

XXI Всероссийская конференция молодых ученых

«Актуальные проблемы неорганической химии: синхротронные и нейтронные методы в химии современных материалов»

Сборник тезисов

Дом отдыха МГУ «Красновидово», 11-13 ноября 2022 г.

PROFESSIONAL CONGRESS ORGANISER WWW.MESOL.RU

TECHNICAL SUPPORT

Новые представители семейства соединений со структурой францисита

<u>Яценко И.В.</u>¹, Кузнецова Е.С.¹, Бердоносов П.С.¹, Оленев А.В.², Маркина М.М.³, Васильев А.Н.³

¹ Химический факультет МГУ имени М.В. Ломоносова, 119991, Москва, Россия, ² ООО «Синус Тета», 119991, Москва, Россия, ³ Физический факультет МГУ имени М.В. Ломоносова, 119991, Москва, Россия

igor.yatsenko.2004@mail.ru

В рамках настоящей работы получен непрерывный ряд фаз состава $Cu_3Bi(Se_{1-x}Te_xO_3)_2O_2Br$ (x = 0.25; 0.5; 0.75; 1). Все полученные соединения кристаллизуются в ромбической сингонии (пр. гр. *Pmmn*) и наследуют мотив структуры минерала францисита $Cu_3Bi(SeO_3)_2O_2Cl$.

Синтез осуществляли в запаянных кварцевых ампулах. Исходные смеси для отжига готовили из CuO, CuBr₂, Bi₂O₃, SeO₂ и TeO₂, взятых в стехиометрических соотношениях. На первом этапе температура отжига составляла 300°C, затем температуру повышали и вели отжиг при 575°C. Продукты представляли собой порошки зелёного цвета.

Для всех полученных фаз определяли параметры элементарных ячеек методом индицирования порошковых дифрактограмм образцов. Результаты индицирования представлены в таблице 1. Видно, что увеличение степени замещения селена на теллур приводит к монотонному увеличению параметров a и b, а также к увеличению объёма элементарной ячейки. Для нового соединения Cu₃Bi(TeO₃)₂O₂Br проводили уточнение кристаллической структуры методом Ритвельда. Примечательно, что данный теллурит-бромид также кристаллизуется в пространственной группе *Рттп*, в то время как в аналоге с хлором Cu₃Bi(TeO₃)₂O₂Cl наблюдается искажение структуры по сравнению с франциситом [1].

Для синтезированных фаз были получены температурные зависимости магнитной восприимчивости и теплоёмкости, а также полевые зависимости (рисунок 1). Как видно из таблицы 1, с увеличением степени замещения селена на теллур и, как следствие, увеличением параметров элементарной ячейки возрастает температура Нееля антиферромагнитного упорядочения медной подсистемы и возрастает величина критического поля метамагнитного перехода.

Табл. 1. Параметры элементарных ячеек и магнитные характеристики ϕ аз $Cu_3Bi(Se_{1-x}Te_xO_3)_2O_2Br$ (x = 0.25; 0.5; 0.75; 1).

x	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	$V, Å^3$	T_N , K	<i>Вс</i> , Т
0	6.3865(13)	9.6915(21)	7.2853(19)	450.92(24)	37.8	1.6
0.25	6.3930(25)	9.694(4)	7.286(3)	451.5(4)	33.6	1.3
0.5	6.4427(15)	9.7969(21)	7.3092(16)	461.3(3)	30.5	1.0
0.75	6.4586(17)	9.837(3)	7.3066(21)	464.2(3)	28.8	0.8
1	6.4806(19)	9.881(3)	7.2971(22)	467.3(3)	27.5	0.74

Рис. 1. Зависимость магнитной восприимчивости (a) и теплоёмкости (b) от температуры фаз $Cu_3Bi(Se_{1-x}Te_xO_3)_2O_2Br$ (x = 0.25; 0.5; 0.75; 1).

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта «Перспектива» № 19-33-60093.

[1] Becker R., Johnsson M. Crystal structure of Cu₃Bi(TeO₃)₂O₂Cl: a Kagomé lattice type compound. // *Solid State Sciences*. 2005. V. 7. P. 375-380.