УДК 524.1

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА TUNKA-GRANDE

© 2023 г. Р. Д. Монхоев^{1, *}, И. И. Астапов⁴, П. А. Безъязыков¹, Е. А. Бонвеч², А. Н. Бородин³, Н. М. Буднев¹, А. В. Булан², А. Вайдянатан⁵, Н. В. Волков⁹, П. А. Волчугов², Д. М. Воронин⁶, А. Р. Гафаров¹, А. Ю. Гармаш^{5, 8}, В. М. Гребенюк^{3, 10}, Е. О. Гресь¹, О. А. Гресь¹, Т. И. Гресь¹, А. А. Гринюк³, О. Г. Гришин¹, А. Н. Дячок¹, Д. П. Журов¹, А. В. Загородников¹, А. Д. Иванова^{1, 5}, М. А. Илюшин¹, Н. Н. Калмыков², В. В. Киндин⁴, С. Н. Кирюхин¹, Р. П. Кокоулин⁴, Н. И. Колосов¹, К. Г. Компаниец⁴, Е. Е. Коростелева², В. А. Кожин², Е. А. Кравченко^{5, 8}, А. П. Крюков², Л. А. Кузьмичев², А. Кьявасса¹¹, А. А. Лагутин⁹,
М. В. Лаврова³, Ю. Е. Лемешев¹, Б. К. Лубсандоржиев⁶, Н. Б. Лубсандоржиев², С. Д. Малахов¹, Р. Р. Миргазов¹, Э. А. Окунева², Э. А. Осипова², А. Л. Пахоруков¹, А. Пан³, А. Д. Панов², Л. В. Паньков¹, А. А. Петрухин⁴, Д. А. Подгрудков², Е. Г. Попова², Е. Б. Постников², В. В. Просин², В. С. Самолига¹, И. Сатышев³, А. А. Силаев², А. А. Силаев (мл.)², А. Ю. Сидоренков⁶, А. В. Скурихин², А. В. Соколов^{5, 8}, Л. Г. Свешникова², В. А. Таболенко¹, А. К. Танаев¹, Б. А. Таращанский¹, М. Ю. Терновой¹, Л. Г. Ткачев^{3,10}, Н. А. Ушаков⁶, Л. В. Чернов², И. И. Яшин⁴

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет", Научно-исследовательский институт прикладной физики, Иркутск, Россия

²Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова",

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия

³Международная межправительственная организация

Объединенный институт ядерных исследований, Дубна, Россия

⁴Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ", Москва, Россия

⁵Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет", Новосибирск, Россия

⁶Федеральное государственное бюджетное учреждение науки

"Институт ядерных исследований Российской академии наук", Москва, Россия

⁷Федеральное государственное бюджетное учреждение науки

"Институт Земного магнетизма, ионосферы и распространения радиоволн имени Н.В. Пушкова Российской академии наук", Москва, Россия

⁸Федеральное государственное бюджетное учреждение науки

"Институт ядерной физики имени Г.И. Будкера Сибирского отделения Российской академии наук", Новосибирск, Россия

⁹Федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет", Барнаул, Россия

¹⁰Федеральное государственное бюджетное образовательное учреждение высшего образования "Университет "Дубна", Дубна, Россия

¹¹Национальный институт ядерной физики, Турин, Италия

*E-mail: makaay08@rambler.ru

Поступила в редакцию 25.12.2022 г. После доработки 12.02.2023 г. Принята к публикации 29.03.2023 г.

Описана сцинтилляционная установка Tunka-Grande. Представлены научные результаты, полученные за первые 5 лет ее работы. Проанализированы перспективы изучения космических лучей в диапазоне энергий 10¹⁶–10¹⁸ эВ.

DOI: 10.31857/S0367676523701673, EDN: OODYWI

введение

В 2016 г. была введена в эксплуатацию и включена в состав астрофизического комплекса TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma Astronomy) [1] сцинтилляционная установка Tunka-Grande. Задачей эксперимента является изучение энергетического спектра и массового состава первичных космических лучей (ПКЛ) совместно с действующей широкоугольной черенковской установкой Тунка-133 [2], а также поиск диффузного гамма-излучения в диапазоне энергий 10¹⁶–10¹⁸ эВ.

