O 0 NI O U = W N =

O1 U1 U1 Q1 b s i B B B B s s i 00 00 U0 L0 W) W) W) W W W RN NNNRKNIRNRNRNLR R 2 s s b e
DR RSO0 ITTEODRONARSOETIITNTRERODNAR,RESE OO IRNAEREDNRDODOX®IUT DN~ O

PROCEEDINGS A

royalsocietypublishing.org/journal/rspa

L)

Research

updates

Cite this article: Tribelsky MI. 2023 Exact
solutions to fall of particle to singular
potential: classical versus quantum cases. Proc.
R. Soc. A 20230366.
https://doi.org/10.1098/rspa.2023.0366

Received: 24 May 2023
Accepted: 10 July 2023

Subject Areas:
quantum physics

Keywords:
quantum collapse, Schrodinger’s equation,
exact solutions, inverse square potential,

Author for correspondence:
Michael I. Tribelsky
e-mail: mitribel@gmail.com

THE ROYAL SOCIETY

PUBLISHING

Exact solutions to fall of
particle to singular potential:
classical versus quantum cases

Michael . Tribelsky"?

M. V. Lomonosov Moscow State University, Moscow 119991, Russia
2Center for Photonics and 2D Materials, Moscow Institute of Physics
and Technology, Dolgoprudny 141700, Russia

MIT, 0000-0002-4169-6740

Exact solutions describing a fall of a particle to
the centre of a non-regularized singular potential
in classical and quantum cases are obtained and
compared. We inspect the quantum problem with the
help of conventional Schrédinger’s equation. During
the fall, the wave function spatial localization area
contracts into a single zero-dimensional point. For
the fall-admitting potentials, the Hamiltonian is non-
Hermitian. Because of that, the wave function norm
occurs time-depended. It demands an extension to
this case of the continuity equation and rules for
mean value calculations. Surprisingly, the quantum
and classical solutions exhibit striking similarities.
In particular, both are self-similar at the particle
energy equals zero. The characteristic spatial scales
of the quantum and classical self-similar solutions
obey the same temporal dependence. We present
arguments indicating that these self-similar solutions
are attractors to a broader class of solutions, describing
the fall at finite energy of the particle.

1. Introduction

Collapses, i.e. spatio-temporal evolutions of smooth
solutions resulting in the formation of singularities,
happen in various physical phenomena and play a
significant role there. Suffice to mention implosion of
spherical and cylindrical shock waves [1-3]; the collapse
of bubbles in a liquid [3-6]; the self-focusing in nonlinear
optics [7-9]; gradient catastrophe of acoustic waves [10];
Langmuir’s collapse in plasma physics [11]. For more
examples and their discussions, see, e.g. review [12] and
references therein.

© 2023 The Author(s) Published by the Royal Society. All rights reserved.
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Among various collapses, a fall of a quantum particle to the centre of a singular spherically
symmetric potential, also known as quantum collapse, has a special significance: the potentials
admitting the quantum collapse make the Hamiltonian non-Hermitian; see below, §4. As a result,
Schrodinger’s equation with this potential fails to produce the ground state [13,14]. This gives rise
to very unusual properties of wave functions so that the conventional rules for the mean value
calculations and continuity equation cannot be used in this case and demand reconsideration;
see below.

In 2023, revising fundamental concepts of quantum mechanics might seem peculiar, to
say the least. Therefore, we want to clarify that the suggested changes have no bearing on
the common problems of non-relativistic quantum mechanics. They only affect the particular
solutions to Schrodinger’s equation with the non-Hermitian Hamiltonian to overcome the
intrinsic contradictions of the conventional rules arising in this case.

The quantum collapse is a rare but not the only case of non-Hermitian Hamiltonians in
quantum mechanics. They may also be introduced in other essentially time-depended problems,
e.g. in the a-decay, where a complex value of energy corresponds to the decaying in time
probability to find the particle in a quasi-discrete level [15] or, in more general terms, in various
manifestations of resonant scattering of particles by potentials with quasi-discrete levels, known
as Fano resonances [16] etc.

In contrast to conventional Hermitian Hamiltonians, each case of Schrédinger’s equation with
a non-Hermitian Hamiltonian requires an individual consideration valid, generally speaking,
only for a given problem. Accordingly, the approach of the present paper is explicitly developed
for the fall to the centre. However, the method employed here is much broader and may also be
applied to other problems, whose examples are mentioned above.

Study of Schrodinger’s equation with collapse-admitting potentials has a long-lasting history
[17-37]. Its results are discussed in reviews [12,38] and enter text-books [13,14]. Nonetheless,
most of them are based on various regularization procedures (cutoff of a singular potential
at the vicinity of the singularity, a shift of the boundary conditions from the singular point
to its proximity, incorporation of nonlinear terms etc.). On the other hand, any regularization
procedure implies (explicitly or implicitly) that, at vanishing regularization parameters, the
regularized solutions converge to non-regularized ones. This is not the case for the quantum
collapse: at the point of the potential singularity, the wave functions do not have any definite
limit [13,14]. Therefore, a continuous transition from a regularized problem to its original non-
regularized version becomes impossible. Thus, the fundamental question of whether a spatial
localization area for a wave function obeying Schrédinger’s equation indeed can collapse to a
zero-dimensional point remains open.

The argument that, close to the singularity, the collapse conditions usually are violated does
not compromise the problem. The issue is common to all collapses. Its resolution is well known:
the collapse-admitting problem describes the most physically-significant part of the dynamics,
lasting as long as the spatial scale of the solution remains larger than the one where the collapse-
breaking terms become essential. At the same time, the problem description in terms of the
collapse-admitting approach is more simple, informative, and convenient, that those based on
the incorporation of the collapse-breaking corrections [12].

Therefore, here we intentionally avoid any regularization. The questions we answer in this
study are whether there are any exact collapse-exhibiting solutions to Schrodinger’s equation valid
in all space and, if so, whether they agree with the fundamentals of quantum mechanics, despite
the non-Hermitian Hamiltonian.

We obtain a set of such solutions. However, they are too unusual to allow straightforward
interpretations. The main goal of the publication is to draw the community’s attention to the
interpretations of the solutions rather than the solutions themselves. We did our best to interpret
them, but we do not claim the given interpretation is ultimate-: - -

The paper has the following structure. In §2, we discuss the classical problem. In §3, we inspect
a specific example of this case: a fall of an electron to a heavy dipole and reveal the role of radiative
losses. In §4, we formulate the quantum problem. In §5, we derive the applicability condition for
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applying the quasi-classical approximation to the problem in question. In §6, we obtain a family
of, exhibiting collapse, exact solutions to Schrédinger’s equation. In §7, we inspect the associated
with these solutions peculiarities of time-depended norms. Section 8 is devoted to calculations
of mean values with the help of wave functions with time-dependent norms. In §9, we describe
and discuss the modification of the continuity equation required in this case. In §10, we preset
and inspect specific examples of the solutions to the quantum problem. Section 11 is devoted to
conclusions. Appendix contains some ancillary calculations.

