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Prediction of properties of molecular graphs 
based on RBF neural networks

Mikhail I. Kumskov (IEEE member), Varvara O. Vasilyeva and Ekaterina O. Rybakova

Abstract—A method for forming the architecture of an RBF neural network for solving the problem of predicting the properties of 
molecular graphs is proposed and investigated. The method is based on the identification of the cluster structure of the training dataset in 
the 
"structure-property" problem. The results of the method study for predicting the properties of molecules for various variants of the attribute 
description of molecular graphs are presented. The RBF neurons of the network cover the identified clusters, the placement of neurons is 
based on the k-means algorithm for each identified cluster.

A technique for forming the architecture of a neural network is substantiated based on a preliminary analysis of the training data set and 
the assignment of RBF neurons to the elements of the training set. The obtained results are comparable with the previously implemented 
methods, which were based on an evolutionary algorithm - Group Method of Data Handling (GMDH).

Index Terms—Quantitative Structure-Activity Relationship,  RBF neural network, Group Method of Data Handling, k-means, Cluster 
Analysis 
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1 INTRODUCTION

1. Most of the organic synthesis takes place without prior
modeling and is based on the experience and knowl-edge
of a chemist, as a result, only about one out of 5,000
drugs reach clinical trials and even fewer reach the final
goal. This paper presents a way to accelerate the described
process by constructing models linking the structure and
properties of substances.

There is a scientific d iscipline c alled chemoinformatics, 
which studies the application of computer science methods 
to solve chemical problems. G. Paris from Novartis gave 
it the following definition: c hemoinformatics i s a  scien-
tific d iscipline c overing t he d esign, c reation, organization, 
management, search, analysis, dissemination, visualization 
and use of chemical information. The fields o f application 
of chemoinformatics are as follows: prediction of physico-
chemical properties of chemical compounds (in particular, 
lipophilicity, water solubility), properties of materials, toxi-
cological and biological activity, ADME/T, ecotoxicological
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properties, development of new drugs and materials.
In this paper, we will consider the problem of classifi-

cation of biological activity, this task is called Quantitative 
Structure Activity Relationships (QSAR). In the computer 
prediction of the properties of chemical compounds prob-
lem there is also a regression problem, that is, in this class of 
problems it is necessary to predict the value of a physical 
or chemical property, these tasks are called Quantitative 
Structure Properties Relationships (QSPR).

To build QSAR models, the chemist determines the 
features focused on the analysis of a specific p roperty in 
a number of chemical compounds. These signs describe 
some structural features of molecules.

2 PROBLEM STATEMENT

First, let’s introduce the necessary definitions.
For an arbitrary set 𝑉 , we denote by 𝑉𝑘 the set of all subsets 
of 𝑘-elements of the set 𝑉 . For example, the set 𝑉2 coincides 
with the set of disordered pairs of different elements of 𝑉 .

Definition The graph 𝐺 is a triple 𝐺 = (𝑉, 𝐸, 𝛿) con-
sisting of the sets 𝑉 , 𝐸 and the mapping 𝛿 : 𝐸 𝑡𝑜𝑉1 ∪ 𝑉2. 
Elements from 𝑉 are called vertices of the graph 𝐺, elements 
from 𝐸 are edges of the graph 𝐺 and 𝛿 is a boundary or 
incidence mapping.

Consider a labeled graph whose vertices are interpreted 
as atoms of a molecule, and whose edges are interpreted as 
valence bonds between them.

Vertex and edge labels encode atoms (their properties) 
and bond types, respectively. For example, the vertices can 
store information about three-dimensional coordinates, the 
symbol of a chemical element, the charge of the nucleus,
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polarizability, atomic weight, atomic radius. And in the edge 
labels – multiplicity, lengths, orders of connections.

There is also an activity label that we will predict. Then 
the answer space Y consists of two possible elements: -1 
(compound is inactive) and +1 (compound is active).

Definition Training set 𝑋 in ”structure-activity” prob-
lem is a finite set of {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)} pairs 
from X × Y. For a given sample, the vector (𝑦1, . . . , 𝑦𝑛) is 
called the target vector.

