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Axiomatic Method for Constructing
a Generalized Solution of a Mixed
Problem for a Telegraph Equation

Igor S. Lomov

Abstract The paper presents an algorithm for constructing a rapidly converging1

series representing a generalized solution of a mixed problem for a telegraphic equa-2

tion considered in a half-band. Reviewed the case of an essentially non-self-adjoint3

operator in a spatial variable. The system of root functions of a differential operator,4

in addition to its eigenfunctions, contains an infinite number of associated functions.5

The constructed series can be considered as a generalized d’Alembert formula. A new6

axiomatic A.P. Khromov’s method is applied to construct the solution. The proposed7

approach superseds the traditional method of separating variables for solving mixed8

problems, which usually results in to slowly converging series. For the problem under9

consideration, in general, the method of separating variables is not applicable, since10

the coefficient of the equation depends both on the spatial variable and on time.11

Keywords Telegraph equation · Mixed problem · Generalized d’Alembert12

formula · Fourier method · Non-self-adjoint operator · Divergent series13

1 Introduction14

A number of mathematical models used in problems of sound theory (elasticity),15

light, electricity and magnetism, contain the so-called telegraph equation utt (x, t) =16

uxx (x, t) − qu(x, t). A mixed problem is posed. Consider the case when the potential17

q can also depend on time, q = q(x, t). To construct a solution to a generalized18

mixed problem, we use the recently developed axiomatic method of A.P. Khromov19

[1]. Previously, he developed a sequential method for constructing a generalized20

solution to the problem under consideration [2, 3]. The advantage of these methods21

over the methods used earlier consist in the fact that minimum requirements are22

imposed on the initial data of the problem, the justification of the result attracts a23
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2 I. S. Lomov

minimum number of additional statements, and the solution is given in the form of24

a rapidly converging functional series.25

Let’s consider four problems sequentially, for which we will find generalized26

solutions.27

2 A Mixed Problem for a Homogeneous Wave Equation28

with a Nonzero Initial Deviation29

Consider the following problem30

utt (x, t) = uxx (x, t), (x, t) ∈ (0, 1) × (0,+∞), (1)31

32

u(0, t) = 0, x (0, t) = ux (1, t), t ≥ 0, (2)33

34

u(x, 0) = ϕ(x), ut (x, 0) = 0, x ∈ [0, 1], (3)35

ϕ(x)—complex-valued, integrable on (0, 1) functions, ϕ(x) ∈ L(0, 1). We use the36

notation derivatives ux = ∂u
∂x , etc.37

The peculiarity of the problem (1)–(3) is due to the fact that the corresponding38

Sturm–Liouville operator L0 : ly = −y′′(x), x ∈ (0, 1), y(0) = 0, y′(0) = y′(1),39

is essentially non-self-adjoint (according to Ilyin)—the system of root functions40

of this operator, in addition to its eigenfunctions, contains an infinite number of41

associated functions (the Samarsky-Ionkin problem). Let’s write out this system.42

Denote by �k the square roots of the eigenvalues operator, {uk(x)}—system43

of eigen and associated operator functions, moreover, u2k−1(x)—eigenfunctions,44

u2k(x)—associated functions, k ≥ 1, {vk(x)}—biorthogonally conjugate system of45

functions, (uk, vn) = δkn =
{

1, k = n,

0, k �= n
, where (uk, vn) = ∫ 1

0 uk(x)vn(x)dx .46

Then �0 = 0, �2k−1 = �2k = 2πk, k ≥ 1, u0(x) = x, v0(x) = 2, u2k−1(x) =47

sin 2πkx, v2k−1(x) = 4(1 − x) sin 2πkx , u2k(x) = − x
4πk cos 2πkx, v2k(x) =48

−16πk cos 2πkx . So the chosen system {uk(x)} of root functions of the operator49

forms unconditional basis in the space L2(0, 1). System {vk(x)} also forms an uncon-50

ditional basis in this space.51

The formal solution of the problem (1)–(3) by the Fourier method is52

u(x, t) = 1
2

{
2(x + t)(1,ϕ)+

+4
∞∑

n=1

[
(ϕ(τ ), (1 − τ ) sin 2πnτ ) sin 2πn(x + t)+

+(ϕ(τ ), cos 2πnτ )(x + t) cos 2πn(x + t)
]+

+2(x − t)(1,ϕ) + 4
∞∑

n=1

[
(ϕ(τ ), (1 − τ ) sin 2πnτ ) sin 2πn(x − t)+

+(ϕ(τ ), cos 2πnτ )(x − t) cos 2πn(x − t)
]}

.