2. (lassical problem

To begin with, we consider classical collapse. Let us recall its main features [39]. The spherical
symmetry of the problem results in the conservation of the particle angular momentum
M =r x p. It means that r(t) is always perpendicular to the constant vector M, i.e. the particle
trajectory is a two-dimensional curve. Then, it is convenient to describe this motion in a polar
coordinate system with the origin at the centre of the potential U(r). Next, the angular momentum
conservation leads to the following relation:

. M
mr
where dot stands for d/dt, and m is the particle mass.
The energy integral has the form
-2
m . . mr
E= 5(72 +12¢%) + U(r)= = Uett(r). 2.2)
Here
er(/'JZ MZ
Uese(r) = U(r) + =Uu+ 55—, (2.3)
2 2mr

see equation (2.1).
The introduced Uegs(r) makes it possible to exclude ¢ from the energy integral. The obtained
equation is one-dimensional and readily integrated for any U(r). The result is as follows:

t—tini ==+ JV dr
T s V@IM)E = Uegt ()]

r dr’
== ; 2.4
Lm \/(Z/m)[E — U] — (M2/m2r2) (2.4)

where E stands for the particle energy, and rin; = 7(tin;) is the initial condition. Note that we keep
two signs of the square root in equation (2.4). It means that the solution equation (2.4) has two
branches, so that both ¢ — tj; and dr/dt may have any sign.

This fact is essential. To understand that, consider a finite motion of the particle corresponding
to nonlinear oscillations of r between rmin and rmax, where 7min, max are two sequential roots of the
equation E = Ueg(r), and 7min < max. The following expression gives the period of the oscillations:

Tmax
T=2 J dr (2.5)

rmin v/ @2/M[E — Uege(r)]

When r(t) increases, dr/dt > 0. It corresponds to the sign plus in equation (2.4). By contrast, the
stage of the motion when r(t) decreases corresponds to the sign minus. The conclusion is that at
the return points, namely at 7 = rmin and 7 = rmax, a transition between the solution branches takes
place. Since for both branches dr/dt =0 at 7 = rmin, max, See equation (2.4), the transition does not
violate smoothness of the dependence r(t). Thus, every time, when r reaches a given value with
the same sign of dr/dt, tin; in equation (2.4) increases by the period of oscillations T. Bearing it in
mind, we proceed with the discussion of the collapse.
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The expression under the square root in equation (2.4) must be non-negative. Then, the point
r=01is accessible, i.e. collapse is possible, provided

2
[PUM)]—0 < — @m)’ (2.6)
For definiteness, in what follows, we consider the potential
ue=—p/r (8>0), 2.7)

Notably, that potential equation (2.7) does exist in nature. For example, it describes the interaction
of a point electric charge with a particle possessing zero total electric charge but a finite dipole
moment [35]; see below, §3 (the issue is essential in understanding electron capture by a polar
molecule [20]). It also arises in many other physical problems [40], such as certain quantum
three-body problems [21,41], the physics of cold atoms [42,43], polymer physics [44], the near-
horizon problem for certain black holes [45] etc. Thus, the collapse in this potential has practical
importance in various branches of physics.

The application of condition equation (2.6) to potential equation (2.7) gives rise to the following
inequality: g > M?/2m. Note that, at 8 < M?/2m, Ueg(r) > 0, i.e. the effective potential becomes
repulsive. Only a motion with E > 0 can occur in this case. In agreement with the mentioned
above, for this motion, r is bounded from below by r = rpy;p, satisfying the equality Ueft(rmin) = E.
It explains why the violation of equation (2.6) makes collapse impossible.

The case g = M? /2m is trivial since the dynamic equation, in this case, is the same as that for
a free motion of the particle, when mi?/2 = E. Therefore, in what follows, we suppose the strict
inequality

M2
>—.
2m

B (2.8)

First, we consider equations (2.4), (2.7) with a finite negative E. Then, equation (2.4) yields

r= —ﬂ(1+§>, —%stso (2.9)
and
t T
= tH1l—=), 0<t=<-—. 2.10
r x( T> st<s (2.10)
where

(= 2.11)

2/2mp — M2 T M
m

© 2

(we set tipj =0 and employ the initial condition r(0)=0). Note that the dimension of x is
length?/time.

Branch equation (2.9) of the obtained solution describes a fall of the particle to the centre,
which begins with 7 = rmax = v/xT/2, at t = —T/2, and ends at the origin of the coordinate system,
at t =0. At t > 0, the collapse terns into escape, described by branch equation (2.10), so that r(t)
increases from 0, at t =0, to rmax, at t =T/2.

Note also that T and rmax are the only problem constants with the dimensions of time and
length, respectively. When, during the collapse, r(t) becomes much smaller than rmay, the latter
ceases to play the role of the problem characteristic scale. Moreover, the condition 7(f) < rmax
holds at |t| < T, see equations (2.9), (2.10). It means that, in this region, T does not determine the
characteristic temporal scale too. That is to say, close to the completion of the collapse (beginning
of the escape), the problem loses its characteristic scales both in time and space. Then, according
to the general principles of dimensional analysis [46,47] the problem must become self-similar,
when its dynamic is described by a dimensionless ratio of r to a certain power of t, instead of the
two independent variables r and ¢, in non-self-similar cases; see also below §4.

9950707 ¥ 205§ 204g edsyjeuinof/ioBuysiigndiaaposiefos H



213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

For the problem in question, it is so indeed: in the specified region, the term t/T in
equations (2.9), (2.10) may be dropped. It transforms both branches into the self-similar
solution

;
X It

=1, 2.12)

where the dimensionless & = r//x [f{] may be regarded as a new self-similar quantity.

What happens if E tends to zero from below? In this limit, both T and rmax tend to infinity,
and the periodic nonlinear oscillations of the particle become an aperiodic motion when, at t <0,
the particle falls to the centre from infinity and then, at ¢ > 0 escapes from the centre, returning to
infinity.

Remarkably, that in this case, the self-similar solution equation (2.12) becomes exact. At the
same time, any general-type solution with finite E < 0 is transformed into the self-similar one at
the late stage of the collapse (the initial stage of the escape); see equations (2.9), (2.10). In other
words, the exact self-similar solution equation (2.12), valid at E =0, is an attractor for any other
solution with a finite E exhibiting the collapse (escape). For this reason, the case E =0 will play a
special role in the proceeding discussion; see §§4-10.

It is important to stress that close to the moment of the collapse completion or escape
beginning, the transformation of a solution with any finite value of E into a self-similar form is not
a specific feature of the potential equation (2.7). It is a generic property of any collapse-admitting
potential with a power-type singularity. Indeed, consider a potential with the singularity ~1/r°.
To satisfy the collapse condition equation (2.6) at M # 0, we must have s > 2. However, if M =0,
the only restriction is s > 0. In this case, even the Coulomb potential ~ 1/r is collapse-admitting.
Either way, at r — 0 and any finite E, the term ~ 1/#° makes the overwhelming contribution to
the square root in equation (2.4). Then, dropping other terms under the square root sign and
evaluating the integral, we obtain a universal self-similar solution in the form r/ |#]2/@+5) = const,
whose particular case at s=2 is equation (2.12). In other words, at r — 0, the dependence
r = const|t|?/>*9) is the only universal asymptotic to any collapse(escape)-exhibiting solution to
the problem in question.

