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Abstract: Non-invasive methods for determining blood hemoglobin (Hb) concentration are urgently
needed to avoid the painful and time-consuming process of invasive venous blood sampling. Many
such methods rely on assessing the average attenuation of light over a tissue area where hemoglobin
is the dominant chromophore, without separating those areas corresponding to vessels and bloodless
tissue. In this study, we investigate whether it is possible to determine hemoglobin levels in the
blood by assessing the changes in light intensity when passing through large vessels in comparison to
adjacent tissues, using this as a Hb level predictor. Using Monte Carlo light transport modeling, we
evaluate the accuracy of determining hemoglobin levels via light intensity contrast and vessel widths
estimated in the transmittance illumination geometry and estimate the influence of physiologically
significant parameters such as vessel depth, dermis vascularization, and melanin content in the
epidermis on the blood Hb prediction error. The results show that physiological variations in tissue
parameters limit the mean absolute error of this method to ~15 g/L for blood Hb levels varying in
the 60–160 g/L range, which finding is also supported by experimental data obtained for volunteers
with different total blood Hb levels that have been determined invasively. We believe the application
of new approaches to the non-invasive assessment of Hb levels will lead to the creation of reliable
and accurate devices that are applicable in point-of-care and clinical practice.

Keywords: non-invasive hemoglobin assessment; diffuse imaging; Monte Carlo light transport;
machine learning approaches

1. Introduction

The concentration of hemoglobin in human blood (hereafter referred to as the blood
Hb level) is an important clinical parameter that is monitored in most blood tests. Yet,
currently, the determination of Hb level is invasive, involving venous blood sampling,
which is painful, requires skilled medical personnel, and is time-consuming [1].

As a result, there is a growing interest in rapid non-invasive optical techniques for
measuring Hb levels, leveraging the strong absorption of Hb in the visible and near-infrared
spectral ranges. While various approaches have been proposed, they differ in the tissue
sites investigated, spectral ranges, and imaging/sensing scheme geometry. For instance, a

Photonics 2024, 11, 49. https://doi.org/10.3390/photonics11010049 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics11010049
https://doi.org/10.3390/photonics11010049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0001-5374-8547
https://doi.org/10.3390/photonics11010049
https://www.mdpi.com/journal/photonics
http://www.mdpi.com/2304-6732/11/1/49?type=check_update&version=3


Photonics 2024, 11, 49 2 of 15

few FDA-approved devices use the method of multispectral photoplethysmography [2–4]
to assess hemoglobin levels. Other studies suggest quantitative blood Hb level assessment
using RGB imaging or the analysis of the diffuse reflectance spectra of various tissue
areas where Hb is the dominant chromophore, such as the eye conjunctiva [5–9], fundus
and external eye [10–12], or nail plates [13–15]. It is worth noting that although some
studies claim a fairly low level of error regarding non-invasive Hb level determination
(below 10 g/L, or 1 g/dL), independent studies have shown consistently higher error
rates for different optical techniques of around 15–20 g/L [4,16–21]. According to the
authors of [22], the acceptable relative error for non-invasive blood Hb assessment methods
should be approximately 10% in the critical anemic range (60–100 g/L or 6–10 g/dL).
Therefore, it is imperative that the absolute error within this range should not surpass
10 g/L. This limitation currently restricts the use of non-invasive Hb assessment methods
in clinical settings.

One potential explanation for the high error in optical Hb level assessment may stem
from the use of “averaged” information on the light attenuation in an investigated tissue
area, without consideration of the light absorption specifically performed by blood vessels.
Concurrently, a more comprehensive examination of Hb level determination techniques
based on imaging indicates that it is the data pertaining to the absorption properties
of blood vessels that hold paramount significance for blood Hb level prediction or in
forecasting anemia risk [10].