(4)53
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Axiomatic Method for Constructing a Generalized Solution … 3

Definition 1 By the classical solution (almost everywhere solution) of the problem54

(1)–(3) we mean the function u(x, t) continuous and continuously differentiable with55

respect to x and t in half-strip [0, 1] × [0,∞), and the functions ux (x, t), ut (x, t)56

are absolutely continuous in x ∈ [0, 1] and t ∈ [0,∞), respectively, satisfying the57

conditions (2), (3) and almost everywhere in x and t the Eq. (1).58

Let us present a uniqueness theorem for the classical solution of the problem59

(1)–(3). Fix an arbitrary number T > 0, let QT —rectangle, QT = [0, 1] × [0, T ],60

denoted by Q is the class of functions integrable on QT , f ∈ Q ⇔ f (x, t) ∈ L(QT ).61

Theorem 1 If u(x, t) is a classical solution to the problem (1)–(3) with condition62

utt (x, t) ∈ Q (∀T > 0), then it is unique and can be found by the formula (4), in63

which the series on the right for any fixed t > 0 converge absolutely and uniformly64

in x ∈ [0, 1].65

The proof of the theorem follows the scheme described in [4] and does not depends66

on specific boundary conditions.67

Note that the series (4) makes sense for any function ϕ(x) ∈ L(0, 1), although68

now it can also be divergent. Nevertheless, we will assume that it is a formal solution69

of the problem (1)–(3), but now understood purely formally. This problem (1)–(3)70

will be called the generalized mixed problem. Finding a solution to a generalized71

mixed problem means finding the “sum” of, generally speaking, a divergent series.72

“Sum” in quotes means that this is the sum of a divergent (generally) series (see [5,73

p. 101], [6, p. 6, 19]).74

Finding a solution to the generalized mixed problem (1)–(3) means finding the75

“sum” of the divergent series (4).76

In addition to the three axioms about divergent series [6, p. 19], following77

A.P. Khromov, we will also use the following integration rule for a divergent series:78

∫ ∑
=

∑ ∫
, (5)79

where
∫

is a definite integral.80

Let’s go back to the row (4). Before transforming it, let us write the formal81

expansion of the function ϕ(x) into a series in terms of the root system functions of82

the operator L0:83

ϕ(x) ∼ 2x(1,ϕ) + 4
∞∑

n=1
[(ϕ(τ ), (1 − τ ) sin 2πnτ ) sin 2πnx+

+(ϕ(τ ), cos 2πnτ )x cos 2πnx].
(6)84

The series (4) can be represented as85

u(x, t) =
∑

+ +
∑

−, (7)86
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4 I. S. Lomov

where
∑

± =
∞∑

n=1
. . . (x ± t). Comparing (6), (7), we conclude that to find the “sum”87

of the series (4), we need to find the “sum” of the series (6) .88

Let the “sum” of the series (6) for x ∈ [0, 1] be some function g(x) ∈ L(0, 1).89

Then, in accordance with rule (5), we have90

x∫
0

g(η)dη = 2(1,ϕ)
x∫

0
ηdη+

+4
∞∑

n=1

[
(ϕ(τ ), (1 − τ ) sin 2πnτ )

x∫
0

sin 2πnηdη+

+(ϕ(τ ), cos 2πnτ )
x∫

0
η cos 2πnηdη

]
, x ∈ [0, 1].

(8)91

The following generalization to the considered system {uk(x)} of Lebesgue’s92

theorem on term-by-term integration of the trigonometric Fourier series takes place.93

Theorem 2 Let a function ϕ(x) ∈ L(0, 1) be given that has the series (6) as its94

biorthogonal expansion in the system {uk(x)}. If the segment is [A, B] ⊆ [0, 1], then95

B∫
A

ϕ(x)dx =
B∫
A

2x(1,ϕ)dx +
∞∑

n=1

B∫
A
[4(ϕ(τ ), (1 − τ ) sin 2πnτ ) sin 2πnx+

+4(ϕ(τ ), cos 2πnτ )x cos 2πnx]dx .