В статье описана установка Tunka-Grande и выполнена оценка точности реконструкции параметров широких атмосферных ливней (ШАЛ) и ПКЛ. Основные научные результаты, полученные за первые 5 лет работы установки, представлены в виде дифференциального энергетического спектра ПКЛ и ограничения на поток диффузных гамма-квантов.

YCTAHOBKA TUNKA-GRANDE

Установка Tunka-Grande предназначена для регистрации заряженной компоненты ШАЛ и представляет собой массив сцинтилляционных счетчиков, объединенных в 19 станший и размещенных на площади ~0.5 км². Каждая станция состоит из 2-х частей: наземной и подземной. Первая включает в себя 12 счетчиков с общей площадью 7.68 м² и регистрирует все заряженные частицы ШАЛ на уровне наблюдения, вторая содержит 8 счетчиков общей площадью 5.12 м², расположена под слоем грунта 1.5 м и нацелена на выделение мюонной компоненты ШАЛ. Пороговая энергия для вертикальных мюонов при этом составляет ~0.5 ГэВ. Обе части находятся в непосредственной близости друг от друга и на расстоянии не более 30 м от центра ближайшего кластера установки Тунка-133.

Сцинтилляционный счетчик состоит из светособирающего дюралюминиевого кожуха толщиной 1 мм в виде усеченной пирамиды, внутренняя поверхность которого покрыта тонким диффузно-отражающим слоем белой эмали. Внутри кожуха размещаются пластмассовый сцинтиллятор NE102A, выполненный в форме плоской пластины размером $800 \times 800 \times 40$ мм, и на расстоянии ~30 см от него фотоэлектронного умножителя (ФЭУ) PHOTONIS XP-3462. На двух центральных счетчиках каждой станции для расширения ее линамического лиапазона регистрируемых сигналов располагаются дополнительные ФЭУ с коэффициентом усиления ~ в 10 раз меньшим по сравнению со стандартным. Данный тип счетчиков в настоящее время также применяется на установке НЕВОД-ШАЛ [3, 4], а ранее успешно использовался в экспериментах KASCADE-Grande [5] и EAS-TOP [6, 7].

Программно-аппаратный комплекс установки Tunka-Grande построен на базе программно-аппаратного комплекса установки Тунка-133 и обеспечивает непрерывную оцифровку сигналов со счетчиков, отбор событий со станций по заданному внутреннему или внешнему триггерным условиям, а также передачу информации в центр сбора данных, единый для всего астрофизического комплекса TAIGA. Отбор событий основан на том, что 12 счетчиков наземной части станшии разделены на две половины, по 6 счетчиков в каждой, и подключены к 2-м аналоговым сумматорам-усилителям. Условие выработки внутреннего триггера заключается в наличии сигнала от релятивистской частины на выходе каждого сумматора-усилителя во временном отрезке 500 нс. Внешний триггерный сигнал формируется ближайшим кластером установки Тунка-133 во время проведения совместных с ней сеансов наблюдений.

Независимо от выбранного режима работы установки Tunka-Grande для всех зарегистрированных событий проводится процедура реконструкции параметров ШАЛ. При этом определяются такие основные характеристики, как: координаты положения оси ШАЛ в плоскости установки – xи y, зенитный и азимутальный углы прихода оси ШАЛ – θ и ϕ , полное число частиц электрон-фотонной и мюонной компонент – N_e и N_{μ} , параметр возраста ШАЛ – s и плотность частиц на расстоянии 200 м от оси ШАЛ – ρ_{200} .

Более детальные описания структуры установки Tunka-Grande и процедуры реконструкции параметров ШАЛ изложены в работах [8, 9].