Imaging of blood vessels can be particularly successful in the near-infrared range.
Indeed, the absorption of oxy- and deoxy-Hb in the near-IR range makes veins clearly
distinguishable from the surrounding tissues in reflected or transmitted light. This has
already been utilized for visualizing veins in point-of-care diagnostic tasks [23–25] and is
also being considered as a method of personal identification, based on the unique pattern
of the blood vessels in the hand [25–27]. However, the potential use of contrast with large
vessels in the near-IR region to determine blood Hb levels has not been fully explored. It
can be hypothesized that the difference in transmitted light intensities through veins and
the surrounding tissues would primarily depend on hemoglobin concentration and vessel
thickness. Then, by evaluating vessel thickness and the observed “contrast” of diffusely
transmitted or reflected light—the ratio of light intensity transmitted through the vein to
the intensity of light transmitted through adjacent vessel-free tissue—it will be possible to
estimate blood Hb levels. Only a limited number of studies have addressed the potential
of utilizing contrast in diffuse light transmission through small finger veins to determine
hemoglobin levels, with reported errors in the order of 25 g/L (2.5 g/dL) [28,29]. However,
the operational principles of these methods and the various factors contributing to the high
error rates of these devices have not been elucidated, nor have potential sources of error in
this technique been thoroughly investigated.

In this work, we utilize Monte Carlo light transport modeling to investigate the
feasibility of assessing blood Hb levels using the contrast of diffuse light transmission in
arm veins. We quantify the potential error in Hb level determination using this method,
taking into account various physiological parameters such as vessel depth, scattering
parameters, melanin content in the skin, and blood volume fraction in the dermis. Finally,
we show an experimental proof-of-concept of this method in patients with normal and low
hemoglobin levels and discuss potential artifacts that affect the accuracy of determining
hemoglobin levels using this technique.

2. Materials and Methods
2.1. Monte Carlo Simulations
2.1.1. Simulated Object Geometrical Properties

The Monte Carlo modeling of light transport in tissues was carried out using the
PyXOpto package [30]. The simulated object represented a voxelized parallelepiped with a
voxel size of 50 µm and a depth of Z—10 mm, with lateral dimensions along the X and Y
coordinates of 40 mm and 20 mm, placed in the area X × Y × Z ∈ [−20, 20] × [−10, 10]
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× [0, 10] mm. The simulated object consisted of two layers parallel to the X × Y plane,
simulating the optical properties of the epidermis (layer 1) and “internal” tissues—dermis,
hypodermis, muscles, etc. (layer 2). The thickness of the first layer was fixed and was
equal to 0.1 mm, and the entire remaining volume was filled by the second layer. To model
a blood vessel, a cylinder with an axis directed parallel to the Y-axis, centered at xc = 0,
and yc = r + dsur f ace, where r is the radius of the vessel, and dsur f ace is the distance from
the vessel surface closest to the surface boundary, was located in the modeled object. A
schematic view of the object in the X × Z plane is presented in Figure 1a.

A uniform collimated radiation source, located at the point zsource = 10 mm, was used
for the illumination of the entire X × Y plane of the object, while the signal was detected by
a transmission detector located in the X × Y plane with coordinates zdetector = 0 mm.

2.1.2. General Optical Properties of Media

The absorption, scattering, and anisotropy factor coefficients of the vessel, shown as
µ
(v)
a , µ

(v)
s , g(v) for simplicity, were modeled by the optical properties of venous blood, ne-

glecting the parameters of vessel walls. The blood absorption coefficient was selected based
on the total hemoglobin concentration [Hb] and the blood oxygen saturation parameter
S, as the sum of the absorption coefficients of oxy- and deoxyhemoglobin, according to
Equation (1):