Those, the biorthogonal series (6) can be integrated term-by-term, the resulting96

series converges and its sum is equal to
B∫
A

ϕ(x)dx . In this case, the series (6) itself97

may not converge.98

The proof of Theorem 2 is carried out in Sect. 5.99

According to Theorem 2, the sum of the series (8), the usual sum, is the function100

x∫
0

ϕ(η)dη. But then,
x∫

0
g(η)dη =

x∫
0

ϕ(η)dη, i.e. g(x) = ϕ(x) is true almost every-101

where on the interval [0, 1], we have found the “sum” of the series (6), which can102

also be divergent.103

The formal series (6) is defined for all values of x ∈ R. Denote by ϕ̃(x) the “sum”104

of the series (6) for all values of x ∈ R. By virtue of (6) and (7) we conclude that the105

“sum” u(x, t) of the series (4) is a function106

u(x, t) = 1

2
[ϕ̃(x + t) + ϕ̃(x − t)]. (9)107

Proven108

Theorem 3 The solution of the generalized mixed problem (1)–(3) is the function109

u(x, t) from the class Q defined by the formula (9).110

526377_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:13/4/2023 Pages: 12 Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Axiomatic Method for Constructing a Generalized Solution … 5

Let us find an algorithm for extending the function ϕ̃(x) from the segment [0, 1],111

where ϕ̃(x) = ϕ(x), to the whole number line. Assuming that ϕ̃(x) is a smooth112

function, we substitute the relation (9) into the boundary conditions (2). We obtain113

two equalities: ϕ̃(x) = −ϕ̃(−x), x ∈ R, i.e., the function ϕ̃(x)—odd, and114

ϕ̃′(1 + x) = 2ϕ̃′(x) − ϕ̃′(1 − x), x ∈ R, (10)115

where it is taken into account that ϕ̃′(x)—is an even function. We integrate the116

equality (10) over the interval [0, x], and we get117

ϕ̃(1 + x) = 2ϕ̃(x) + ϕ̃(1 − x), x > 0. (11)118

The relation (11) allows us to extend the function ϕ̃(x) = ϕ(x), x ∈ [0, 1], from the119

segment [0, 1] to the semiaxis x > 0, then we continue the function to the semiaxis120

x < 0 as an odd function.121

3 Mixed Problem for an Inhomogeneous Wave Equation122

with Zero Initial Deviation123

Consider the following generalized mixed problem124

utt (x, t) = uxx (x, t) + f (x, t), (x, t) ∈ (0, 1) × (0,+∞), (12)125

126

u(0, t) = 0, ux (0, t) = ux (1, t), t ≥ 0, (13)127

128

u(x, 0) = ut (x, 0) = 0, x ∈ [0, 1], (14)129

where f (x, t) is a function of class Q.130

The formal solution of the problem (12)–(14) by the Fourier method is

u(x, t) = 1
2

t∫
0

dτ
t−τ∫
0

{
2(x + η)(1, f (ξ, τ ))+

+4
∞∑

n=1

[
( f (ξ, τ ), (1 − ξ) sin 2πnξ) sin 2πn(x + η)+

+( f (ξ, τ ), cos 2πnξ)(x + η) cos 2πn(x + η)
]+

+2(x − η)(1, f (ξ, τ )) + 4
∞∑

n=1

[
( f (ξ, τ ), (1 − ξ) sin 2πnξ) sin 2πn(x − η)+

+( f (ξ, τ ), cos 2πnξ)(x − η) cos 2πn(x − η)
]}

dη,

we used the rule (5) and took the integrals out of the signs of the sums. Let’s combine131

terms with arguments (x + η) and (x − η), we get132
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6 I. S. Lomov

u(x, t) = 1
2

t∫
0

dτ
x+t−τ∫

x−t+τ

{
2η(1, f (ξ, τ ))+

+4
∞∑

n=1

[
( f (ξ, τ ), (1 − ξ) sin 2πnξ) sin 2πnη+

+( f (ξ, τ ), cos 2πnξ)η cos 2πnη
]}

dη = 1
2

t∫
0

dτ
x+t−τ∫

x−t+τ

f̃ (η, τ )dη,

(15)133

the last equality is explained by the fact that the bracketed expression {·} in (15), as it134