Definition The descriptor is an invariant characteristic of 
the molecular graph 𝐺, which has a numerical value. The 
descriptor alphabet is a finite set of all the different 
descriptors used to analyze the training sample. Vector of 𝑚-
dimensional features (𝑥1, . . . , 𝑥𝑚) ∈ 𝑅𝑚 is assigned to the 
molecular graph 𝐺, where 𝑥𝑗 is the value of the 𝑗-th 
descriptor from the descriptor alphabet calculated for 𝐺.

Definition The ”molecule-descriptor” matrix is a matrix 
of size 𝑛 × 𝑚, the 𝑖-th row of which is the feature vector of 
the 𝑖-th molecular graph from the training set 𝑋 .

Let’s give a training sample X, that is, a database of 𝑛 
chemical compounds, each of which is represented as a 
molecular graph.

Thus, it is required:

∙ to construct a Molecule-Descriptor matrix of size
𝑛×𝑚, where 𝑚 – number of descriptors for a given
compound, 𝑛 – number of compounds;

∙ to construct a function 𝐹 (𝑥1, . . . , 𝑥𝑀 ) that receives a
new compound (as a matrix string) and relates it to
one of the activity classes or predicts the numerical
value of the property (for the ”structure-property”
problem). Which of the classifying functions is ”bet-
ter”, allows you to determine the quality functional
𝜙(𝐹 ) [3].

Our specific formulation of the problem will be the choice of 
a feature description and the construction of a dependency, 
that is, the choice of an algorithm that predicts the value of 
the studied property based on the vector of the properties 
of the molecule.

2.1 Feature description and labeling

To date, the theory of constructing and using a set of 
descriptors has been described. At the same time, further 
deepening of ideas about the molecular structure makes 
it possible to create new descriptors and models reflecting 
these ideas. Consider the hierarchy of descriptors used to 
describe the chemical structure.[4]

TABLE 1: Example of a descriptor hierarchy
Descriptor class Descriptor types
Elementary level

descriptors
1.The number of atoms of

the same grade
2.Atomic weights of
structure fragments

Descriptors of the
structural formula 1.Topological indexes

2.Structural fragments
Electronic level

descriptors 1.Partial charges on atoms

2.Molecular refraction
3.The energies of the
highest occupied and

lowest unoccupied orbitals
Descriptors of
intermolecular

interactions
1.Gamete constants

2.Steric constants

The construction of ”structure-activity” dependencies
using the spatial representation of the molecules of the
training sample was called 3D-QSAR. The main stages of
3D-QSAR modeling are as follows:

1) Select molecules in the training database, each of
which has an activity experimentally measured for
this biological system;

2) To construct spatial representations of these
molecules and to carry out their ”alignment” ac-
cording to the given rules for choosing orientations;

3) Calculate a set of spatially dependent features for all
molecules;

4) Construct a function expressing the dependence of
the calculated features and the studied biological
activity;

5) To determine the stability and predictive ability of
the found functional dependence;

6) If necessary, modify the model by repeating steps
1-5.

The choice of the method of describing the structure
is determined by the nature of the problem being solved
and the existing limitations on obtaining experimental and
calculated data. However, it is already clear that the number
of descriptors for a specific task can be huge (much more
than a sample of substances), since at this stage it is not
known which specific features are best used to solve the
problem. Therefore, in addition to the two tasks described
in paragraph ¡2¿, it is necessary to determine the most
significant features for this task.

One of the basic techniques for reducing the dimension
of the feature vector is labeling. Let the vertices of the graph
have signs (𝑎1, . . . , 𝑎𝑘). Then we can build clusters by some
properties (for example, (𝑎1, 𝑎2) ) using cluster analysis
methods and get one mark instead of two, three or more
vertices, meaning belonging to a particular cluster.

2.1.1 Understructural molecular descriptors
A large group of approaches to the description of sub-

stances in the form of a feature vector is associated with
the fragmentation of the molecular structure, that is, with
its decomposition into some fragments-descriptors selected
from the condition of simplicity of isolation or substantive
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considerations. Substructural analysis is based on the as-
sumption that the biological effect of the substance is due to 
the presence of some structural elements (substructures) in 
its composition. The connection structure is represented by 
a fragmentary code. Among the types of fragments used , 
the following can be noted:

1) atoms and pairs of bonded atoms;
2) attached atomic fragments having a central atom

characterized by its bonds and atoms attached to
it;

3) cyclic fragments characterizing the shape of cycles
and the position of heteroatoms in them;

4) fragments of ”heteropaths” describing chains in a
molecule that begin and end with heteroatoms;

5) fragments in Viswesser linear notation;
6) fragments of an expanded language of ”gross bond

formulas” with the introduction of microfragment
modifications;

7) substructures characteristic of the studied SBD.