µ
(Blood)
a (λ, S) = S[Hb]εHbO2(λ) + (1 − S)[Hb]εHb(λ), (1)

where εHbO2 and εHb are the molar extinction coefficients of oxy- and deoxyhemoglobin
at a given absorption wavelength, which was taken from [31]. To reduce the number of
variable parameters, the saturation coefficient was fixed at S = 0.7, which corresponds
to the average level of oxygen saturation of venous blood [32]. The scattering coefficient
µs(λ) and scattering anisotropy factor g were chosen according to the Mie/Perkus–Yevick
model [33], based on the hematocrit level Hct, which, in turn, was calculated as the ratio
of the hemoglobin concentration in the blood [Hb] to the hemoglobin concentration in the
erythrocyte: Hct = 100 ∗ [Hb]/[H b]RBC , % , assuming that the hemoglobin concentration
in the erythrocyte is [H b]RBC = 333.3 g/L. The scattering anisotropy coefficient for blood at
a wavelength of 850 nm was chosen to be g = 0.981.

The absorption coefficients of layers 1 and 2, modeling the epidermis and internal
tissues, were selected, based on the extinction coefficients and volume concentrations of
the main tissue chromophores, as:

µ
(i)
a (λ) = B ∗ µ

(Blood)
a (λ, S) + W ∗ εWater(λ) + F ∗ εFat(λ) + M ∗ εMelanin(λ), (2)

where B, W, F, M are the volume fractions of blood, water, fat, and melanin in the layer,
and εWater, εFat, εMelanin are the absorption values of pure substances with a unit volume
fraction, using values taken from [31] for water and fats from [34] for melanin.

The scattering coefficient of the epidermis and internal tissues was chosen according
to the approach employed in [34] (Equation (3)):

µs(λ) = a ∗
[

f
(

λ [nm]

500[nm]

)−4
+ (1 − f )

(
λ [nm]

500[nm]

)−b
]

, (3)

where f is the fraction of Rayleigh scattering in the total scattering of tissues, a is the value
of the scattering coefficient at 500 nm, and b is a parameter that controls the dependence
of the Mie scattering value on the wavelength λ. The values of these parameters for the
layer simulating the epidermis were equal to f = 0.29, a = 667 cm−1, b = 0.689 [35], and the
anisotropy coefficient g = 0.9, which yielded the scattering coefficient µ

(1)
s (850) = 351.7 cm−1.

Regarding internal tissues, for simplicity, the values of the scattering parameters were
chosen that corresponded to the dermis and were equal to f = 0.41, a = 436 cm−1, b = 0.562,
which yielded the scattering coefficient µ

(2)
s (850) = 220.6 cm−1; the anisotropy coefficient



Photonics 2024, 11, 49 4 of 15

was also equal to g = 0.9. For simplicity, all media had a matching refractive index of
n = 1.37.

The values of the volume fractions of each of the chromophores and the final values of
the absorption and scattering coefficients chosen for the different numerical experiments
are indicated below in Sections 2.1.3–2.1.5.

2.1.3. Experiments for Assessment of the Influence of Vessel Thickness and Blood Hb Level
on the Vessel Contrast

In the first experiment, we assessed the influence of only two parameters on the
observed changes in diffuse transmittance: hemoglobin concentration in the blood and
vessel radius. For this purpose, the vessel was located at a depth below the surface
dsur f ace = 0.1 mm. The radius of the vessel varied in the range from 0.5 to 3.05 mm, with a
step of 0.15 mm. The hemoglobin concentration in the vessel varied from 60 to 160 g/L with
a 10 g/L step, leading to a change in absorption in the vessel at a wavelength of 850 nm
from ~0.78 to 2.25 cm−1 and a variation in the blood scattering coefficient from ~540 to
~760 cm−1. The contents of blood, water, lipids, and melanin in the epidermis were set to
be equal to B = 0, W = 0.5, F = 0, M = 0; regarding the internal areas of tissues, for simplicity,
data for the dermis were used—B = 0.002 (i.e., 0.2%), W = 0.65, F = 0, M = 0 [34].