ПЕРВЫЕ 5 СЕЗОНОВ НАБЛЮДЕНИЙ

В настоящей статье представлены экспериментальные данные установки Tunka-Grande, накопленные за первые 5 лет ее работы. На основе совместных с установкой Тунка-133 событий за сезон наблюдений 2016-2017 гг. была оценена точность реконструкции параметров ШАЛ и определена стратегия вычисления энергии ПКЛ. Главная идея этого анализа заключается в том, что установка Тунка-133 изначально обладает более высокой, экспериментально подтвержденной точностью реконструкции параметров ШАЛ и ПКЛ [10]. По данным за период 2017–2021 гг., полученным в автономном режиме работы станций, восстановлен энергетический спектр ПКЛ и проведен поиск диффузных гамма-квантов. Во всех перечисленных случаях отбирались только те ШАЛ, параметры которых были реконструированы и удовлетворяют двум основным критериям, а именно: зенитный угол прихода оси ШАЛ лежит в области 0°-35° и положение оси ШАЛ находится в пределах круга радиусом 350 м относительно центра установки. Эти условия на данный мо-

Рис. 1. Сравнение значений параметров, восстановленных по данным установок Тунка-133 и Tunka-Grande.

мент являются оптимальными с точки зрения точности реконструкции параметров ШАЛ. Дополнительный критерий был введен на энергию ПКЛ. Так, рассматривались события с энергией первичных частиц выше 10¹⁶ эВ. Выбор такого порога основан на модельных расчетах, которые показали, что эффективность регистрации ШАЛ от первичных частиц с указанным значением энергии составляет ~95% [11]. С учетом выдвинутых требований за сезон 2016—2017 гг. (~475 ч работы) было выделено ~6000 событий, а в период 2017— 2021 гг. (~8900 ч работы) отобрано ~240000 ШАЛ, из них ~2000 ливней с энергией ПКЛ выше 10¹⁷ эВ.

ТОЧНОСТЬ РЕКОНСТРУКЦИИ ПАРАМЕТРОВ ШАЛ И ПКЛ

Направление прихода оси ШАЛ и ее положение в плоскости детекторов являются реконструируемыми параметрами совместных событий установок Тунка-133 и Типка-Grande, которые возможно использовать для их прямого сравнения. На рис. 1 представлены распределения разницы зенитных $\Delta \Theta = \Theta_G - \Theta_T$ и азимутальных $\Delta \phi = (\phi_G - \phi_T) \sin \Theta_G$ углов, а также разницы координат $\Delta x = x_G - x_T$ и $\Delta y = y_G - y_T$, аппроксимированные функцией Гаусса с параметрами *C*, µ и σ. Здесь и далее нижние индексы *T* и *G* принадлежат характеристикам ШАЛ и ПКЛ, реконструированным по данным установок Тунка-133 и Типка-Grande соответственно.

Из рис. 1 следует, что средние значения исследуемых углов и координат (*Mean*) не имеют существенных отклонений. При этом среднеквадратичное отклонение по данным гистограмм (*RMS*) для $\Delta\Theta$ и $\Delta\phi$ составляет 2.24° и 2.61°, для Δx и $\Delta y - 23.27$ и 25.85 м. Учет sin Θ_G при определении

Рис. 2. Распределение по параметрам ψ (слева) и *R* (справа).

 $\Delta \phi$ связан с тем, что ошибка реконструкции азимутального угла в значительной степени зависит от зенитного направления прихода оси ШАЛ.

Более универсальным подходом к определению точности реконструкции параметров ШАЛ, по сравнению с оценкой среднеквадратичных отклонений $\Delta\Theta$, $\Delta\phi$, Δx и Δy , является использование величин R_{68} и ψ_{68} . Это значения в распределении расстояний R и углов ψ , меньше которых находится 68% искомых событий:

$$R = \sqrt{(x_G - x_T)^2 + (y_G - y_T)^2},$$
 (1)

$$\Psi = \arccos\left(\frac{\alpha_G \alpha_T + \beta_G \beta_T + \gamma_G \gamma_T}{\sqrt{\alpha_G^2 + \beta_G^2 + \gamma_G^2}\sqrt{\alpha_T^2 + \beta_T^2 + \gamma_T^2}}\right), \quad (2)$$

где α, β и γ – направляющие косинусы:

$$\alpha = \sin\Theta\cos\varphi, \qquad (3a)$$

$$\beta = \sin\Theta\sin\varphi, \qquad (36)$$

$$\gamma = \cos\Theta. \tag{3B}$$

На рис. 2 приведены распределения по параметрам ψ и *R*, аппроксимированные функцией Рэлея.