Returning to the potential equation (2.7), it is relevant to calculate the radial component of the
particle momentum p, = mdr/dt. At E =0, it reads:

Xxm

+ (2.13)
2/ x 1t

pr=
where the signs minus and plus correspond to the collapse (t < 0) and escape (¢ > 0), respectively.
Note that p, diverges at t — 0.

Taking into account the periodicity of the partile motion, we can rewrite the solution equation
(2.9), (2.10) in an equivalent form, which sometimes is more convenient for analysis. To this end,
we employ instead of equation (2.9), the same branch shifted by period T along the t-axis. It can
be done with the help of the formal transformation t — t — T in equation (2.9). It is easy to see that
this procedure converts equation (2.9) into equation (2.10). At the same time, the validity domain
of the converted branch becomes T/2 <t < T. Merging it with the validity domain stipulated by
equation (2.10), we obtain an equivalent form of a single period of the solution described only by
equation (2.10), which, however, now is valid for 0 <t <T.

To complete the inspection of the classical problem, we present an explicit expression
for ¢(t). We readily obtain it by integrating equation (2.1). Doing that, it is convenient
to use for r(t) the above equivalent form of the solution. It gives rise to the following
formula:

t

where a = M/my. We stress that, for the obtained solution, the domain of the non-trivial values of
¢ extends from minus to plus infinity. As an example, figure 1 shows the trajectory of the particle
ata=>5.
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Figure 1. An example of a classical collapse-escape trajectory in a Cartesian coordinate system; a = 5. The dashed black and
solid blue lines designate the two parts of the trajectory described by equations (2.10), (2.14) with 0 <t < T.Here, 0 <t <
T/2and T/2 <t < T correspond to escape and collapse, respectively.

3. Fall of electron to heavy dipole: radiative losses

This section considers a specific example of the classical collapse: a fall of a (quasi)classical
electron to a heavy neutral atom (or molecule) with a fixed finite dipole moment d.! We consider
the most straightforward problem formulation, corresponding to the zero angular momentum
of the electron. Then, d must be directed to the falling electron to minimize the electrostatic
interaction energy. Thus, the problem is a particular case of the one discussed above, where M = 0.
We can neglect the displacement of the atom’s centre of mass owing to the tremendous difference
in the masses of the electron and atom. However, the falling electron moves with increasing
acceleration and hence must emit electromagnetic waves. The emission decreases the electron
energy. It may affect the structure of the above solutions. To elucidate this effect, we calculate
the radiative losses. We do it based on the above solution (obtained without consideration of
the losses) regarding this solution as the zeroth approximation. Then, the power emitted by a
non-relativistic electron moving with the acceleration w is given by Larmor’s formula [48]

262102

?, (3.1)

where e is the electron charge, and c stands for the speed of light in a vacuum.

For the problem in question, the closer collapse completion moment, the larger w. Therefore,
it is natural to suppose that the effect of the radiative losses increases, as the collapse completion
approaches. On the other hand, as shown above, close to the completion moment, the general
solution equations (2.9), (2.10) is transformed into the self-similar form equation (2.12). Therefore,
it is sufficient to study the radiative losses for r(t) = /—xf at t <0. In this case, the total energy
E;aq emitted prior to a given moment ¢ is

462 B2 4022

t
Eg=| I¥)dt = = . 3.2
rad ,[ ) 3c3m2y(—xt)? ~ 3c3m2yr4 (32)

1The Hamiltonian of an atom is invariant against the inversion transformation, while the Hamiltonian of a molecule is not.
For this reason, a molecule may have a fixed dipole moment in a stationary state. By contrast, the dipole moment of an atom,
in a generic case, is zero. Nonetheless, if certain special conditions hold, an atom also may have a finite dipole moment [13].
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The upper limit of the integral in equation (3.2) makes the main contribution to its value. Then,
it is possible to extend the lower limit to minus infinity, despite the self-similar asymptotic
equation (2.12) of the general solution equation (2.9) is valid only in the vicinity of the collapse
moment.

To estimate how these losses affect the collapse dynamic, note that the latter is described
by equations (2.4) and that close to the collapse completion moment |[U(r)| > |E|. It means that
we have to compare E,,q not to E but to U(r). In other words, the radiative losses impact on
the collapse dynamic becomes substantial at the value of 7~ ryq, where ry,q is defined by the
condition |U(rraq)| = Erad (*rad)- In contrast, the losses may be neglected at 1 > r,,,4. Simple algebra
results in the following expression for ry,q:

2l [B
Trad = mC3/2 g (33)

Let us estimate the order of magnitude of r,59. At M =0, x =2/2B/m; see equation (2.11).
Next, for the dipole moment produced by a polarization of spatial distribution of the valence
electrons, g is estimated as e2rg, where rp = n? /me? is Bohr’s radius. In this case the estimate of
the r.h.s. of equation (3.3) reads

1 le]\*/? _ 3 34
rrad”W = r'p=a""Ip, (3.4)

where « =e?/hca21/137 is the fine-structure constant. The numerical value of &2 ~6 x 10~%.
That is to say, rraq < 78.

Since Bohr’s radius is the characteristic quantum scale for atomic phenomena, the obtained
estimate of ry,q means that long before the impact of the radiative losses on the collapse dynamics
becomes noticeable, the classical description must be replaced by the corresponding quantum
one. This essentially quantum description of the collapse is given below.

4. Quantum problem formulation

Conventionally, the Hamiltonian in Schrédinger’s equation is a Hermitian operator with a
complete set of orthogonal eigenfunctions. Accordingly, solutions to Schrédinger’s equation
can be built as eigenfunction expansions. However, in the case of potential equation (2.7), the
eigenfunctions corresponding to different E values are not necessarily orthogonal.? It is related
to their behaviour at r — 0 [14]. Since the orthogonality of Hamiltonian eigenfunctions with
different values of E is a direct consequence of its self-adjointness (see, e.g. [13]), the non-
orthogonality, even for a single pair of them, means that the Hamiltonian with potential equation
(2.7) is not Hermitian. It makes the possibility of building general solutions to the corresponding
Schrédinger’s equation in the form of eigenfunction expansions questionable. At least, the author
is unaware of any success in this way:.

Regarding particular solutions, which may be built from the set of the Hamiltonian
eigenfunctions discussed in the monograph by Morse & Feshbach [14], they do not help much
(if any) to understand the collapse dynamics. The point is that in Schrodinger’s equation,
Hamiltonian eigenfunctions are wave functions of stationary states. In the collapse case, building
a solution in the form of eigenfunction expansion is an attempt to describe an essentially time-
depended process with the help of stationary-state eigenfunctions. It looks like trying to force a

2The orthogonality may be imposed as an additional condition. It singles out a certain subset of eigenfunctions, while the
eigenfunctions that do not satisfy the imposed condition are not orthogonal to the ones belonging to the subset. For details,
see [14].
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square peg into a round hole. To overcome this difficulty, we consider a spatio-temporal evolution
of a wave packet,® described by time-depended Schrédinger’s equation

2
iha—lpzﬁlw; HE_FLAJFU(r). (4.1)
ot 2m
Here, A stands for the Laplacian, and U(r) is given by equation (2.7). Equation (4.1) should be
supplemented by the initial condition ¥ = ¥j(r) and the one stipulating finiteness of the wave
function norm, i.e, convergence of [ |¥ |2d3r.