2.1.4. Assessment of the Influence of Different Vessel Depths on the Error of Hb
Level Prediction

To assess the influence of vessel depth on the error of Hb level estimation, we simulated
situations when the hemoglobin concentration in the vessel, the size of the vessel, and
the distance from the vessel to the tissue surface dsurface were varied. Variations in the
hemoglobin concentration in the blood vessel and the radii of the vessels, as well as the
parameters of the volume fractions of the main tissue chromophores were chosen, similar
to Section 2.1.3. The distance from the vessel to the surface dsurface varied in the range from
0.1 to 2.1 mm, with a step of 0.1 mm.

2.1.5. Assessment of the Influence of the Scattering Coefficient, Blood Content in the
Dermis and Melanin in the Epidermis on the Error of Hb Level Prediction

To assess the influence of various optical parameters of surrounding tissues on the
accuracy of blood Hb level prediction, the following experiments were performed. In the
simulations, both blood Hb concentration and the radii of the vessels varied, as described in
Section 2.1.3, along with one of the following optical parameters: the scattering coefficient of
layer 2, blood volume fraction in layer 2, and the melanin content in layer 1. The simulation
was carried out for two distances between the vessel and the surface—dsurface = 0.1 mm and
dsurface = 1.0 mm. In experiments with changing the scattering coefficient surrounding the

vessel, the scattering coefficient µ
(2)
s was varied from 165 cm−1 to 275 cm−1, with a step of

~6 cm−1, i.e., the scattering coefficient varied in the range of ±25% from the average value
of the scattering coefficient of the second layer µ

(2)
s = 220 cm−1.

The blood volume content varied in the range from 0.1 to 0.3% in increments of 0.02%,
modeling the biological variation of vascularization of tissues by ±50% from the average
blood content, which, when taking into account changes in the concentration of hemoglobin
in the blood, led to a change in the absorption coefficient of the second layer from 0.025 to
0.035 cm−1.

In the experiment with changing the melanin volume fraction, the parameter M was
changed in the range from 0 to 5% in steps of 0.5%, leading to a change in the absorption
coefficient of the first layer from ~0.02 cm−1 to ~5.3 cm−1.

2.2. Data Analysis and Machine Learning Model Evaluation on Monte-Carlo Simulation Data

Data obtained for different Monte Carlo light transport modeling experiments were
used to train and evaluate machine-learning-based models for predicting Hb levels from
optical parameters.
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To extract optical features from the detected intensity, as a first step, the intensity
I(x, y) of the detected light that was diffusely transmitted through the medium at each
detector pixel, with coordinates x, y, was used to obtain a one-dimensional profile along the
x-axis by averaging along the y-axis: I(x) = 1

L
∫

I(x, y)dy. The resulting intensity profile
I(x) was used to calculate predictors characterizing the vessel width dvessel , estimated
as the full width at the half-minimum of the intensity profile I(x) (Figure 1b), and the
difference in the intensities of light transmitted through the vessel and the surrounding
tissue ∆Ivessel/Itissue (Equation (4)):

∆Ivessel
Itissue

=
Itissue − Ivessel

Itissue
, (4)

where Ivessel = I(x = 0 mm), Itissue = max
x

I(x).
To predict the Hb level, we used linear regression with L1 and L2 regularization for

Hb level prediction. Prior to the model fitting, the training data were normalized and
additional polynomial features (with a degree not exceeding 3) were calculated from the
initial features, ∆Ivessel/Itissue and dvessel .

Tuning of the model hyperparameters (the degree of the polynomial features and
the parameters of the regularization terms) was carried out using a grid search with a
5-fold cross-validation. Additionally, before training, part of the data (~30% of the original
sample) was selected as a test set. The test set was used to ensure a lack of overfitting of the
models at the hyperparameter selection stage.

To assess the influence of different parameters (vessel depth, scattering coefficient,
blood content in the dermis, and melanin fraction) on the Hb prediction error, separate
models were trained and evaluated for each dataset described in Sections 2.1.3–2.1.5.