The use of substructures is a typical example of an 
approach to solving complex problems that depend on the 
representation of an object. There are various ways to clas-
sify fragments, when each type of substructure identifies a 
certain aspect of the molecule, and the use of one or another 
type of fragments depends on the nature of the problem 
being solved by QSAR.[5]

As you can see, there are a huge number of methods 
for selecting molecular descriptors. The method we have 
chosen to solve the problem will be described in Part ¡3.1¿.

2.2 Searching for functional dependence

Classical machine learning methods are now used to 
search for functional dependence. For example, linear re-
gression, regression by main components (Analysis of main 
components, PCA), regression by ridge. We also use kernel 
methods (kernel image recognition), the Support Vector 
Machine (SVM) method. Recently, with a sharp increase 
in interest in neural networks, they are trying to solve 
problems using artificial neural networks (ANN), the k-
nearest neighbor method (KNN), etc. In this paper, the 
GMBH method will be used, which is described in section 
3.2

The general formulation of the QSAR modeling problem 
is considered, which consists in predicting the numerical 
value of a chemical property or its presence based on knowl-
edge of these values for other compounds. One of the im-
portant tasks is to choose the right features (descriptors) to 
build a prediction algorithm. An overview of various meth-
ods of selecting descriptors is made, and a brief overview 
of the 3D-QSAR method using the spatial structure of the 
molecule is presented. Also an important component of the 
formulated task is the search for functional dependence. 
Popular approaches to solving the problem are described.

3 DESCRIPTION OF THE SOLUTION STEPS

3.1 Construction of the Molecule-Descriptor matrix

This section describes the approach proposed in [1],
which we will follow when vectorizing graphs and form-
ing the ”molecule-descriptor” matrix. The columns of this
matrix will correspond to structural fragments — symbolic
names consisting of special codes of atoms. The exact defi-
nition is given later in this section.

We introduce symbolic markers designed to account for
the topological and chemical features of atoms in molecular
structures. In classical theory, in the simplest case, atoms
are distinguished based on two characteristics: chemical
individuality and valence. To distinguish the topological
features of atoms in the graph, we will use the atom degree
characteristic (the number of edges at the corresponding
vertex of the molecular graph) and introduce the corre-
sponding marker 𝑝 (𝑝 = ”power of atom”), which can take
(for classical organic compounds) seven values (0, 1, 2, 3,
4, 5, 6). In this case, 𝑝 = 0 only for disconnected (”single”)
atoms in the M-graph. One marker of degree 𝑝 is not enough
to distinguish all variants of the ”valence environment” of
a carbon atom. We introduce a marker of the chemical bond
of atom 𝑏, which we define as follows:

– ”𝑠” (single) – all bonds of an atom are single,
– ”𝑑” (double) – an atom has a double bond,
– ”𝑡” (triple) – an atom has a triple bond,
– ”𝑤” – an atom has two double bonds,
– ”𝑎” (aromatic) – an atom has an aromatic bond.

In addition to the 𝑝 and 𝑏 markers, we will use another
marker 𝑟 (ring) - a marker of the position of the atom in the
ring system.

A graph is called connected if any of its two vertices
can be connected by a chain. We will call the connection
(edge) of a molecular graph ring, if when it is removed the
connectivity of the graph is not violated, and chain (acyclic)
- otherwise. If an atom has ring bonds, we will call it a
”ring atom”. Among the ”ring” atoms, we will distinguish
between ”purely ring” atoms, i.e., atoms whose edges are
all annular, and ”ring with a substituent” atoms that have
an acyclic edge. Let’s define the 𝑟-marker as follows:

– ”𝑐” (chain) – atom is acyclic (chain),
– ”𝑟” (ring) – ring atom without substituent,
– ”𝑠” (substitute) – ring atom with a substituent.

The atom label, which includes markers, will be written
as a string of the following form:

Atom name Marker p Marker b Marker r,

or briefly – NNpbr.
The atom name is written with an uppercase character,

the 𝑝 marker – with a digit, the 𝑏 and 𝑟 markers – with
lowercase letters. If the marker is not used (we say, ”off”),
then the symbol ”*” is used instead of its designation.