We employ the power of dimensional analysis to obtain collapsing solutions of equation
(4.1) The main concepts of this analysis are as follows [46,47]. Arguments of any mathematical
function must be dimensionless quantities. The wave function in equation (4.1) depends on the
dimensional r and t. To make them dimensionless, we have to normalize them on constants with
the proper dimensions. These constants should be built from the ones entering our problem.
There are only three dimensional constants entering equation (4.1), namely m, i, and . Their
most general combination has the form: m¢1 7% g%, where ¢1 5 3 are real constants. It is easy to see
that for the 8 dimension corresponding to equation (2.7) and any values of {13 this product
cannot have the dimensions of r or .

The only remaining way to obtain the required constants is to find them in the initial
condition. Indeed, the initial condition must have a characteristic spatial scale of the wave
function localization rin;. Then, e.g. the combination mrizm /h may be selected as the characteristic
temporal scale. Seemingly, it removes the normalization problem. It does not! The point is that if
the collapse indeed takes place, the region of the wave function spatial localization contracts. Its
size eventually turns to zero. Then, the finite scale associated with the initial conditions ceases to
play the role of a characteristic scale of the problem and becomes useless for our purposes.

The other striking conclusion following from the dimensional analysis is that Schrodinger’s
equation with potential in the form of equation (2.7) cannot have discrete levels but the one with
E =0/[19]. To see that, once again we consider a more general form of the potential, namely

U(r)=— :%, (4.2)

where the sign of s may be any. At s < 0 to make expression (4.2) a potential well (not a barrier) g
also should be negative. In particular, at s = 1 equation (4.2) corresponds to the Coulomb field, and
for s = —2 it is a harmonic oscillator potential. In our case s =2. According to precisely the same
arguments as those used above in the discussion of the characteristic spatio-temporal scales, we
conclude that if a discrete spectrum exists, its levels should be composed as products of powers
of i, m and B. There is the only possible product with the required dimension, which gives rise to
the following expression for the energy of the levels:

2/(2—s)
ms—1
G 43)

where ¢, is a dimensionless quantity.

It is seen straightforwardly that equation (4.3) coincides with the well-known expressions for
the spectrum of a harmonic oscillator and the one in the Coulomb potential. However, at s =2
it fails to produce a reasonable result. In this case, the only opportunity to return to physically
meaningful application of the obtained expression is to set there ¢, to zero.

The above simple arguments result in the conclusion that if the quantum collapse exists, a
solution describing its final stage must be self-similar. In this solution, r varies as a certain power

3The idea is not mine. When I was a junior scientist, my adviser Sergei I. Anisimov from Landau Institute told me about this
approach to the problem. Moreover, he said that together with Igor E. Dzyaloshinskii, they had found a solution describing
the collapse of a wave packet. Many years later, in connection with nanoparticle light scattering, I came across a problem
mathematically analogous to the quantum collapse. I recalled this conversation with Anisimov and asked him for details and
references. He replied that these results had never been published and details he did not remember. Now, Anisimov and
Dzyalashinskii have both passed away. I decided to apply their approach to the problem and make the results available to a
broad readership as a small token of my great respect for these distinguished scholars.
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of t, and the corresponding dimensionless variable is built as a ratio of r to this power of ¢, cf.
Equation (2.12) in the classical case. Moreover, the self-similar solution must be an attractor:
any solution exhibiting the collapse is transformed into the self-similar form at the final stage
of the phenomenon. We have proven that for the classical case; see the convergence of the
general solution equations (2.9), (2.10) to the self-similar equation (2.12) in the vicinity of the
point r = 0. We can transfer these classical results to the quantum problem, matching the classical
and quantum cases through the quasi-classical approximation, discussed below.

5. Quasi-classical condition

The applicability condition for the quasi-classical approximation implies that the characteristic
spatial scale of the wave function variations is much smaller than that for the potential and
hence, for the corresponding classical solution. The particle de Broglie wavelength, which is
inversely proportional to its momentum, determines the wave function spatial variations. At a
given potential, the larger the momentum, the smaller the de Broglie wavelength and, therefore,
the more accurate the quasi-classical approximation. For the classical problem formulation, the
particle momentum increases with the increase in the coupling constant 8. On the other hand, the
shape of the potential equation (2.7) is determined by 72 in the denominator and does not depend
on f. Then, it may be expected that the entire dynamic of the quantum particle is quasi-classical,
at large enough g.

To check the guess, we must explicitly employ the applicability condition. Due to the
introduced Uss the classical particle dynamic becomes one-dimensional, see equations (2.2)—(2.4),
and the radial component of the momentum p, =mi plays the role of the corresponding one-
dimensional momentum. In this case, the quasi-classical applicability condition reads as follows
[13]:

ox
‘5 <1, (5.1)
where X = h/p, and p, = £,/2m(E — Uggs); see equation (2.2).
Simple calculations transform equation (5.1) into the following expression:

h(mp — M?)
1. 5.2
[2mEr2 + 2mpB — M?|3/2 < (5.2

Thus, at any finite E and r — oo, the particle motion is quasi-classical. However, we are interested
in the opposite limit, namely r — 0. Setting in equation (5.2) r to zero gives rise to the condition

h
V2mp — M?

Equation (5.3) mathematically confirms the guess: at large enough g, the quantum dynamic is
always quasi-classical.

<1 (5.3)

6. Exact solution to Schrodinger's equation

Now, when we have unveiled the qualitative features of the quantum problem, we can find its
exact self-similar solution. We will look for it in the following form:

¢
=3 %" Con®e(—xt)Y'0,0)Re(5). (6.1)

t m=—¢t

Here, C¢yy are constants, Y'(9, ¢) stand for the spherical harmonic functions (do not confuse index
m with the mass of the particle), £ =r/(—xt)"; ®¢(—xt), R¢(£), x, v are yet unknown functions and
constants, respectively. Here, the moment ¢t =0 corresponds to the complete collapse. Then, the
collapse dynamic is described by ¢ < 0.
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We have to stress that, in contrast to the conventional eigenfunction expansion, the ansatz
equation (6.1) is not a general solution to the problem. Moreover, for the time being, we even
cannot say that it is a solution. We guess that it is. To ensure that the solution in such a form does
exist, we have to find it explicitly. Let us proceed in this way.

It is possible to show (see appendix A) that equation (6.1) may be a self-similar solution to
equation (4.1), provided

@y(—xt) = conste(—xHH, (6.2)

where ¢ are dimensionless constants (generally speaking, complex). Regarding the dimensional
constant x, it is convenient to suppose that x =h/m. Note that, at this definition, the dimension
of x is the same as that in the classical case, namely length? /time.