2.3. Volunteers

The proposed method was evaluated experimentally on volunteers undergoing ex-
aminations in the admission department of City Clinical Hospital № 67 (Moscow, Russia).
Diffuse light transmittance of the veins was measured for 9 volunteers (3 male and 6 female)
with a mean age of 31 ± 13 y.o. For all patients, blood Hb levels were determined using
an invasive reference technique according to standard clinical protocols. Venous blood
collected from the antecubital vein using the Vacutainer was characterized using CBC
analysis in a certified clinical diagnostic laboratory. The measurements were performed
10–15 min after collecting optical data, and furthermore, were used as a ground truth for
Hb level prediction. Data for patients involved in the study comprised gender, age, and
hemoglobin level, assessed invasively using a reference method; a non-invasive optical
method is presented in Table S1 in the Supplementary Materials. The studies were ap-
proved by the Moscow City Ethics Committee, in accordance with the standards of the
operating procedures (protocol No. 68 from 4 July 2022).

2.4. Experimental Setup

A special experimental setup was developed to map the diffuse transmission of light
by hand tissues in the near-IR range. The experimental setup consisted of the light source
on which the patient’s palm was placed, with a NIR-enhanced camera located above the
source to detect light passing through the area of the hand located above the light source.

The light source consisted of several LEDs with a central emission wavelength of
850 nm (FWHM~20 nm), having a total radiation power of no more than 100 mW, and an
additional diffuser made of ground glass to homogenize the radiation at the output of the
radiation source. Diffuse map imaging was carried out using a CS135MUN NIR-enhanced
camera (Thorlabs, Newton, NJ, USA) with a high aperture objective MVL5M23 (Thorlabs,
USA), located ~35 cm from the source. The experimental setup was placed in a light-proof
box made of aluminum composite material with a size of ~30 cm × 40 cm × 22 cm and a
rectangular hole of ~13 × 18 cm so that the patient could place their hand inside.
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2.5. Analysis of Experimental Data
2.5.1. Feature Extraction from Images

Diffuse reflectance maps of the hand were analyzed as follows. Using ImageJ, clearly
visible areas of veins were identified on diffuse transmittance maps (about 20–30 different
areas), after which an intensity profile in a direction perpendicular to the venous bed was
extracted, with averaging in the region of 10 pixels using the “Intensity Profile” utility.

Next, to eliminate the influence of inhomogeneities in intensity changes on the different
sides of the vessel, a baseline correction procedure was applied to the obtained data using
the AirPLS method [36], with the parameter λ = 10. Next, the position of the minimum in
the extracted intensity profile was determined. The intensity value at the minimum point
was taken as a value corresponding to Ivessel , and the intensity value of the baseline in the
same location was taken as an estimate of the Itissue. These values were used to calculate
the ∆Ivessel/Itissue according to Equation (4). The baseline-corrected intensity profile was
used to estimate the dvessel parameter as the full width at a half-minimum of the profile.

2.5.2. Blood Hb Level Prediction for Experimental Data

Based on the ∆Ivessel/Itissue and dvessel values estimated from the experimentally ob-
tained profiles, we predicted the Hb level for each of the profiles using a model trained on
the Monte Carlo data from Section 2.1.4. Predictions obtained for the different profiles for
one patient were then averaged to obtain the final predictions of Hb level; these were used
to assess the quality of the method.

All analyses were carried out using custom scripts written in Python 3, using the
Numpy, Matplotlib, Pandas, and Scipy libraries.

3. Results

To assess the feasibility of blood Hb level estimation based on the differences in light
transmission through large blood vessels and adjacent tissues, a Monte Carlo light transport
modeling system was used. The object used for simulation (Figure 1a) consisted of two
layers representing the dermis and inner tissues (with a thickness of 9.9 mm) and epidermis
(with a thickness of 0.1 mm), with a cylindrical vessel placed at a certain depth and
exhibiting optical properties that are characteristic of venous blood. A uniform collimated
source was used for illumination, and light detection was performed on the opposite side
of the object, thus simulating the detection of light being transmitted through the tissue
(Figure 1a). The simulation was carried out for the optical characteristics of tissues at a
wavelength of 850 nm—on the one hand, this wavelength falls within the transparency
window of biological tissues, and on the other hand, oxy- and deoxy- Hb have sufficient
absorption in this spectral range, allowing for sufficient contrast between the blood vessels
and adjacent tissues. More details on the modeling conditions are described in the Materials
and Methods, Section 2.1.