Let’s give an example of marking the atoms of the
caffeine molecule. For a more convenient representation, let
us number its atoms.
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TABLE 2: An example of labeling atoms of a caffeine
molecule

Atom number 0 1 2

Structure −𝐶𝐻3 −
|
𝑁− = 𝐶𝐻−

Marking 𝐶 1𝑠𝑐 𝑁 3𝑎𝑠 𝐶 2𝑎𝑟

Atom number 3 6 7

Structure −𝑁 = −𝐶
‖
− 𝑂 =

Marking 𝑁 2𝑎𝑟 𝐶 3𝑎𝑠 𝑂 1𝑑𝑐

Definition A structural fragment of length 𝑘 is a chain
of 𝑘 of labeled atoms, and each subsequent atom is adjacent
to the previous one, i.e. each pair of consecutive atoms in
the chain corresponds to a chemical bond in the molecule.
Strings of length 2, for example, are encoded as follows:
NNpbrNNpbr.

Table 3 shows examples of coding of structural frag-
ments of length 2. The 𝑟 marker is off, since the fragments
shown do not give a complete picture of the structure of the
molecule (the presence of aromatic rings).

TABLE 3: An example of encoding fragments

Fragment −
|
𝐶
|
− 𝐶 ≡ = 𝐶 =

|
𝐶
|

Code of fragment 𝐶 4𝑠 * 𝐶 2𝑡 * 𝐶 2𝑤 * 𝐶 3𝑑 *

Fragment = 𝐶 = 𝐶 =
|
𝐶
|
𝐻 −

|
𝐶
|
−

Code of fragment 𝐶 2𝑤 * 𝐶 2𝑤 * 𝐶 3𝑠 * 𝐶 4𝑠 *

3.1.1 Topological indexes

The topological index is an invariant of the molecular
graph, a certain numerical value that characterizes the struc-
ture of the molecule as a whole. Usually, topological indices
do not reflect the multiplicity of chemical bonds and types
of atoms (C, N, O, etc.), hydrogen atoms are not taken into
account.

We will use topological indices to conduct a prelim-
inary visual development of the training sample, search
for interesting dependencies and identify a possible cluster
structure.

For an arbitrary molecular graph 𝐺, we introduce the
concepts of adjacency and distance matrices (atoms are
numbered arbitrarily).

Definition The adjacency matrix of a molecular graph
𝐺 of 𝑛 atoms is a matrix of size 𝑛 × 𝑛, on (𝑖, 𝑗)-th place of
which is 1, if between 𝑖-th and 𝑗-th atoms there is a chemical
bond, or 0, otherwise.

Definition The matrix of distances of the molecular
graph 𝐺 of 𝑛 atoms is a matrix of size 𝑛×𝑛, at the (𝑖, 𝑗) place
of which there is a number equal to the topological distance
(the number of edges along the shortest path) between the
𝑖-th and 𝑗-th atoms.

The distant matrix is filled by running the wave al-
gorithm proposed in [5]. A step-by-step description and
pseudo-code of the algorithm are presented in [1].

Algorithm .1. Wave for an individual vertice

1: 𝑓 ← 1
2: 𝑚𝑎𝑟𝑘𝑛𝑢𝑚 ← 1
3: 𝑚𝑎𝑟𝑘[𝑖𝑖]← 𝑚𝑎𝑟𝑘𝑛𝑢𝑚 ◁ burning
4: while at least 1 vertice is not burning do
5: if 𝑓 = 0 then
6: break
7: end if
8: 𝑓 ← 0
9: for 𝑖 = 0, . . . , 𝑛− 1 do

10: if 𝑚𝑎𝑟𝑘[𝑖] = 𝑚𝑎𝑟𝑘𝑛𝑢𝑚 then
11: for 𝑗 = 0, . . . , 𝑛− 1 do
12: if 𝑎[𝑖][𝑗] = 1 and 𝑚𝑎𝑟𝑘[𝑗] = 0 then
13: 𝑚𝑎𝑟𝑘[𝑗]← 𝑚𝑎𝑟𝑘𝑛𝑢𝑚 + 1
14: end if
15: end for
16: end if
17: end for

18: for 𝑖 = 0, . . . , 𝑛− 1 do
19: if 𝑚𝑎𝑟𝑘[𝑖] == 0 then
20: 𝑓 ← 1
21: end if
22: end for
23: 𝑚𝑎𝑟𝑘𝑛𝑢𝑚 ← 𝑚𝑎𝑟𝑘𝑛𝑢𝑚 + 1
24: end while

The following is a description of some well-known
molecular graph invariants that can be calculated through
the adjacency and distance matrices.