В соответствии с рис. 2, точность определения направления прихода оси ШАЛ и ее положения в плоскости установки составляет ~2.3° и 26 м соответственно. Здесь необходимо отметить, что принятые за опорные значения параметры ШАЛ, восстановленные по данным установки Тунка-133, имеют свои погрешности и, строго говоря, не являются истинными. Поэтому в контексте настоящей статьи полученные величины ошибок следует понимать только в качестве верхних ограничений.

ОПРЕДЕЛЕНИЕ ЭНЕРГИИ ПКЛ

Энергия ПКЛ определяется через параметр р₂₀₀ следующим способом:

$$lg(E/эB) = = lg(\rho_{200}/частица \cdot M^{-2})0.84 + 15.99.$$
(4)

Соотношение 4 было также получено из анализа совместных событий установок Тунка-133 и Tunka-Grande. На рис. 3, во-первых, показана экспериментальная зависимость энергии E_T , восстановленной по данным установки Тунка-133, от параметра ρ_{200} . Во-вторых, приведено распределение логарифмической разницы энергии $\lg(\Delta E) = \lg(E_G/\Im B) - \lg(E_T/\Im B)$, из которого следует, что энергетическое разрешение установки Tunka-Grande при использовании формулы 4 не превышает 36%.

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР ПКЛ

На рис. 4 приведены восстановленный дифференциальный энергетический спектр ПКЛ и его сравнение с результатами установок Тунка-133 [10] и KASCADE-Grande [12].

Рисунок 4 демонстрирует, что, во-первых, полученный спектр имеет достаточно сложную форму, которую возможно описать степенным законом с тремя различными спектральными индексами γ . До и после энергии $2 \cdot 10^{16}$ эВ $\gamma_1 \approx 3.18$ и $\gamma_2 \approx 3.0$ соответственно, в области выше 10^{17} эВ $\gamma_3 \approx 3.26$. Во-вторых, спектр как по форме, так и по интенсивности находится в хорошем согласии с измерениями других экспериментов. Все приведенные результаты демонстрируют статистически

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 87 № 7 2023

Рис. 3. Зависимость энергии ПКЛ от параметра ρ_{200} (слева) и распределение по lg (ΔE) (справа).

Рис. 4. Дифференциальный энергетический спектр ПКЛ, восстановленный по экспериментальным данным установки Tunka-Grande (сверху) и его сравнение с результатами установок Тунка-133 и KASCADE-Grande (снизу).

обеспеченные особенности при энергии ~ $2 \cdot 10^{16}$ эВ и в интервале ~ 10^{17} —3 · 10^{17} эВ. И если второй излом может быть связан с переходом от галактических к внегалактическим ПКЛ, то первый в настоящее время не имеет астрофизического объяснения.

ПОИСК ДИФФУЗНЫХ ГАММА-КВАНТОВ

С целью поиска диффузных гамма-квантов по данным установки Tunka-Grande был проведен анализ обедненных мюонами ШАЛ. Для оценки эффективности регистрации и выделения гаммакандидатов в 2 этапа было реализовано компьютерное моделирование установки методом Монте-Карло. На первом шаге генерировались ШАЛ, на втором – определялся отклик сцинтилляционных счетчиков и станций при прохождении через них частиц искусственных ливней. Для решения этих задач в качестве программного обеспечения были выбраны пакеты CORSIKA [13] (версия 7.7401) и Geant4 [14, 15]. Расчеты выполнялись на оборудовании центра коллективного пользования "Иркутский суперкомпьютерный центр СО PAH" [16].