An example of a simulated light flux and the profile of the intensity detected along
the coordinate X (the transverse of the vessel) is presented in Figure 1b for a vessel with
r = 2 mm and [Hb] = 150 g/L. As can be seen, there is indeed a decrease in intensity in the
region where the vessel is located (Figure 1b). Since the propagation of light in tissues can
be approximately described in terms of the modified Bouguer–Lambert–Beer law [37], it
can be assumed that the light intensity at the center position of the vessel and the width of
the intensity profile will depend on both the size of the blood vessel and the concentration
of hemoglobin in it.
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Figure 1. (a) Schematic representation of the X-Z plane of the modeled object in which a Monte Carlo
simulation of light transport was performed. Red arrows denote the distance to the skin surface and
the diameter of the vessel, black arrows schematically denote the change in light intensity along the X
coordinate. (b) Average fluence in the X-Z plane obtained for the media with a vessel with a radius
of 2 mm and a hemoglobin concentration of 150 g/L. The intensity profile along the X coordinate,
detected in transmission mode, is indicated at the top.

As a next step, we assessed whether significant changes were observed in the intensity
of light passing through a vessel and adjacent tissues upon variations of blood Hb level in
the vessel and vessel radius while keeping other modeling parameters constant (Materials
and Methods, Section 2.1.3). Figure 2a,b shows examples of intensity maps captured by
the transmission detector in the case of a change in the Hb level at a fixed vessel width
(Figure 2a, vessel radius 1 mm), and in the case of different vessel radii, at a fixed Hb level
(Figure 2b, Hb level 150 g/L). We established that with both an increase in blood Hb level
(Figure 2c) and an increase in the vessel radius (Figure 2d), an increase in contrast values
∆Ivessel/Itissue was observed from ~0.1 to ~0.6, where the ∆Ivessel = Ivessel − Itissue represents
the difference in the light intensity, passed through the vessel Ivessel and the surrounding
tissues Itissue. Additionally, within the simulated range (with hemoglobin concentrations
from 60 to 160 g/L and vessel radii from 0.5 to 3.0 mm), the dependences of the contrast
∆Ivessel/Itissue on Hb level and vessel radius were close to linear (see insets in Figure 2c,d).
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Figure 2. (a,b) Intensity maps in the X-Y plane, captured by the transmission detector for the case of
varying blood Hb levels at a fixed vessel radius of 1 mm (a) and in the case of different vessel radii at
a fixed Hb level of 150 g/L (b). (c,d) Intensity profiles along the x-axis in the case of blood vessels
with varying Hb levels for a vessel with a radius of 1 mm (c) and in the case of blood vessels with a
varying radius (d). The insets in panels (c,d) show the dependency of the light contrast on the blood
Hb level and vessel radius.
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Using the values of the contrast ∆Ivessel/Itissue and the blood vessel radius estimated
from the intensity profile, one can build models estimating the blood Hb level, including
the following steps (Figure 3a): (1) from the diffuse imaging data, the intensity profile
transverse to the blood vessel is estimated; (2) utilizing the intensity profile, the contrast
∆Ivessel/Itissue and the vessel diameter dvessel are estimated and (3) used as an input features
to predict blood Hb level. These features can be first scaled, and then transformed, or
additional features responsible for feature interaction can be calculated and used in the
predictive model training.
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Figure 3. (a) The main steps of the proposed method for optical blood Hb level assessment. (b,c) Scat-
tering diagrams of predicted vs. true blood Hb levels for models trained using ∆Ivessel/Itissue feature
(b) and both ∆Ivessel/Itissue and dvessel features (c) for data obtained for vessels located at the fixed
distance to the tissue surface (dsur f ace = 0.1 mm). (d) An example of the light fluence distribution
in the X-Z plane for a vessel with a radius of 2 mm, located at a distance of 2 mm from the surface
(bottom panel), and an example of transmitted radiation intensity profiles along the X coordinate
in the case of a vessel located at a distance of 0.1 mm (blue line) from the surface and one at 2 mm
(red line, top panel). (e,f) Scattering diagrams of the predicted vs. true blood Hb levels for models
trained and evaluated on the data for vessels located at a surface depth not exceeding 0.2 mm I and
2.0 mm (f). (g) Dependence of the mean absolute error of Hb level prediction on the maximum vessel
depth. (h–j) Dependence of the mean absolute error of Hb level prediction on the relative variation
of the scattering coefficient of the dermis (h), the blood volume fraction in the dermis (i), and the
volume fraction of melanin in the epidermis (j). Dashed red lines in panels (b,c,e,f) correspond to
lines with unity of slope and zero intercept.
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We employed a dual-feature approach to evaluate the impact of incorporating both
contrast ∆Ivessel/Itissue and the apparent vessel width dvessel in predicting blood Hb levels.
Initially, we constructed a basic linear regression model using only the contrast feature
∆Ivessel/Itissue and compared its performance to a model that utilized both ∆Ivessel/Itissue
and dvessel . Our findings revealed that when predicting Hb levels within the 60–160 g/L
range, the mean absolute error (MAE) when using only ∆Ivessel/Itissue as the feature was
24 ± 4 g/L (Figure 3b). However, upon incorporating both ∆Ivessel/Itissue and dvessel , we
achieved a significantly reduced MAE of 6.7 ± 0.7 g/L (Figure 3c), indicating the enhanced
predictive accuracy that was gained from the inclusion of vessel diameter as a feature in
our model.