1) Wiener index[6]

𝑊 (𝐺) =
1

2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

𝑑𝑖,𝑗 ,

where 𝑑𝑖,𝑗 is the topological distance between the
𝑖-th and 𝑗-th atoms in the molecule, or (𝑖, 𝑗)-th
element of the distance matrix.

2) Randic index[7]

𝑅(𝐺) =
∑︁

(𝑣𝑖,𝑣𝑗)∈𝑉

1√︀
𝑑 (𝑣𝑖) 𝑑 (𝑣𝑗)

,

where 𝑣𝑖 and 𝑣𝑗 are adjacent vertices forming an
edge (𝑣𝑖, 𝑣𝑗), 𝑑 (𝑣𝑘) is a vertex degree 𝑣𝑘.

3) Balaban Index[8]

𝐽(𝐺) =
𝑞

𝜇+ 1

∑︁
(𝑣𝑖,𝑣𝑗)∈𝑉

1
√
𝑠𝑖 𝑠𝑗

,

where 𝑣𝑖 and 𝑣𝑗 are adjacent vertices forming an
edge (𝑣𝑖, 𝑣𝑗), 𝑠𝑖 is the sum of the elements of the
𝑖-th row or 𝑖-th column of the distance matrix, 𝜇
is a cyclomatic number calculated by the formula
𝜇 = 𝑞 − 𝑛+ 1 (this is the least number of edges, the
removal of which leads to graph without cycles).
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4) Diameter and radius of a molecular graph

𝑑𝑖𝑎𝑚(𝐺) = max
𝑖

max
𝑗

𝑑𝑖,𝑗 , 𝑟𝑎𝑑(𝐺) = min
𝑖

max
𝑗

𝑑𝑖,𝑗 ,

where 𝑑𝑖,𝑗 is the (𝑖, 𝑗)-th element of the distance
matrix.

3.1.2 Structural 3D descriptors

The approach, called 3D-QSAR, is based on the use of
a spatial representation of molecules. Descriptors are con-
structed not from the initial molecular graphs, but from the
three-dimensional graphs derived from them, at the vertices
of which are not atoms, but the so-called singular points.
Only then, using the obtained three-dimensional labeled
molecular graph, the values of structural 3D-descriptors are
calculated[2].

At the first stage, it is necessary to construct a molecular
surface using this graph. For each atom, the van der Waals
radius is calculated, and then a ball of the given radius is
built around each atom. The union of the constructed balls
is the basis of the molecular surface. To obtain the surface
itself, a ball of a certain radius is rolled over this union
(usually taken equal to the radius of the hydrogen atom),
i.e. ”smoothing” is performed. You can use the Discovery
Studio Visualizer package or the PyMol system to automat-
ically carry out this process.

At the second stage, it is necessary to carry out a car-
tographic projection of the molecular surface onto a plane,
in order to then work with the projection as a flat image.
The image is now prompted to search for special points.
There are many ways to do this. Algorithms that are directly
designed for finding special points, such as FAST, ORB,
SURF, etc., can be used. You can search for contours in
the image using edge detectors, convolving the image with
various filters (Gauss, Laplace, Sobel, Pruitt, etc.) and take
special points on the breaks of the detected contours. You
can apply segmentation algorithms to the image (threshold
segmentation, methods of building up areas, segmentation
using cluster analysis methods, etc.) and take either the
joints of the segments or the centers of gravity of the
segments as singular points. Then the neighborhoods (5×5,
or 7×7, or 9×9 pixels) of the singular points are vectorized,
on the basis of which clustering is carried out. As a result,
each special point receives a symbolic label of the cluster it
fell into, or it is specially marked as ”cluster dust”. Thus, the
image turns into a labeled planar graph, which then needs
to be transferred back to the molecular surface, the result
will be the vertices of the new labeled spatial graph.