follows from the formula (6), has the “sum” f̃ (η, τ ), where f̃ (η, τ ) is the extension135

of the function f (η, τ ) along τ to the entire real axis using the same formulas, which136

is for the function ϕ(x).137

Thus, fair138

Theorem 4 The solution u(x, t) of the generalized mixed problem (12)–(14) is a139

function of class Q defined by the formula140

u(x, t) = 1

2

t∫
0

dτ

x+t−τ∫
x−t+τ

f̃ (η, τ )dη. (16)141

From the formula (16), using the continuation formulas, we obtain the estimate

‖u(x, t)‖L(QT ) ≤ cT ‖ f (x, t)‖L(QT ), ∀T > 0, cT = const > 0,

this confirms that u(x, t) is a function of class Q.142

4 A Mixed Problem for an Inhomogeneous Wave Equation143

with a Nonzero Initial Deviation144

Consider a generalized mixed problem145

utt (x, t) = uxx (x, t) + f (x, t), (x, t) ∈ (0, 1) × (0,+∞), (17)146

147

u(0, t) = 0, ux (0, t) = ux (1, t), t ≥ 0, (18)148

149

u(x, 0) = ϕ(x), ut (x, 0) = 0, x ∈ [0, 1], (19)150

where f (x, t) is a function of class Q, ϕ(x) ∈ L(0, 1).151

The formal solution of the problem (17)–(19) by the Fourier method is u(x, t) =152

u0(x, t) + u1(x, t), where u0(x, t) is the series (4) and u1(x, t) is the series (15).153

Therefore, based on Sects. 2 and 3, we get154
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Axiomatic Method for Constructing a Generalized Solution … 7

Theorem 5 Generalized mixed problem (17)–(19) has a solution u(x, t) of class Q155

defined by the formula156

u(x, t) = 1

2
[ϕ̃(x + t) + ϕ̃(x − t)] + 1

2

t∫
0

dτ

x+t−τ∫
x−t+τ

f̃ (η, τ )dη. (20)157

5 Mixed Problem for the Telegraph Equation158

We use the results of Sects. 2, 3 and 4 to solve the following problem:159

utt (x, t) = uxx (x, t) − q(x, t)u(x, t), (x, t) ∈ (0, 1) × (0,+∞), (21)160

161

u(0, t) = 0, ux (0, t) = ux (1, t), t ≥ 0, (22)162

163

u(x, 0) = ϕ(x), ut (x, 0) = 0, x ∈ [0, 1], (23)164

where ϕ(x) ∈ L(0, 1), the function q(x, t) is such that there is a function q0(x) ∈165

L(0, 1), such that |q(x, t)| ≤ q0(x), the function q(x, t)u(x, t) is a function of166

class Q.167

From Theorem 5 we obtain that finding a solution to the problem (21)–(23) in the168

class Q reduces to finding in this class the solution of the integral equation169

u(x, t) = 1

2
[ϕ̃(x + t) + ϕ̃(x − t)] − 1

2

t∫
0

dτ

x+t−τ∫
x−t+τ

˜q(η, τ )u(η, τ )dη, (24)170

where ˜q(η, τ )u(η, τ ) is the extension along η to the entire real axis from the interval171

[0, 1] for each τ of the function q(η, τ )u(η, τ ) by the same formulas as the function172

ϕ(x).173

The integral equation has a unique solution in the class Q obtained by the method174

of successive substitutions. This solution is given by the formula175

u(x, t) = A(x, t) =
∞∑

n=0

an(x, t), (25)176

where
a0(x, t) = 1

2 [ϕ̃(x + t) + ϕ̃(x − t)],
an(x, t) = 1

2

t∫
0

dτ
x+t−τ∫

x−t+τ

f̃n−1(η, τ )dη, n = 1, 2, . . . ,
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8 I. S. Lomov

where f̃n(η, τ ) = fn(η, τ ) = −q(η, τ )an(η, τ ) for η ∈ [0, 1], n = 0, 1, . . .,177