The obtained data provided a preliminary estimate of the lower limit for determin-
ing Hb levels using the proposed features and method. However, in biological tissues,
numerous parameters can vary, potentially increasing the prediction error. Therefore, we
sought to identify the main sources of errors that could affect the determination of blood Hb
levels using the proposed method. We have identified the following sources of biological
variation that could potentially influence the detected optical response. Different veins
may be located at different depths from the skin surface, and adjacent tissues may differ in
their absorption and scattering parameters, due to the different collagen contents, different
blood contents in tissues, or, for example, due to different melanin contents in the upper
layers of the skin. Using additional numerical experiments, we assessed the impact of these
factors on the final accuracy of determining blood Hb levels.

First of all, we assessed how the depth of the vessels in the tissues influenced the
accuracy of Hb level determination. To achieve this, in addition to varying the thickness of
the vessel and the concentration of hemoglobin in it, we varied the distance from the vessel
to the tissue surface in the range from 0.1 mm (i.e., the vessel was located on the border
with the epidermis) to 2.1 mm (the vessel was located deep in the dermis) with a step of
0.2 mm. As can be seen, with increasing distance from the surface to the vessel (Figure 3d),
the ratio ∆Ivessel/Itissue decreases, so it can be expected that this parameter will significantly
affect the determination of hemoglobin content in the blood. Indeed, when assessing the
accuracy of the predictive model on data obtained only for the near-surface vessels located
at a distance of up to 0.2 mm, we found the blood Hb level MAE equal to 5.2 ± 0.6 g/L;
at the same time, upon variation of the vessel depth from 0.1 to 2.1 mm, the MAE of the
blood Hb level estimation using the evaluated approach increased up to 14.7 ± 0.6 g/L
(Figure 3f). The dependence of the MAE in determining the hemoglobin level with the
increasing maximum depth of the vessel is presented in Figure 3g—as can be seen, the Hb
assessment MAE increases with the depth of the vessel, does not exceed 10 g/L for depths
below 1 mm, and begins to increase rapidly at depths over 1 mm.