3.2 Construction of the ”molecule-feature” matrix

Suppose we are working with a sample of 𝑛 chemical
compounds and 𝑘 is the complexity of the fragments that
will be listed in molecular graphs. Scheme for constructing
the ”molecule-feature” matrix can be broken down into the
following steps:

1) For each of the 𝑛 molecular graphs, atoms are la-
beled.

2) For each of the 𝑛 molecular graphs, a complete list
of all its 𝑘-fragments is constructed.

3) The resulting lists for each of the 𝑛 molecular graphs
are combined into one list, from which all repeti-
tions are removed. This is how the alphabet of 𝑘-
fragments is formed for the given sample.

4) Let the cardinality of the alphabet be 𝑚. Molecule-
feature matrix will have the size 𝑛×𝑚, and on (𝑖, 𝑗)-
th place will be the number of repetitions of the 𝑗-
th 𝑘-fragment in the 𝑖-th molecular graph from the
training set.

The difficulty in solving this problem is that in practice
the number of columns is much greater than the number of
rows (𝑚 >> 𝑛). This issue is solved by preliminary filtering
of features using special algorithms. One such algorithm is
described in detail in ¡3.4¿.

3.3 Clustering the training sample
Clustering was carried out in the space ”Wiener index –

Randich index” by the k-means algorithm. This is the most
popular clustering method. He was preferred because of the
high speed of work. The operation of the algorithm is such
that it seeks to minimize the total square deviation of cluster
points from the centers of these clusters, i.e.

𝑘∑︁
𝑖=1

∑︁
𝑝∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖

||𝑝− 𝑐𝑖||2 → 𝑚𝑖𝑛,

where 𝑘 is the number of clusters, 𝑐𝑖 is the center of the 𝑖-th
cluster.

The steps of the algorithm are as follows:

1) Fix the parameter k
2) Initialize k centers (e.g. randomly)
3) Distribute points into clusters: assign each point to

a cluster with the center closest to this point
4) Move the centers so that they really are the centers

of the resulting clusters
5) If at least one center has changed in step 4, go to

step 3

A more detailed description, features and comparison
with other cluster analysis algorithms are given in [4].

3.4 Evolutionary algorithm of GMDH
As mentioned earlier, one of the problems that arise

when working with the ”molecule-feature” matrix, is the
problem of the ”information explosion”: the matrix is very
wide. A possible solution is to pre-select the ”most signifi-
cant” signs, which allows you to make the group method of
data handling (GMDH). This method was described in [10],
[11], here we consider its modification for the ”structure-
property” problem, proposed in [1].

3.4.1 Classic GMDH scheme
Let 𝑋 be a ”molecule-feature” matrix size 𝑛 × 𝑚, pre-

centered and normalized. Centering means calculating the
average over the entire matrix and then subtracting the
resulting value from all elements. Normalization means
dividing each column by its norm, for example, Euclidean.

It is necessary to construct a linear function

𝑎(𝑥1, 𝑥2, ..., 𝑥𝑘) = 𝑤0 + 𝑤1 𝑥
1 + 𝑤2 𝑥

2 + . . .+ 𝑤𝑘 𝑥
𝑘
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from 𝑘 feature columns 𝑥1, 𝑥2, . . . , 𝑥𝑘, which are selected 
among the columns of the matrix 𝑋 . The construction of the 
function 𝑎(𝑥𝑗1 , 𝑥𝑗2 , . . . , 𝑥𝑗𝑘 ) is carried out in steps called 
selections. At each selection, no more than 𝑄 columns are se-
lected according to the principle of maximizing some quality 
criterion. The columns 𝑥𝑗 of the matrix 𝑋 can strongly 
correlate with each other, which can have a bad effect on the 
result of the algorithm – lead to uninformativeness, the 
selection of similar columns. To avoid this, a pairwise 
correlation threshold is introduced – 𝐶.

(1) 1-st selection
We iterate over all kinds of regression equations
with two variables in the class of linear functions:

𝑏𝑢𝑓1 = 𝑎(𝑥𝑖, 𝑥𝑗) = 𝑤0 + 𝑤1 𝑥
𝑖 + 𝑤2 𝑥

𝑗 ,

𝑖, 𝑗 = 1, . . . ,𝑚,

where 𝑥𝑖 and 𝑥𝑗 are columns of the matrix 𝑋 . The
total number of such equations is 𝐶 2

𝑚 = 𝑚(𝑚−1)/2.
According to the optimization criterion, 𝑄 of the
best equations are selected whose pairwise corre-
lations do not exceed 𝐶. They will take part in the
next selection.