ШАЛ генерировались для первичных гаммаквантов, протонов и ядер железа в диапазоне энергий 16.5 $\leq lg(E/\Im B) \leq 17.5$ и интервале зенитных углов 0–35°. Спектр всех первичных частиц был разыгран по степенному закону с единым спектральным индексом $\gamma = 3$. Взаимодействия адронов при низких энергиях (до 80 ГэВ) рассчитывались с помощью модели GHEISHA [17], при высоких (выше 80 ГЭВ) – с использованием модели QGSJET-II-04 [18]. Итоговое количество со-

Рис. 5. Зависимость величины *N_{sum}* от параметра ρ₂₀₀ для экспериментальных данных и моделированных ШАЛ от первичных гамма-квантов (сверху) и полученные ограничения на интегральный поток диффузных гамма-квантов в сравнении с результатами других экспериментов (снизу).

бытий в созданном банке искусственных ШАЛ составило ~4600 ливней на каждый тип первичной частицы. С помощью программного пакета Geant4 была задана полная геометрия станций, максимально приближенная к реальности [19].

За эквивалент числа мюонов N_{sum} было принято суммарное энерговыделение в подземных частях сработавших станций в каждом событии отнесенное к наиболее вероятному энерговыделению, соответствующему прохождению одиночного вертикального мюона через сцинтилляционный счетчик. Следует отметить, что параметр N_{sum} может принимать дробные значения вследствие флуктуаций энергетических потерь частиц ШАЛ. При вычислении N_{sum} также было введено условие на удаленность станций на расстояние более 70 м относительно положения оси ливня. Этот критерий связан с результатами модельных расчетов, которые

показали, что вблизи оси весомую часть в суммарное энерговыделение подземных счетчиков вносят высокоэнергичные частицы электрон-фотонной и адронной компонент ШАЛ.

Поиск кандидатов в фотонные ШАЛ проводился в четырех областях значений параметра ρ_{200} : lg(ρ_{200} /частица · м⁻²) > 0.75; >1; >1.25; >1.5. При этом по экспериментальным данным не было обнаружено событий от первичных гаммаквантов, поэтому был оценен верхний предел на их интегральный поток F_{γ} [20].

На рис. 5, с одной стороны, представлена зависимость числа N_{sum} , полученная как из смоделированных событий от первичных гамма-квантов, так и из экспериментальных данных, от параметра ρ_{200} . Безмюонные ШАЛ на графике соответствуют $lg(N_{sum}) = -1$ и $lg(N_{sum}) = -1.15$. Линией обозначен критерий отбора кандидатов в фотонные ШАЛ, который позволяет исключить из рассмотрения сгенерированные события от первичных протонов и ядер железа. С другой стороны, на рис. 5 также показаны полученные ограничения на интегральный поток диффузных гамма-квантов в сравнении с аналогичными измерениями экспериментов ШАЛ-МГУ [21], KASCADE-Grande [22], Pierre AugerObservatory [23] и Telescope Array [24].

ПЕРСПЕКТИВЫ ИССЛЕДОВАНИЯ ПКЛ

Установка Tunka-Grande обладает большим потенциалом при исследовании энергетического спектра и массового состава ПКЛ, а также поиска диффузных гамма-квантов в области энергии 10¹⁶-10¹⁸ эВ. Во-первых, установка круглосуточно работает в режиме набора данных практически в течение всего календарного года и имеет сравнительно большую площадь. Во-вторых, в ближайшее время планируется пересмотреть методы процедуры реконструкции параметров ШАЛ с целью изменения критериев отбора событий без потери качества получаемой информации. Так, предполагается увеличить рассматриваемые диапазоны зенитных углов прихода оси ШАЛ до 45° и координат ее положения до 600 м относительно центра установки. По сравнению с существующими критериями это повысит статистку событий ~ в 4 раза. В-третьих, проведение совместных с установкой Тунка-133 сеансов наблюдений обеспечит увеличение точности исследований ПКЛ. В-четвертых, в настоящее время, в рамках развития астрофизического комплекса TAIGA, ведутся работы по развертыванию сцинтилляционной установки TAIGA-Muon [25]. Включение новых детекторов электрон-фотонной и мюонной компонент ШАЛ (планируемая общая площадь ~2000 м²) фактически увеличит эффективную площадь установки Tunka-Grande и повысит информативность получаемых данных.

