf, %

Porosity P, %

1 10.8 ± 0.1 62.6 < 0.1
2 10.4 ± 0.1 65.1 < 0.1
3 10.7 ± 0.1 62.6 0.7
4 12.4 ± 0.1 55.8 1.4
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contact between the specimen and detector in the OA cell is provided by
a 3-mm-thick immersion layer of distilled water. In general, the pro-
posed system is similar to any conventional through-transmission
spectroscopy setup except for the laser-induced powerful and broad-
band reference ultrasonic pulses.

Amplitude spectrum of an ultrasonic pulse passed through a studied
specimen is:

= − = −S f S f T T α f H S f T α f H( ) ( ) exp[ ( ) ] ( ) exp[ ( ) ],0 1 2 0 trans (11)

where S f( )0 is the amplitude spectrum of the reference pulse,
= +T Z Z Z2 /( )1 s s ink is the amplitude coefficient of wave transmission

from the OA source (ink) into the composite specimen,
= +T Z Z Z2 /( )2 H O s H O2 2 = +T 2Z /(Z Z )1 s s ink is the amplitude coefficient

of wave transmission from the specimen into water,
= +( )T 2Z / Z Z2 H O s H O2 2 ZsZs, Zink, and ZH O2 are acoustic impedances of

the composite specimen, ink, and water, respectively, and α f( ) is the
frequency-dependent attenuation coefficient of longitudinal acoustic
waves in the specimen. From (11), α f( ) is expressed as

= +α f
H

S f
S f H

T( ) 1 ln
( )
( )

1 ln .0
trans

(12)

The acoustic impedance of water at room temperature was con-
sidered to be known: ZH O2 =1.49×106 kg/(m2s) [37], the acoustic
impedances of composite specimens were calculated using experimen-
tally measured densities ρ and the mean phase velocities C of long-
itudinal acoustic waves in specimens: Zs= ρC.

Dispersion of the phase velocity of longitudinal acoustic waves,
C f( ), is calculated using the phase spectrum of the reference ultrasonic
pulse, ϕ f( )0 , and that of the pulse passed through the specimen, ϕ f( ):

=
−

C f
πfH

ϕ f ϕ f
( )

2
( ) ( )

.
0 (13)

Here, both ϕ f( )0 and ϕ f( ) are already continuous phase spectra ob-
tained using the standard phase unwrapping code [23,39], in which
corresponding addition of term ± πn2 (n is an integer) is programmed
in such a way to eliminate the ambiguity of the phase spectrum cal-
culated from the arctangent function. For the calculation of ϕ f( )0 and
ϕ f( ) using the recorded time profiles of both pulses, oscilloscope
triggering starts at the instant of laser pulse emission [38]. For each
ultrasonic pulse (reference or passed through a specimen), the time
scale of the oscilloscope (horizontal position) is shifted in such a way,
that this pulse is displayed on the oscilloscope screen. An example of
time profiles of these two ultrasonic pulses is presented in Fig. 3; the
actual running time is plotted along the X axis.

Before the attenuation coefficient and velocity dispersion were
calculated the correction of the frequency-dependent diffraction loss

was made applying the expressions that describes the diffraction
transformation of broadband ultrasonic pulses (see expression (2.47) in
[25]).

4. Results and discussion

Fig. 4 shows the amplitude (Fig. 4a) and phase (Fig. 4b) spectra of
the reference ultrasonic pulse and that passed through the “pure” epoxy
matrix without any filler and through studied CFRP specimens. Clearly,
the reference-pulse amplitude spectrum is considerably wider than
spectra of pulses passed through all specimens. This confirms the pos-
sibility of reliable measurements of ultrasonic attenuation in the stu-
died specimens at least up to 15MHz. The absence of noise practically
up to 15MHz in the reference phase spectrum provides the same pos-
sibility for the phase-velocity measurements.