fn(η, τ ) extends over the variable η from [0, 1] to the whole line in the same way as178

the function ϕ(x), f̃n(η, τ ) = − ˜q(η, τ )an(η, τ ).179

The formula (25) can be called the generalized d’Alembert formula.180

Theorem 6 If ϕ(x) ∈ L(0, 1) then the A(x, t) (25) converges absolutely and uni-181

formly (with exponential speed) in the rectangle QT for any T > 0.182

The proof of the theorem follows directly from the following estimate for the183

common term of the series (25).184

Lemma 1 Let ϕ(x) ∈ L(0, 1), T —arbitrary positive number. Then the estimates185

hold186

‖an(x, t)‖C(QT ) ≤ cn+1
T ‖q0‖n

1‖ϕ‖1
T n−1

(n − 1)! , n ∈ N, cT = const > 0.

The proof of the lemma is carried out using the method of mathematical induction.187

6 The Term-by-Term Integration Theorem188

Here we justify Theorem 2 on the term-by-term integration of the biorthogonal expan-189

sion with respect to the system {uk(x)} integrable on the interval [0, 1] functions. We190

adhere to the well-known scheme of proving the Lebesgue theorem, with the correc-191

tion that now the expansion in a series is not carried out according to orthonormal192

system, but biorthogonal system. Let us rename ϕ(x) in Theorem 2 by f (x).193

So, let a function f (x) ∈ L(0, 1) be given, which has as its biorthogonal expansion194

in the {uk(x), vk(x)} system195

2x(1, f ) + 4
∞∑

n=1
[( f (τ ), (1 − τ ) sin 2πnτ ) sin 2πnx+

+( f (τ ), cos 2πnτ )x cos 2πnx].
(26)196

Let [A, B] ⊆ [0, 1], then it is required to prove that

B∫
A

f (x)dx = 2
B∫
A

x(1, f )dx + 4
∞∑

n=1

B∫
A

[
( f (τ ), (1 − τ ) sin 2πnτ ) sin 2πnx+

+( f (τ ), cos 2πnτ )x cos 2πnx
]
dx,

those, the series (26) can be integrated term by term, the resulting series converges197

and its sum is equal to
∫ B

A f (x)dx . In this case, the series itself (26) may diverge.198
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Axiomatic Method for Constructing a Generalized Solution … 9

Consider the function

ϕ(x) =
{

1, x ∈ [A, B],
0, x ∈ [0, 1] \ [A, B].

Each of the systems {uk(x)}, {vk(x)}, forms an unconditional basis in the space199

L2(0, 1). Let us expand the function ϕ(x) into a series in the system {vk(x), uk(x)},200

and call it the conjugate series:201

ϕ(x) ∼ 2α0 + 4
∞∑

k=1
[αk(1 − x) sin 2πkx + βk cos 2πkx] =

= 2(ϕ(τ ), τ ) + 4
∞∑

k=1
[(ϕ(τ ), sin 2πkτ )(1 − x) sin2πkx+

+(ϕ(τ ), τ cos 2πkτ ) cos 2πkx].

(27)202

Let us calculate the coefficients α0,αk,βk, k ≥ 1, of the series (27). We have

α0 = (ϕ(τ ), τ ) =
B∫
A

τdτ = 1
2 (B2 − A2),

αk = (ϕ(τ ), sin 2πkτ ) =
B∫
A

sin 2πkτdτ = 1
2πk (cos 2πk A − cos 2πk B),

βk = (ϕ(τ ), τ cos 2πkτ ) =
B∫
A

τ cos 2πkτdτ = 1
2πk [B sin 2πk B − A sin 2πk A+

+ 1
2πk (cos 2πk A − cos 2πk B)].

Let us substitute the obtained relations for the coefficients into the partial sum Sn(x)

of the series (27):

Sn(x) = B2 − A2 + 4
n∑

k=1

[
1

2πk (cos 2πk A − cos 2πk B)(1 − x) sin 2πkx+
+ 1

2πk (B sin 2πk B − A sin 2πk A) cos 2πkx + 1
4π2k2 (cos 2πk A−

− cos 2πk B) cos 2πkx
]
.