ЗАКЛЮЧЕНИЕ

Существующая процедура реконструкции параметров ШАЛ и ПКЛ обеспечивает точность определения направления прихода оси ШАЛ и ее положения в плоскости установки не хуже 2.3° и 26 м соответственно. Энергетическое разрешение не превышает 36%. Полученные энергетический спектр ПКЛ и ограничения на интегральный поток диффузных гамма-квантов не противоречат результатам других экспериментов.

Иследование выполнено на УНУ "Астрофизический комплекс МГУ-ИГУ", при поддержке Минобрнауки России (соглашение EB-075-15-2021-675), в рамках тем государственного задания (FZZE-2023-0004, FZZE-2020-0024), а также при частичной поддержке Российского научного фонда (проект № 23-72-00016, раздел "Энергети-ческий спектр ПКЛ").

СПИСОК ЛИТЕРАТУРЫ

- Астапов И.И., Безъязыков П.А., Бланк М. и др. // ЖЭТФ. 2022. Т. 161. № 4. С. 548; Astapov I.I., Bezyazeekov P.A., Blank M. et al. // J. Exp. Theor. Phys. 2022. V. 134. No. 4. P. 469.
- Berezhnev S.F., Besson D., Budnev N.M. et al. // Nucl. Instrum. Meth. A. 2012. V. 692. P. 98.
- Amelchakov M.B., Barbashina N.S., Bogdanov A.G. et al. // Nucl. Instrum. Meth. A. 2022. V. 1026. Art. No. 166184.
- Ликий О.И., Ампилогов Н.В., Астапов И.И. и др. // ПТЭ. 2016. № 6. С. 5; Likiy O.I., Ampilogov N.V., Astapov I.I. et al. // Instrum. Exp. Tech. 2016. V. 59. No. 6. P. 781.
- 5. Apel W.D., Arteaga J.C., Badea A.F. et al. // Nucl. Instrum. Meth. A. 2010. V. 620. P. 202.
- 6. Aglietta M., Alessandro B., Antonioli P. et al. // Nucl. Instrum. Meth. A. 1993. V. 336. P. 310.
- Castellina A. // Nucl. Phys. B. Proc. Suppl. 2003. V. 122. P. 243.
- Monkhoev R.D., Budnev N.M., Chiavassa A. et al. // JINST. 2017. V. 12. No. 6. Art. No. C06019.
- 9. Ivanova A.L., Monkhoev R., Astapov I. et al. // Proc. Sci. ICRC 2021. (Berlin, 2021). P. 361.
- Budnev N.M., Chiavassa A., Gress O.A. et al. // Astropart. Phys. 2020. V. 117. Art. No. 102406.
- Буднев Н.М., Иванова А.Л., Калмыков Н.Н. и др. // Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 2014. № 4. С. 80; Budnev N.M., Ivanova A. L., Kalmykov N.N. et al. // Moscow Univ. Phys. Bull. 2014. V. 69. P. 357.
- Apel W.D., Arteaga-Velázquez J.C., Bekk K. et al. // Astropart. Phys. 2012. V. 36. P. 183.
- Engel R., Heck D., Huege T. et al. // Comput. Soft. Big Sci. 2019. V. 3. No. 1. P. 2.
- 14. Agostinelli S., Allison J., Amako K. et al. // Nucl. Instrum. Meth. A. 2003. V. 506. P. 250.
- 15. Allison J., Apostolakis J., Amako K. et al. // Nucl. Instrum. Meth. A. 2016. V. 835. P. 186.
- 16. http://hpc.icc.ru.
- 17. Heck D. // Nucl. Phys. B. Proc. Suppl. 2006. V. 151. P. 127.
- Ostapchenko S. // EPJ Web Conf. 2013. V. 52. Art. No. 02001.
- Monkhoev R., Ternovoy M., Astapov I. et al. // J. Phys. Conf. Ser. 2021. V. 2103. Art. No. 012001.
- 20. Монхоев Р.Д., Буднев Н.М., Воронин Д.М. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 8. С. 1057; Monkhoev R.D., Budnev, N.M., Voronin D.M. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 8. P. 959.
- Fomin Y.A., Kalmykov N.N., Karpikov I.S. et al. // Phys. Rev. D. 2017. V. 95. No. 12. Art. No. 123011.
- 22. Apel W.D., Arteaga-Velázquez J.C., Bekk K. et al. // Astrophys. J. 2017. V. 848. No. 1. P. 1.
- 23. Abreu P. // Proc. Sci. ICRC 2021. (Berlin, 2021). P. 373.
- 24. *Abbasi R.U., Abe M., Abu-Zayyad T. et al.* // Astropart. Phys. 2019. V. 110. P. 8.
- 25. *Monkhoev R., Astapov I., Bezyazeekov P. et al.* // J. Phys. Conf. Ser. 2020. V. 1697. Art. No. 012026.