To analyze the influence of different mechanisms of losses on the
relationship between the frequency-dependent attenuation coefficient
and phase velocity of longitudinal ultrasonic waves, we studied both
specimens of the “pure” epoxy matrix and CFRPs with various porosity.
These ultrasonic parameters were calculated using formulas (11) and
(12) with the measured amplitude and phase spectra. The dependences
α f( ) and C f( ) in all specimens were obtained in the frequency range of
1–10MHz. For frequencies f < 1MHz, the attenuation coefficient was
not determined because of both its low value and large relative errors
caused by diffraction of low-frequency harmonics of a signal in the
specimens. For frequencies f > 10MHz, it was also not determined,
since signals passed through studied specimens were rather small as
compared with the noise level because of considerable ultrasonic

Fig. 3. Examples of the time-domain profiles: (1) the reference ultrasonic pulse
and (2) the pulse passed through composite specimen #1.

Fig. 4. (a) Amplitude and (b) phase spectra of the reference ultrasonic pulse
laser-excited in the aqueous ink solution and of the pulses passed through the
epoxy matrix and composite specimens.
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attenuation in the specimens. The relative errors of α within the fre-
quency range of 1–10MHz depend on the signal-to-noise ratio for
spectral amplitudes at each harmonic, on the stability of the laser pulse
energy, as well as on the measurement uncertainty in the specimen’s
thickness. These errors change from 5% for the maximum spectral
amplitudes to 10% for the minimum spectral amplitudes of ultrasonic
signals passed through the specimen. The relative errors of C depend on
the same parameters except for the stability of the laser-pulse energy
and are estimated at the level of 1–2% within this frequency band.

The frequency dependences of the attenuation coefficient in the
epoxy matrix and CFRP specimens are shown in Fig. 5. In pore-free
specimens #1 and #2, attenuation is determined by absorption in the
matrix and scattering on carbon fibers. In specimens #3 and #4, ab-
solute attenuation increases as compared with specimens 1 and 2 due to
the presence of porosity. Here, several uncertainty bounds are shown,
which correspond to the minimum and maximum errors for α f( ) as
described above. The fabrication technology of the studied CFRP spe-
cimens yields close acoustic impedances of the matrix and fiber layers
and quite high adhesion of fibers to the matrix. Therefore, the reflection
of ultrasound at each interface between alternating epoxy and carbon-
fiber layers is very weak and attenuation resonances in the studied
CFRP specimens are not observed in pore-free specimens #1 and #2.
For low-porous specimens #3 and #4, α f( ) increases as a whole as
compared with the pore-free specimens because of scattering of ultra-
sound by pores. But the attenuation coefficient also has no resonances,
since pores are quite irregularly distributed in the epoxy layers between
carbon-fiber plies, the entire porosity is rather small, and therefore no
significant decrease in the effective acoustic impedance of the matrix
takes place.

To verify applicability of the local Kramers-Kronig relations in the
range of 1–10MHz for all specimens under study, we calculated the
phase velocity dispersion using local relation (8), in which we inserted
under the integral the experimentally obtained α f( ) and the measured
velocity at 1MHz as C0. We believe that since these relations are linear,
for our main purpose it is enough without making additional calcula-
tion of the attenuation coefficient using the experimentally measured
phase-velocity dispersion. Fig. 6 shows the calculated velocity together
with the experimentally measured dependence C f( ) for the matrix.
Here, also several typical uncertainty bound are shown, which corre-
spond to the minimum and maximum errors for C f( ). Clearly, in the
studied frequency range 1–10MHz, the experimental and calculated
dependences coincide within the limits of the measurement accuracy.
However, some deviations of the calculated curve from the experi-
mentally obtained phase velocity in the low- and high-frequency range
are observed. These deviations are because of the value of C0 used to

obtain calculated dependence C f( ) is also measured with an error of
1–2% and also because of calculation formula (8) provides certainly not
the actual velocities at each frequency, but their approximate values
within the framework of the assumptions made by deriving this formula
(Section 2). Hence, for the epoxy matrix, applicability of local Kramers-
Kronig relations was confirmed. In the matrix, the relative phase ve-
locity dispersion of longitudinal acoustic waves is