The necessary collapse condition £(¢ + 1) < (2mB/ h?) — (1/4) [13,14], limits the value of ¢ in the
sums in equation (6.1). Recalling that the eigenvalues of the square of the angular momentum 12
are h2¢(¢ + 1) and denoting them as M2, we may rewrite the above constraint as

R2ee+1) B M2 K
Jrue+1) _

P> T 8m = 2m s (6.3)
When h — 0, equation (6.3) coincides with the classical collapse condition; see equation (2.8).
Substituting equations (6.1), (6.2) into equation (4.1) and employing the orthogonality of
Y} (6, ¢) we obtain a detached equation for R¢. Then, without loss of generality, we consider
a single term on the rh.s. of equation (6.1) as ¥, dropping the signs of sums, while C;; may
be dropped owing to the linearity of the problem. Therefore, we can simplify the notations by
omitting the subscript £. Eventually, at v =1/2, Schrédinger’s equation is reduced to the following

ordinary differential equation for R(£); see appendix A:

R’ + (? + is) R + (;42 - 2m> R=0, (6.4)
where
y = 2;:—2'8 —e+1), (6.5)
and prime denotes d/d¢.

The authors of [12,49] employed a particular type of solution equations (6.1), (6.2) with =
—(1/2 +ik) to study the so-called weak collapse in nonlinear Schrédinger’s equation. However,
in [12,49], a physically meaningful solution exists only at a single value of . By contrast, in the
linear problem discussed here, the restrictions imposed on u are much weaker, see below.

Equation (6.4) is exactly integrable. Its general solution is

1 i 1+ ia i g2
R(£) = — (ioe/2) _ ol =22
(&) NG |:C1§ _1Fy 2 W )
. 1—i 1 j£2
+Cog™/?_1Fy (— 410[ —wl+ lg; —Ziﬂ . (6.6)

Here, C1, are constants, 1F1(a; b; z) designates the Kummer confluent hypergeometric function of
the first kind [50], and

a=/4y —1>0, (6.7)

(do not confuse it with the fine-structure constant!).

The positiveness of the expression under the square root in equation (6.7) follows from the
necessary collapse condition; see equations (6.3), (6.5). If the condition does not hold, i.e. y <1/4,
a is purely imaginary, and equation (6.4) with purely real « becomes invalid.
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Now, when we have introduced the self-similar variable £, and obtained the quantum solution

equation (6.6), we can rewrite equation (5.3) in an equivalent form, namely
2x |t
Tclas (t)z .

Here, rq,s(t) is the classical self-similar solution equation (2.12). The advantage of this
presentation is its physical clarity. Indeed, /= is the characteristic spatial scale of variations
of the obtained self-similar wave function. Then, the quantum particle motion is quasi-classical,
provided this scale is small relative to the one for the corresponding classical solution. Notably,
while the condition equation (6.8) is valid for any general (i.e. not necessarily self-similar) solution,
it is written in terms of the self-similar variables. The latter is an additional indication of the
importance of self-similar solutions for the problem in question.

Expression (6.6) includes the terms £+/®/2), where & and « are positive quantities. Then,

(6.8)

‘,;_.:I:i% _ (eiZnn+lnE):ti(a/2) — pTman e:l:i(a/Z)lnS

=e oM [cos (%mg) +isin <%ln§>], (6.9)

where 1 is an arbitrary integer. Such a singularity is typical for the problem under consideration
[13,14].

Expression (6.9) has an infinite number of branches corresponding to different values of 7.
Every branch’s real and imaginary parts have the number of zeros, demonstrating unlimited
growth at & — 0. For simplicity, in what follows, only the single branch with 1 =0 is inspected.

According to the definition of &, we should emphasize that this quantity diverges at t =0, i.e.
at the moment of the collapse completion. Then, while the behaviour of R(£) at & — 0 is essential
from the viewpoint of the solution branching and its other analytical properties, the behaviour of
the wave function close to the moment of the collapse completion is practically overwhelmingly
determined by the R(£) asymptotic at £ — oo. This asymptotic is discussed in appendix B.

What is about escape? Schrodinget’s equation is invariant against the time-reversal procedure
accompanied by the complex conjugation. Then, being applied to equations (6.1), (6.2), (6.6), these
transformations generate the wave function describing the particle escape from the centre at ¢ > 0.
As well as in the classical case, at the moment f =0, the collapse is transformed into escape by
transferring from one solution to the other.

7. Time-dependent Norm

We must normalize ¥ to calculate the probability density and the mean values of operators.
Conventionally, the norm of a wave function (||¥||) is a constant. It follows from self-adjointness
of H [13]. Indeed,

d o d d

Pz =)= — | wrud®

dt” I dt( 1'2) dtJ d°r
L s L0

where the asterisk stands for the complex conjugation. Bearing in mind equation (4.1), it may be
rewritten as

% ( J W e — J W*HWd3r> . (7.2)

If A is Hermitian, the above expression identically equals zero.*

4 Actually, the case is more subtle. In equations (7.1), (7.2), we integrate over all space at once. A more accurate approach
implies that we take the integrals over some finite volume V, and then, consider the limit V — oo, extending V to all space.
For the finite V, the integrals over V can be transformed by Gauss’s theorem into integrals over the bounding V surfaces. The
corresponding integrals are proportional to the probability density fluxes through these surfaces. The expression equation
(7.2) vanishes, provided these fluxes turn to zero at V — oo or, in a more general case, the flux from infinity is equal to the
one through the origin of the coordinate system. See the discussion of this issue in §9.
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In our case, f1 is not Hermitian. Then, the norm may be time-depended. Indeed, simple
calculations show that for equations (6.1), (6.2), (6.6) W2 = C(—xt)®/D+T2 where 1/ =Rep
and C is a constant proportional to | 80 [R(£)[262 d¢. The convergence of the latter determines the
finiteness of C.

Calculations show that a proper choice of the ratio C»/C; in equation (6.6) provides the integral
convergence at any values of i’ except u' = —3/4. At 1’ = —3/4 the integral diverges at any Cy 2;
see appendix B. Since u' = —3/4 is the only value of 1/, when ||¥|| would not depend on ¢ (see
above), the requirement of the finiteness of ||¥ || always makes it time-depended.

Note that the divergence of [|¥]?2 at w' =—3/4 is logarithmic, i.e. extremely weak. It can be
stabilized by any correction making the wave function decay faster than that for the obtained
exact solution. The role of this correction can play, e.g. relativistic effects, the radiative losses
discussed above, etc. Phenomenologically the stabilization may be introduced as a cutoff of the
norm integral at some &y > 1. In this case, the norm is a constant, and all further consideration
is the same as that in conventional cases with a Hermitian Hamiltonian. Then, we could assume
that the case u’ = —3/4 is the only physical one, while all other solutions with x’ # —3/4 do not
have physical meaning.

However, the cutoff drives the problem beyond its initial, strict all-sufficient formulation
of Schrodinger’s equation with potential equation (2.7) defined in all unlimited space. It is
interesting to see if we can keep the problem formulation and the basic quantum mechanics
concepts unmodified for a wave function with a time-dependent norm. We discuss this issue
in the next section.

8. probability density and mean value calculations

To be able to employ a wave function with a non-conserved norm we must reexamine several
conventional quantum mechanics rules and modify them, if required. The first, arising in this
case question, is how to normalize ¥ to obtain the probability density? There are at least two
options:

(i) the conventional expression, namely |¥|?/const;
(i) 19 1P/11¥ 1.