(2) 2-nd selection
The system adds the variables 𝑥𝑖 to the equations
selected in the first step using a linear function of
two variables:

𝑏𝑢𝑓2 = 𝑎(𝑥𝑖, 𝑏𝑢𝑓1
𝑗 ) = 𝑤0 + 𝑤1 𝑥

𝑖 + 𝑤2 𝑏𝑢𝑓
1
𝑗 ,

𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑄,

where 𝑥𝑖 are the columns of the matrix 𝑋 , 𝑏𝑢𝑓1
𝑗

are the columns selected during the 1-st selection.
According to the optimization criterion, the best 𝑄
equations are selected whose pairwise correlations
do not exceed 𝐶. They will take part in the next
selection.
...

(𝑘) 𝑘-th selection
The system adds the variables 𝑥𝑖 to the equations
selected at the (𝑘−1)-th step using a linear function
of two variables:

𝑏𝑢𝑓𝑘 = 𝑎(𝑥𝑖, 𝑏𝑢𝑓𝑘−1
𝑗 ) = 𝑤0 + 𝑤1 𝑥

𝑖 + 𝑤2 𝑏𝑢𝑓
𝑘−1
𝑗 ,

𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑄,

where 𝑥𝑖 are the columns of the matrix 𝑋 , 𝑏𝑢𝑓𝑘−1
𝑗

are the columns selected during (𝑘 − 1)-th selec-
tion. The total number of such equations is 𝑚𝑄.
According to the optimization criterion, the best 𝑄
equations are selected whose pairwise correlations
do not exceed 𝐶. They will take part in the next
selection.
The stopping criterion is to carry out a given num-
ber of 𝐼 selections.

If we now consider the list of columns 𝑥𝑖, included in
𝑏𝑢𝑓 𝑖 in the course of at least one selection, we get a list of
the most ”significant” columns, on the basis of which we
will build the equation of the final model.

As optimization criteria, we will use the 𝑅2 criterion
if the regression problem is solved, and accuracy if the
classification problem is solved (see ¡2.1.3¿).

3.4.2 Introducing a nonlinear transformation
The use of GMDH allows not only to select significant

features in the course of building models, but also makes
it possible to perform functional transformations on feature
columns in the course of calculations. One of the possible
transformations is the introduction of nonlinearity based on
the idea of fuzzy logic. We will call this transformation the
feature fuzzification.

We fix 𝑘 ∈ N. For column 𝑥𝑖 put 𝑎 = min
𝑗=1,...,𝑛

𝑥𝑖
𝑗 , 𝑏 =

max
𝑗=1,...,𝑛

𝑥𝑖
𝑗 . On the segment [𝑎; 𝑏] we introduce a uniform grid

with a step ℎ :

𝜔ℎ = {𝑎+ 𝑡ℎ | 𝑡 = 0, . . . , 𝑇}, where 𝑎+ 𝑇ℎ = 𝑏.

We will consider all possible pairs of points of the form
(𝑧1, 0), (𝑧2, 𝑏−𝑎), where 𝑧1, 𝑧2 ∈ 𝜔ℎ, 𝑧1 < 𝑧2. We introduce
a mapping 𝜙 that constructs from the vector 𝑥𝑖 the vector
𝜙(𝑥𝑖) with components

𝜙(𝑥𝑖)𝑗 =

⎧⎪⎪⎨⎪⎪⎩
0, 𝑥𝑖

𝑗 ∈ [𝑎; 𝑧1),
𝑏− 𝑎

𝑧2 − 𝑧1
(𝑥𝑖

𝑗 − 𝑧1), 𝑥𝑖
𝑗 ∈ [𝑧1; 𝑧2],

𝑏− 𝑎, 𝑥𝑖
𝑗 ∈ (𝑧2; 𝑏].

Figure 3 illustrates this approach. The abscissa shows the
present values of the vector components, and the ordinate
shows the changed values after applying the fuzzification.
The bisector would correspond to the absence of transfor-
mations over the vector 𝑥𝑖.