= × ≈−CΔ 100% 17%C C
C

max min
max

(where Cmax and Cmin are the maximum
and minimum velocity values in the range of 1–10MHz) and is de-
termined by peculiarities of the epoxy molecular structure. This dis-
persion could be explained by relaxation processes occurring as a result
of different molecular motions. If an ultrasonic frequency is low and
corresponding period is high as compared with a relaxation time for the
largest macromolecule segments, the energy of the ultrasonic wave
obtained over a period by an elementary volume will rapidly redis-
tribute over the material volume due to segmental mobility of macro-
molecules [35]. By the increase in the ultrasonic frequency, the time of
absorption will take a most part of the period. In this case, there are
some segments, which are not able to transmit the wave energy to the
neighbor segments during one oscillation period. In other words, under
the external wave impact they behave as rigid elements of molecular
chains. This leads to the increase in the ultrasonic velocity by the in-
crease in the frequency.

Figs. 7 and 8 present similar calculated and experimental

Fig. 5. Frequency dependences of the attenuation coefficient of longitudinal
acoustic waves in the epoxy matrix and composite specimens.

Fig. 6. Frequency dependence of the phase velocity of longitudinal acoustic
waves in the epoxy matrix specimen.

Fig. 7. Experimental and calculated frequency dependences of the phase ve-
locity of longitudinal acoustic waves in pore-free composite specimens #1 and
#2. Dotted curves are the experimental results; solid curves are the calculation
results obtained with expression (8).
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dependences C f( ) for the studied CFRP specimens. Just as for the epoxy
matrix, several typical uncertainty bound are shown, which correspond
to the minimum and maximum errors for C f( ). Clearly, in the operating
frequency range of 1–10MHz, the calculated and measured de-
pendences C f( ) coincide within the limits of the measurement accu-
racy. Therefore, applicability of the local Kramers-Kronig relations is
also confirmed for CFRPs independent of a physical reason of ultrasonic
wave attenuation.

As it was mentioned above, in pore-free CFRP specimens #1 and #2,
both the ultrasonic velocity dispersion and absolute attenuation in the
entire operating frequency range are determined by absorption in the
matrix and scattering on carbon fibers. The porosity in composite spe-
cimens #3 and #4 leads to additional scattering by pores and to the
observed increase of the relative dispersion of the ultrasonic velocity.
For specimen #3 ΔC≈ 30% at P=0.7% and for specimen #4
ΔC≈ 45% at P=1.4%, whereas for pore-free composites ΔC≈ 20% in
the same spectral range. Therefore, for the most porous CFRP specimen,
the relative dispersion increases more than twice as compared with
pore-free specimens. It should be noted that in the operating frequency
range, the increase of value Cmax was observed with the increase of the
volume content of carbon fibers in the specimen, since the ultrasonic
velocity in fibers is higher than that in the matrix. Figs. 7 and 8 show
that for specimens #1 and #3 with the same fiber content (62.6%),
Cmax coincides within the limits of accuracy and is 2985 ± 15m/s. For
specimen #2 with the maximum fiber content (65.1%)
Cmax≈ 3017 ± 15m/s and for specimen #4 with the minimum fiber
content (55.8%) Cmax≈ 2917 ± 15m/s. At the same time, minimum
velocity Cmin demonstrates decreasing with the increase of the spe-
cimen porosity independent of the fiber content. Such combined be-
havior of Cmax and Cmin leads to the increase in the relative phase-ve-
locity dispersion with the increase of the composite porosity. The low-
frequency dispersion of the ultrasonic velocity was theoretically ana-
lyzed in [40] using the mathematical analogy between plane wave
propagation through a material with voids and axial wave propagation
along a circular cylindrical rod with radial shear and inertia. In a rod,
an ultrasonic pulse begins to propagate with the maximum longitudinal
velocity and when due to the radial shear strain its energy is trans-
formed into a dispersive wave, which propagates with a lower bar ve-
locity. In a porous material, similar transformation occurs due to dila-
tational inertia around voids. The velocity of this dispersive wave is
determined by a bulk elastic modulus and is less than the velocity of
longitudinal waves in the pore-free material. The efficiency of such
transformation and corresponding strength of the dispersive effect de-
pend on the ratio of characteristic scales of the corresponding process,