Both have pro and contra. Case (i) is conventional. However, in this case, the probability of finding
a particle in any point of all space is not equal to unity and varies in time as (—yt)®/2+2 for
collapse and as ( xH)®/D+21 for escape, see the previous section. Then, values of ' smaller than
—3/4 are meaningless since they would correspond to the probability of finding the particle larger
than unity at || — 0. At i’ > —3/4, (i) would mean that the singularity at r =0 acts as a sink for
the collapse (t < 0) and a source for the escape (f > 0). In other words, during the collapse, the
particle gradually gets out of our world (where to?), completely disappears at t =0, then, slowly
returns at ¢ > 0. This scenario sounds rather unusual.

Though case (ii) is also unusual owing to the time-dependence of [|¥[|, in this case, the
probability of finding a particle in any point of all space identically equals unity, and the
problem of communication with the ‘other world” does not arise. However, in this case, the
normalized wave function does not satisfy Schrodinger’s equation (the term 1w a(1/||¥|)/dt
remains uncompensated.) On the other hand, since ¥ does, this feature does not contradict to
the fundamentals of quantum mechanics. Thus, case (ii) looks more physical.

Nonetheless, the final judgement in favour of either of the two cases must be done with the
help of the uncertainty relations. The derivation of the latter does not employ the self-adjointness
of Hamiltonian and norm conservation (see [13] and appendix C). Therefore, the uncertainty
relations must be valid for the problem in question too. Calculating the mean value of 7 and
pr=—ihd/9dr, and assuming, as usual, that ArAp, ~ (7)(p,), we readily obtain: in case (i) ArAp, ~
h(—x t)3>t4, which does not satisfy the uncertainty relations; in case (ii) ArAp; ~ h, which does.
Thus, choice (ii) is correct, while (i) is not.
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The angular momentum conservation gives an additional argument supporting the choice of
case (ii). Due to the problem symmetry, the mean angular momentum (12) must be a conserved
quantity. For the given ¥, we have (¥ |12|¥) = hZL’(Z +1)||¥|2. To avoid misunderstanding, we
stress that here and in what follows, for any operator A, the expression (A) designates the mean
value of A, while 4 |12\|l1/) stands for the scalar product of (¥| and AlW), where, generally
speaking, the wave functions are not normalized. Therefore, (A) = (W |A|WP) /1w 2.

Bearing it in mind and taking into account that ||¥]] is time-dependent, we conclude that to
rrlake (12) conserved, one must get rid of [|¥|[ in the expression for (12), i.e. choose case (ii). Then,
(12) = h2¢(¢ + 1) = const, as it should be.

It is also relevant to mention that in case (ii)

o A h
(1) =cry/—xt; {pr) = Cpﬁ/

where ¢, are dimensionless constants of the order of unity. These expressions are remarkably
similar to their classical analogues; see equations (2.12), (2.13).

Regarding the particle energy, note that since the obtained ¥ is not an eigenfunction of H, only
the mean value: E = (I:I) makes sense. According to equation (4.1) and (ii),

(8.1)

Ww|HW) ihw|aw/at)y  Ck
= = =—. (8.2)
w2 w2 t

Here, the constant Cf, is given by a certain integral. The integral converges at u’ < —3/4 and p/ >
—1/4; see appendix B. On the other hand, the energy conservation law requires that E = const. It
is compatible with equation (8.2) only if Cg =0, i.e. E =0. Tedious evaluation of the integral in the
complex plane gives rise to the same result; see also the discussion at the end of §4 concerning
the non-existence of the discrete spectrum but the level with E = 0 for the potential equation (2.7),
which also can be applied to this case.

We stress that the condition E = 0 also follows from the self-similarity of the obtained solution.
This argument is valid both in classical and quantum cases. Indeed, at E #0, the problem
possesses constants with the dimensions of time and length, which can be built with the help
of m, B and |E|; see equations (2.11), (2.12). In the quantum case, due to the additional constant A,
it can be done even in various ways. The existence of a characteristic spatio-temporal scale breaks
self-similarity, and expressions equations (2.12), (6.1) fail to be exact solutions to the corresponding
problems. It does not mean that, at E # 0, collapsing solutions do not exist at all. They may exist in
non-self-similar forms; see equations (2.9), (2.10). However, as we have several times emphasized
above, the self-similar solutions remain attractors to non-self-similar ones.

9. Generalized continuity equation

How do the peculiarities mentioned above affect the continuity equation? To answer the question,
we revise the corresponding conventional case [13]. According to it, the wave function satisfies
the continuity equation
o1 ?
ot

+divj=0, (9.1)

where j = (ih/2m)(W V¥* — W*V V) is the probability current density.
Equation (9.1) is a direct consequence of Schrodinger’s equation and the identities

H=H*;, WwAY* — U AW =div (W VE* — U*VY). 9.2)

Conditions equation (9.2) hold for the problem in question, and hence, equation (9.1) is valid
in this case too. However, now, due to the time dependence of the norm and (ii), neither |w|?
is the probability density, nor (ifi/2m)(¥ V¥* — ¢*V¥) is the probability density current. The
corresponding quantities are p = |¥ |?/||¥||? and J = (ih/2m||W¥ ||?)(¥ V¥* — W* VW), respectively.
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Then, instead of equation (9.1) the continuity equation reads

o | . p dllw|? 3. .0\0
- =— =—(Z+24 )= i
o +div] T 2 +2u r (9.3)

To write the last equality in equation (9.3) we have employed the expression w2 =
C(—x t)(3/2)+2;¢’ )

If we integrate equation (9.3) over a certain closed volume V, the integral of dp/dt gives the
rate of the probability variation of finding the particle in this volume. The integral of div] is
transformed into the integral over the bounding V surface(s): it is the flux of the probability
density current through this surface(s).

In the conventional case, the r.h.s. of the continuity equation is zero [13], and the flux is the
only cause of the probability variations. In contrast, since equation (9.3) has a non-zero r.h.s., the
latter also contributes to the probability variations. Notably, the meaning of this contribution is
the generation or leakage (depending on the sign of the r.h.s.) of the probability density inside V.

Seemingly, this feature corresponds to creating something from nothing (generation) or vice
versa (leakage). However, it does not! Such a behaviour directly follows from the variations of
the size of the wave function spatial localization region due to the collapse (escape). Indeed,
let us consider a particle in a square potential well with infinitely high walls, as an example.
Suppose, these walls “adiabatically” move either toward or opposite each other. Then, obviously,
the probability of finding the particle in a given part of the space inside the well changes in time,
while the probability flux through the walls is zero: the changes are caused solely by the variations
of the size of the wave function localization region. The same effect takes place during the collapse
(escape).