Let us prove that (1) the sequence {Sn(x)} converges ∀x ∈ [0, 1], (2) the sequence203

{Sn(x)} is uniformly bounded in n and x to [0, 1].204

(1). To prove the convergence of the series (27), we apply the Dirichlet-Abel205

test and the comparison test for numerical series. We transform the products of206

trigonometric functions into sums and group terms. We will receive207
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10 I. S. Lomov

Sn(x) = B2 − A2 + 1−x−A
π

n∑
k=1

sin 2πk(A+x)

k − 1−x+A
π

n∑
k=1

sin 2πk(A−x)

k +

+ x−1+B
π

n∑
k=1

sin 2πk(B+x)

k + 1−x+B
π

n∑
k=1

sin 2πk(B−x)

k +

+ 1
π2

n∑
k=1

1
k2 (cos 2πk B − cos 2πk A) cos 2πkx .

(28)208

According to the usual scheme, we obtain the estimates

∣∣ n∑
k=1

sin 2πk(A ± x)
∣∣ ≤ 1

| sin π(A ± x)| , ∀n, ∀x ∈ [0, 1],

A ± x �= 0, A + x �= 1. If A ± x = 0 or A + x = 1, then the corresponding sums
are equal to zero;

∣∣ n∑
k=1

sin 2πk(B ± x)
∣∣ ≤ 1

| sin π(B ± x)| , ∀n, ∀x ∈ [0, 1],

B − x �= 0, B ± x �= 1, 2. If B ± x = 1, 2 or B − x = 0, then the corresponding209

sums are equal to zero.210

Thus, the sums of sines in the first four partial sums in (28) are bounded in absolute211

value for all values of n and x ∈ [0, 1]. Consequently, the series corresponding to212

these sums converge in every point x ∈ [0, 1]. The series corresponding to the last213

sum in (28) converges absolutely and uniformly on the set [0, 1].214

Thus, the sequence {Sn(x)} converges at every point x ∈ [0, 1], i.e. the series (27)215

converges on [0, 1].216

(2). Let us prove that there is a constant c > 0 such that |Sn(x)| ≤ c,∀n, ∀x ∈217

[0, 1]. To do this, we prove that each of the sums on the right-hand side (28) is218

uniformly bounded.219

Let us use the well-known estimate ([7, p. 318])

∣∣ n∑
k=1

sin kt

k

∣∣ ≤ 2
√

π, ∀n, ∀t ∈ R.

Putting in the first sum in (28) t = 2π(A + x), we obtain

∣∣ n∑
k=1

sin 2πk(A + x)

k

∣∣ = ∣∣ n∑
k=1

sin kt

k

∣∣ ≤ 2
√

π, ∀n, ∀x ∈ [0, 1].

Similarly, we evaluate the next three sums in (28). For the last sum in (28),220

we obtain an upper bound in terms of the constant c = 4, ∀n, ∀x ∈ [0, 1], since221

526377_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:13/4/2023 Pages: 12 Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Axiomatic Method for Constructing a Generalized Solution … 11

n∑
k=1

1
k2 < 2, ∀n. For the sum Sn(x), we obtain an estimate uniform in n and x ∈ [0, 1]222

in terms of the constant c1 = 1 + 24√
π

+ 4
pi2 :223

|Sn(x)| ≤ c1, ∀n ≥ 1, ∀x ∈ [0, 1]. (29)224

The results obtained in (1), (2) make it possible to apply the Lebesgue theorem
on passing to the limit ([7, p. 139]):

1∫
0

f (x)ϕ(x)dx = lim
n→∞

1∫
0

f (x)Sn(x)dx,

or, use the relation (27),

B∫
A

f (x)dx = 2α0

1∫
0

f (x)dx + 4
∞∑

k=1

[
αk

1∫
0

f (x)(1 − x) sin 2πkxdx+

+βk

1∫
0

f (x) cos 2πkxdx
] = 2(1, f )

B∫
A

xdx+

+4
∞∑

k=1

[
( f (τ ), (1 − τ ) sin 2πkτ )

B∫
A

sin 2πkxdx+

+( f (τ ), cos 2πkτ )
B∫
A

x cos 2πkxdx
]
,

those, we get the required formula. Theorem 2 is proved.225

The author is grateful to A.P. Khromov for helpful discussions of the results of226

this work.227
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