for example, of a rod diameter or pore sizes and ultrasonic frequencies.
It should be especially noted that the obtained results in a part of the

relationship between ultrasonic attenuation and the phase velocity via
the local Kramers-Kronig relations are solely presented to confirm the
fundamental physical principles of causality and linearity, since these
relations are just the mathematical representation of these principles.
The results are obtained using the experimental data, are attributed to
particular CFRP composites and do not pretend to obtain on its basis a
“unified” general relation between attenuation and velocity after ap-
proximation by some power-law functions [4,12–14] or by application
of a modern sophisticated neural network algorithm, as it was made, for
example in [34]. In addition, we have shown that the proposed
broadband laser-ultrasonic spectroscopy method makes it possible to
measure both attenuation and velocity of ultrasound with a high ac-
curacy enough for ultrasonic nondestructive evaluation or defect image
reconstruction. These measurements can be carried out for materials,
which generally could not obey a single power-law with the same index
in the entire studied frequency range. Such materials are, for instance,
polycrystalline metals with a wide grain-size distribution (see, for ex-
ample [41]), or metal-matrix composites reinforced with disperse high-
strength ceramic particles, which strongly differ in size and shape.

5. Conclusions

In this work, we analyzed the local Kramers-Kronig relations for the
attenuation coefficient and phase velocity in CFRPs in the frequency
range of 1–10MHz. Verification of these relations was experimentally
performed using the broadband acoustic spectroscopy method with the
laser source of ultrasound. This method makes it possible to measure
the frequency dependences of the attenuation coefficient and phase
velocity of longitudinal ultrasonic waves in the megahertz range for
intensely ultrasound- absorbing and scattering materials. By the ex-
ample of the “pure” epoxy matrix without any filler and epoxy-based
CFRPs, we have analyzed influence of two mechanisms of losses of the
acoustic energy, i.e., absorbing and scattering, on ultrasonic attenua-
tion and velocity dispersion. In the matrix, attenuation and dispersion
are caused by absorption of ultrasound due to relaxation processes
occurring in the ultrasonic-wave field. In CFRPs, scattering on carbon
fibers and gas pores of several tenths of microns in size additionally
contributes to attenuation and dispersion of ultrasonic waves. We have
shown experimentally that in the frequency range of 1–10MHz, the
maximum absolute value of the phase velocity is higher for the larger
volume content of carbon fibers. At the same time, the increase in
porosity leads to the increase in relative phase-velocity dispersion in-
dependent on the volume content of the CFPR components.

To verify applicability of the local Kramers-Kronig relations, we
have calculated dispersion of the phase velocity using the experimen-
tally measured frequency dependences of the attenuation coefficient of
longitudinal acoustic waves. Then, we have compared the calculation
results with experimentally measured dispersion of the phase velocity.
Coincidence within the limits of the measurement accuracy of the cal-
culated and experimentally obtained frequency dependences of the
phase velocity for the studied frequency range of 1–10MHz confirms
applicability of the approximate local form of the local Kramers-Kronig
relations both for the epoxy matrix and all studied CFRP specimens.
Therefore, these dispersion relations are applicable independent of a
particular mechanism of losses in the energy of ultrasonic waves by
propagation in the studied materials.

Fig. 8. Frequency dependences of the phase velocity of longitudinal acoustic
waves in low-porous composite specimens #3 and #4. Dotted curves are the
experimental results; solid curves are the calculation results obtained with ex-
pression (8).
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