Now, we integrate equation (9.3) over all space. Since, by definition, in this case, f pd3r— 1,
equation (9.3) yields

Jdiv JdPr=— <§ + 2,/) L (9.4)

2 t

Regarding the integral on the Lh.s. of equation (9.4), placing two concentric spheres about the
point ¥ =0 and employing Gauss’s theorem, we reduce the integral over the volume to the ones
over the surfaces of the spheres. Then, we let the inner and outer spheres’ radii tend to zero
and infinity, respectively. Calculations based on the asymptotical expressions for R(¢) at & — 0
and & — oo presented in appendix B show that, in this case, the flux through the outer sphere
tends to zero, while for the inner sphere, this is not the case, namely the singularity at r =0 acts
as a sink, at u' > —3/4, and as a source, at u’ < —3/4, in entire agreement with the expression
19117 = C(=xt) /22,

It is important to stress that existence of the sink (source) at =0 does not mean the particle
gradually gets out (in) our world to (from) the singularity. Due to the selected normalization rule
(ii), the probability of finding the particle in all space remains fixed and always equals unity.

10. Specificexamples

To illustrate the behaviour of the obtained solutions, we consider specific examples of equation

(6.6) at u =0,
-\ — (i /4) : .
i io 5—ia
== r{i+—)r 10.1
“ (2) ( - 2) ( 4 ) (10-n

N , -
c2=—<%> r(1—%“>r<52w‘>, (10.2)

and several characteristic values of «. Here I'(x) stands for the Euler gamma function. At © =0,
the choice of Cq in the form of equations (10.1), (10.2) ensures the convergence of the norm
integral; see appendix B, equation (B 11).

and
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Figure 2. (a) and (b) Modulus, real and imaginary parts of R(£) given by equations (6.6), in the specific case of equations (10.1),
(10.2), . = 0,and o = 30; Note the 76 orders of magnitude difference in the characteristic scales of & in (a) and (b). (¢) Log-log
plots of |R(£)|? in the case of equations (10.1), (10.2), and 1 = 0, at o = 1,10, 30. Two power-law asymptotics: [R|> ~ 1/,
at&€ — 0;and |R]> ~ £7%,at &€ — oo (see appendix), are well-pronounced.

The corresponding plots are shown in figure 2. Though the £-scales in figures 24,b differ in 16
orders of magnitude, Re R(§) and Im R() keep the same self-similar profiles, whose characteristic
scale monotonically tends to zero at & — 0. In particular, the phase shift in oscillations of Re R(§)
and Im R(£) remains fixed at any & so that the zeros of one function correspond to the local extrema
of the other and vice versa. As a result, the oscillations of the real and imaginary parts of R(£) do
not affect its modulus, which is a smooth monotonic function of . This feature is generic and
does not depend on the value of «, at least if « is not too small, see figure 2c. Notably, such a
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peculiarity has nothing to do with the self-similarity of equations (6.1), (6.4). The latter affects
only the specific choice of &, not the behaviour of R(§) at § — 0.

11. Conclusion

Thus, we have studied and compared non-regularized classical and quantum collapses (escapes).
We constructively have proven that close to the completion of the collapse (the beginning of the
escape), the general solution to the classical problem is transformed into the self-similar one, i.e.
the latter is an attractor for any other solutions. We also have shown that the classical collapse is
continuously transformed into the escape and vice versa, i.e. the end of either marks the beginning
of the other. Calculating the radiative losses for a specific example of the collapse corresponding
to the fall of an electron with zero angular momentum to a neutral atom (molecule) with a finite
dipole moment, we have shown that long before the impact of the radiative losses on the collapse
dynamics becomes noticeable, the classical description must be replaced by the quantum one.

Then, we have proven the existence of quantum collapse and escape by obtaining the family
of exact solutions to Schrédinger’s equation, describing the phenomena. By simple arguments of
dimensional analysis supplemented by the matching of the general quantum and classical cases
through the quasi-classical approximation, we have shown that the obtained self-similar solutions
to the quantum problem also are attractors for a much broader class of non-self-similar ones.

Since, for the obtained exact solutions to Schrédinger’s equation, the norm of the wave
function is time-depended, we have generalized to this case the conventional rule to calculate
the mean values of operators, derived the corresponding continuity equation, and discussed
its properties. We also have revealed a striking similarity between the classical and quantum
collapses. Presumably, this fact should be related to certain hidden symmetry of the problem,
insensitive to its classical or quantum nature.

Note that two- and one-dimensional versions of quantum collapse are also meaningful
[23,25,30,33,40,44]. Since the spatial dimension does not affect the scaling properties of
Schrédinger’s equation required for self-similarity, the approach developed in the present paper
may be straightforwardly applied to these problems too. In these cases, the self-similar variable &
remains the same, while the governing equation (6.4) becomes different. Detailed discussions of
these issues lie beyond the scope of our analysis.

Thus, the self-similar solutions introduced here are a convenient and powerful tool to
investigate various dynamical effects in classical and quantum mechanics. Hopefully, the
presented study sheds new light on the fundamentals of quantum mechanics and provides a
better understanding of its basic principles.
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Appendix A. Self-Similar version of Schrodinger’s equation

Here, we find the conditions for the reduction of Schrodinger’s equation to a self-similar form.
One of the most general ansatzes for the wave function with a given ¢ is as follows:

¥ = (—xHRE)Y' O, ¢), (A1)
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where &£ =7/(—xt)", while @ and R are yet unknown functions. For this type of ¥ (r, t), we have
3"W/or" = (—x )" 9" Ww/0g". Regarding d¥ /dt, it is given by the following expression:

I vExP(2)R'(§)
ot z
Here z= —xt. Our goal is to reduce Schrédinger’s equation to an equation depending solely on
& and independent of t explicitly. The necessary condition for that is that @(z)/z and ®'(z) on the
Lh.s of Schrédinger’s equation have the same dependence on t so that it makes a common for
them factor, which may be cancelled with the same factor on the r.h.s. It means that

— XREP'(2). (A2)

do D
=u, (A3)

where 1 is an arbitrary constant. Integrating this equation, we readily obtain
® = const - z*. (A4)

Substituting equation (A 1) with this form of @(z) into equation (4.1) with U(r) given by equation
(4.2) we arrive at the following equation:

: 1-2v 1-vs : 1-2v
2 2 e +1
Zl—ZVR//(E)+2|:1mV§X z }R/@H[ pmz= " 2ipmy £+ 1)z

s h2gs h g2

It is seen straightforwardly that equation (A 5) does not depend on z if and only if v =1/2 and s =
1/v=2. Regarding x, the choice x =/ /m is just a matter of convenience to turn the corresponding
coefficient to unity. Then, equation (A 5) is transformed into equation (6.4).

}R(é) =0. (A5)

Appendix B. Norm convergence

Here, we discuss the convergence of fgo IR(£)|%£2 dg, where R(¢) is given by equation (6.6). Since
1F1(a; b; z) is an analytic function of z on the whole complex plane [50] only the convergence at the
lower and upper limits should be examined.

The lower limit case is simple. Taking into account that 1F1(a;b;z) =1 + O(z) at z — 0 [50], we
readily obtain that in proximity of £ =0 the most singular terms in the solution give rise to the
expression
[C1] + 1G]
7«/5 .