Main results of the TUNKA-GRANDE experiment

R. D. Monkhoev^a, *, I. I. Astapov^d, P. A. Bezyazeekov^a, E. A. Bonvech^b, A. N. Borodin^c, N. M. Budnev^a, A. V. Bulan^b, A. Vaidyanathan^e, N. V. Volkovⁱ, P. A. Volchugov^b, D. M. Voronin^f, A. R. Gafarov^a, A. Yu. Garmash^{e, h}, V. M. Grebenyuk^{c, j}, E. O. Gress^a, O. A. Gress^a, T. I. Gress^a, A. A. Grinyuk^c, O. G. Grishin^a, A. N. Dyachok^a, D. P. Zhurov^a, A. V. Zagorodnikov^a, A. D. Ivanova^a, A. L. Ivanova^a, ^e, M. A. Iliushin^a, N. N. Kalmykov^b, V. V. Kindin^d, S. N. Kiryuhin^a, R. P. Kokoulin^d, N. I. Kolosov^a, K. G. Kompaniets^d, E. E. Korosteleva^b, V. A. Kozhin^b, E. A. Kravchenko^{e, h}, A. P. Kryukov^b, L. A. Kuzmichev^b, A. Chiavassa^k, A. A. Lagutinⁱ, M. V. Lavrova^c, Yu. E. Lemeshev^a, B. K. Lubsandorzhiev^g, N. B. Lubsandorzhiev^b, S. D. Malakhov^a, R. R. Mirgazov^a, E. A. Okuneva^b, E. A. Osipova^b, A. L. Pakhorukov^a, A. Pan^c, A. D. Panov^b, L. V. Pankov^a, A. A. Petrukhin^d, D. A. Podgrudkov^b, E. G. Popova^b, E. B. Postnikov^b, V. V. Prosin^b, V. S. Ptuskin^g, A. A. Pushnin^a, A. Yu. Razumov^b, R. I. Raikinⁱ, G. I. Rubtsov^f, E. V. Rjabov^a, V. S. Samoliga^a, I. Satyshev^c, A. A. Silaev^b, A. A. Silaev, Jr.^b, A. Yu. Sidorenkov^f, A. V. Skurikhin^b, A. V. Sokolov^{e, h}, L. G. Sveshnikova^b, V. A. Tabolenko^a, A. B. Tanaev^a, B. A. Tarashansky^a, M. Yu. Ternovoy^a, L. G. Tkachev^{c, j}, N. A. Ushakov^f, D. V. Chernov^b, I. I. Yashin^d ^a Institute of Applied Physics, Irkutsk State University, Irkutsk, 664003 Russia ^b Skobeltsvn Institute of Nuclear Physics, Moscow State University, Moscow, 119991 Russia ^c Joint Institute for Nuclear Research. Dubna. 141980 Russia ^d National Research Nuclear University MEPhI, Moscow, 115409 Russia ^e Novosibirsk State University, Novosibirsk, 630090 Russia f Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, 117312 Russia ^g Pushkov Institute of Terrestrial Magnetism. Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences, Moscow, 108840 Russia ^h Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia ⁱ Altai State University, Barnaul, 656049 Russia ^j Dubna State University, Dubna, 141980 Russia ^k National Institute for Nuclear Physics, Torino, 10125 Italy *e-mail: makaav08@rambler.ru

The Tunka-Grande scintillation array is described. The scientific results obtained during the first 5 years of its operation are presented. The prospects for studying cosmic rays in the energy range $10^{16}-10^{18}$ eV are discussed.