𝑥

𝑦

𝑧1 𝑧2𝑎 𝑏

𝑦 = 0

𝑦 =
𝑏− 𝑎

𝑧2 − 𝑧1
(𝑥− 𝑧1)

𝑦 = 𝑏− 𝑎

ℎ

Fig. 1: Visualization of the 𝜙 function

The difference between this approach and the classical
GMDH, described in ¡3.4.1¿, is that at each 𝑘-th selection,
the 𝑥𝑖 column participates in the equation after applying
the 𝜙 fuzzification to it:

𝑏𝑢𝑓𝑘 = 𝑤0 + 𝑤1 𝜙(𝑥
𝑖) + 𝑤2 𝑏𝑢𝑓

𝑘−1
𝑗 ,

𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑄.
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So. we provide a detailed description of each stage of solving the 
”structure-property” problem from in 2.3. Several methods of 
vectorization of molecular graphs areproposed, illustrations 
and examples of counting the intro-duced descriptors are 
given. 

The method of the ”molecule-feature” matrix construction 
is described. The GMDH algo-rithm for the QSAR modeling 
problem is considered: in the classical version and 
modified, with the introduction of the concept of feature 
fuzzification. P seudocodes a re g iven for the algorithms 
used

4 EXPERIMENTS

The experiments were carried out on samples with the 
code Np** and Npb*, on three vertices. Each sample has a 
threshold value of activity, that is, if the value in the vector 𝑦 
is less than it, then the molecule is active, otherwise— 
inactive. As a model, MGUA with ridge regression and 
regularization coefficient = 0.1 was used for more competent 
and stable work with outliers. Scaling or standardization 
was applied to the matrix of topological indexes — this is 
such a data preprocessing, after which each feature has an 
average of 0 and a variance of 1. Accordingly, after it, each 
column will have a normal distribution with the same mean 
and variance. A threshold value is subtracted from the target 
vector to classify the sign (+1, -1)

For the samples, a cluster search was performed using 
the k-means and DBSCAN methods. Additionally, a DB-
SCAN cluster search was performed on the main compo-
nents of the sample (PCA) found using SVD decomposition.

For the k-means method, the hyperparameter k=3 is 
chosen, since for a larger k, there are too few objects in some 
clusters for at least some stable solution. The method itself is 
unstable, since different launches result in clusters of 
different sizes. This is probably due to random initialization 
at the beginning of the algorithm. 

Cluster-analysis algorythm precision recall f1-score

bzr NNdb*

k-means

CLUSTER # 0
-1 0.91 1.00 0.95
1 0.00 0.00 0.00
accuracy 0.91

CLUSTER # 1
-1 0.71 0.92 0.80
1 0.50 0.18 0.27
accuracy 0.69

CLUSTER # 2
-1 0.78 0.60 0.68
1 0.71 0.86 0.78
accuracy 0.74

DBSCAN

CLUSTER # -1
-1 0.89 0.89 0.89
1 0.86 0.86 0.86
accuracy 0.88

CLUSTER # 0
-1 0.66 0.79 0.72
1 0.65 0.48 0.55
accuracy 0.65

CLUSTER # 1
-1 0.95 1.00 0.98
1 0.00 0.00 0.00
accuracy 0.95

CLUSTER # 2
-1 0.62 0.71 0.67
1 0.75 0.67 0.71
accuracy 0.69

PCA and DBSCAN

CLUSTER # -1
-1 0.67 0.89 0.76
1 0.89 0.67 0.76
accuracy 0.76

CLUSTER # 0
-1 0.67 0.79 0.73
1 0.62 0.48 0.55
accuracy 0.66

CLUSTER # 1
-1 0.81 1.00 0.90
1 0.00 0.00 0.00
accuracy 0.81

CLUSTER # 2
-1 0.57 1.00 0.73
1 1.00 0.62 0.77
accuracy 0.75

5. CONCLUSION

In the DBSCAN method, the parameters min samples = 30 were 
selected, that is, the minimum cluster size is 30, and eps=5.5, which 
was selected in such a way that there were as few points of failure as 
possible (CLUSTER # -1) and as many clusters as possible (with 
eps=7, almost all points belonged to cluster 0, the rest to -1).

In the PCA method, 10 main components were taken, with a different 
value of the hyperparameter, somewhat similar, unremarkable results 
are obtained. The advantage of this method is its relatively high speed 
due to the reduction in the dimension of the matrix.
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