This means, the singularity of |[R(§)| at &£ =0 is integrable. Remarkably, estimate (B 1) does
not depend on p. Thus, the integral fgo IR(€)|2£2 dg converges at the lower limit at any pu.
The case & — oo is more tricky. The asymptotic expansion of 1F1(a; b; z) at |z| — oo reads [50]

1 . )
IR(E)| ~ fcls—““/z) + Cp&l/?| < (B1)

2%—2

F1(a;b;2) = F(I;(ﬁ) )(—Z)*“G(a,a —b+1,-2)
sz;ez G —a,1—a,z), (B2)
where
G(abz)—l—f—l—'—k%:éb—’_l) "':i(aiﬁ)n' (B3)

In equation (B 3) (x),, designates the rising factorial (the Pochhammer function) defined as follows:

(*)o=1,
@n=x(x+Dx+2)--(x+n—1)

B 1"(x+n)
l_[(x—l—k) IR (B4)
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Then, according to equations (B2), (B3), the asymptotic expansion for 1Fi(a;b;z) has two
groups of terms originated in the expressions proportional to (—z)~*G and e? z*~YG, respectively.
According to equation (B3), to select the most singular terms in every group at z— oo, we
have to replace G by 1. Then, equation (6.6) results in the following asymptotic expression for
R() ~1RO§) + ,RO(), where

Oy cOg2m o, | G2 G/2) o (/2" @I+ (a/2))
e EMX[r«(5—z‘a>/4)+m “F T Grammen 2 ®Y
and
»RO(£) =, e*(i$2/2)§*372u
(2D~ Go/2) . ((/2) (L + (i /2)
C C 4
X[ F(@ /A —m) T )/ - p) 2} ®o

Here 1,C(©) are constants. The cumbersome explicit expressions for them are obtained upon the
step-by-step implementation of the above procedure. We do not need these expressions for further
analysis.

With the proper choice of the ratio C;/Cy we turn to zero either 1RO&) or ,RO(&). If instead
of the leading terms solely, we employ the entire infinite series equation (B 3), the expression for
R(&) becomes the following;:

o0

R(E) =Y [R™M(E) + 2R ()]. (B7)

n=0

A remarkable thing, however, is that the expressions for 1,2R(”)(§ ) preserve the same structure as
that in equations (B5), (B6). The only difference is in the change of the prefactor: 1COg2 5y
CME2n=n) for RO (E) and ,CO e=(6/2g=3-2n _, ,CW) o=(£?/2) g =3=2(u+n) for R (£); the
expressions in the square delimiters in equations (B 5), (B 6) do not depend on 1 and hence remain
the same at any 7. It means, that the value of the ratio C;/C; which turns ]R(O) to zero (herej=1,2)
simultaneously turns to zero all ]R(”) with the same value of j and any value of 7, i.e. the entire
infinite series Y .2 f-R(”)(S ) vanishes.

Thus, at
G _ (—(i/2)™2 I (1 = (/)T (—((1 — i) /4) — ) (BS)
C1 F(1+ (ia/2)) 1 (—((1 +ia)/4) — 1) ’
2R =0 atany n, and R(§) = 302, 1RM(¢).
At
Ca _ (i/2)*PIr(1 = (ia/2) (5 + ia)/4) + 1) (B9)

C1 rQ+ (e/2)0 (5 —ie)/4) +p)

all {R™ vanish, and R(£) = Y0° ) 2RM(£).

In both cases, the most singular term is the one with n=0. Let us inspect these terms’
contribution to the norm’s integral for the obtained wave function. In case equation (B 8), |[R(§) |2~
g% Then, at &€ — oo, the integral [ IR(£)|%£2 dg ~ £ Tis convergence requires ' < —3/4.

Similarly, in case equation (B9), [R(§ )|2 ~£6=% Then, the norm integral converges at the
upper limit, provided ' > —3/4.

At p/ =—-3/4, the integral fgo IR()|1%62 de diverges at the upper limit as In& owing to the
contribution of |1,2R(0)($)|2. Since the sole value of i/ when the norm of the obtained wave
function does not depend on time is u' =—3/4, only time-depended norms are physically
meaningful for the given wave function.
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It is convenient to present the explicit form of the obtained solutions admitting the
normalization. It is as follows:

At <-3/4
. —(ia/4) . .
C ig? ia 1+ ia
RE)=— | [-= r{t+—=\)r(- -
© «/5{( 2) <+2) < i “)
1+ ia i ig2
(- S e
) io /4 . o
()05
2 2 4
I L N (B10)
X - - — -1
11 4 My 2/ )
Atu' > —3/4

(ie/4) , .
_ ig? [ 5—ion
R@)= { 2) 1+2>F( 7 +“>

1 . . .2
x 1F1 (— Tl —M;l—la'—lg>

4 27 2
> za/4
(g) 1_7>F(5+1a+ﬂ>
4
— i i ig2
X 1F1( 1 —M;1+2;—2>:|. (B11)

For the sake of symmetry, we have rescaled the constant of integration in equations (B5), (B6) so
that for equation (B 10)

-\ —(iar/4) . .
1 i 1+ ix
Cl_(_i) 1’(1—1—5)1‘(— 1 —M) C, (B12)

while for equation (B 11)

N\ —(iar/4) , .
i 1% 5—ia

=(L r{i1+%)\r . B1
“ <2> <+2> ( 7 ”)C (B13)

Note that the expressions in square delimiters on the r.h.s.” of both equations (B 10) and (B11)
are the differences of the two terms, where the second term is obtained from the first by the
formal transformation « — —a. Ata =0 they are identical, and the r.h.s.” of equations (B 10), (B11)
vanish. Since the necessary collapse condition reads « = /4y — 1 > 0, see equation (6.7), it means
that the obtained solutions smoothly vanish at the continuous transformation of the potential
from the collapsing to the non-collapsing type at « — 0.

Appendix C. Uncertainty relations

For the reader’s convenience, we reproduce here the main points of the derivation of the
uncertainty relations presented in [13], to show that it indeed does not require the Hamiltonian
self-adjointness. First of all, we recall that in the coordinate representation, the momentum
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operator reads

il
=, (1)

Then, we suppose that a particle with the mean value of the momentum py is localized in a
finite region of space with the sizes Ax, Ay and Az. In this case, its wave function has the form
¥ = u(r) exp[(irpy/h)], where u(r) sharply decays beyond the localization region.

Next, the eigenfunctions of the operator p are plane waves so that the corresponding
eigenfunction expansion of a wave function  is just a Fourier integral. The coefficients in this
integral v are the Fourier transforms of ¢/

p=—ih

o= | w0 explin(py — p)/i] . (€2)

Since the mentioned sharp decay of u(r) beyond the localization region, this region makes an
overwhelming contribution to the integral on the r.h.s. of equation (C 2). On the other hand, if we
consider ¥ as a function of Apyxy z = |Pox,y,z — Pry,z|, we will see its rapid decay as soon as Apy.y,.
exceed the values

ApxAx ~h, ApyAy ~h, Ap; Az~ h. (C3)

The decay is related to the rapid oscillations of exp[ir(pg — p)/h] in the area of the main
contribution to the integral, if Ap,,,,. occurs beyond the specified bounds.

To complete the derivation, we have to recall that the probability density to find a given value
of p is proportional to | |2. Thus, the probability for Apyy, . to have a value beyond the bounds
equation (C 3) is negligibly small.
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