Surprisingly, changes in parameters other than depth had less impact on the uncer-
tainty of Hb assessment. We estimated the impact on the accuracy of Hb level prediction
by variations in scattering (Figure 3h), the volume fraction of the blood in the dermis
(Figure 3i), and melanin in the epidermis (Figure 3j) for those cases when the vessels were
in the near-surface layer, at a depth of 0.2 mm, and located deeper in the dermis—at a
depth of 1 mm. With an increase in the variation of the scattering coefficient from the
average value µ

(2)
s = 220 cm−1, in the case of a vessel lying near the surface, we observed

practically no change in error when predicting the hemoglobin level (shown by the blue
dots in Figure 3h), while in the case of vessels located at a depth of 1 mm, we observed a
slight increase in the prediction error from 5.4 to 6 g/L, with an increase in the variation
of the scattering coefficient from 0 to 25% of the average value (shown by the red dots in
Figure 3h).

Furthermore, we assessed the dependence of the error in determining hemoglobin on
the volume content of blood in the dermis and melanin in the epidermis in a similar way:
we gradually changed the volume fraction of the chromophore from a certain minimum
level to a maximum level and monitored how the prediction error changed as the range
of variation of this parameter increased. We ascertained that the MAE levels in Hb level
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prediction were practically independent of the variation of blood volume fraction in the
1.0–3.0% range (Figure 3i, such changes approximately correspond to a ~50% variation in
the blood volume fraction in the skin from the mean value). The Hb prediction of MAE
was also minimally dependent on the volume fraction of the melanin in the epidermis from
0 to 5% (Figure 3j).

Thus, the most significant factor was the depth of the vessel in the tissues—at depths
varying in the range of several millimeters, one can expect an error in hemoglobin prediction
at the level of 15–20 g/L, while other factors had little influence on errors in determining
hemoglobin in the blood.

Finally, to verify the concept, we implemented the proposed method experimentally
and measured the diffuse transmittance maps of the hands of several patients with different
blood Hb levels, which were determined independently using invasive venous blood
sampling. We used a LED light source with a central emission wavelength of 850 nm,
emitting no more than 100 mW of intensity, located on one side of the palm, and measured
the diffuse transmittance maps of the hand using a near-IR-enhanced sensitivity camera
(Materials and Methods, Section 2.4). An example of the detected diffuse transmittance
through palms is presented in Figure 4a. Regarding veins that were clearly visible in the
tissue area (marked by red crosses in Figure 4a), we assessed the profiles of intensity changes
in a direction transverse to the venous bed. Representative intensity profiles are shown in
Figure 4b. Since the tissues did not look uniform in the real image, we additionally applied
a background subtraction procedure, based on the AirPLS method [36], and estimated
the values of Ivessel and Itissue only after the described baseline correction (however, other
baseline correction procedures, e.g., linear interpolation, can also be used).

Similar to the modeling results (Figure 2d), we first verified that, indeed, the intensity
contrast ∆Ivessel/Itissue increases with increasing vein width, as estimated from the pro-
file (Figure 4c); furthermore, using the estimated vessel widths and the contrast values
∆Ivessel/Itissue, we predicted the hemoglobin content in tissues for patients and compared it
to the reference values that were obtained invasively (Figure 4d). To estimate the Hb level,
we used the following procedure: diffuse transmittance was measured for the palm of each
patient, then multiple intensity profiles were extracted from the image, and the values of
∆Ivessel/Itissue and dvessel were calculated. The obtained values from each profile were then
used for prediction, using a model trained on Monte Carlo simulation data. The Hb level
predicted for the different intensity profiles obtained for the same image was averaged
and used as a final prediction. Figure 4d presents the median values and interquartile
range values of the predictions for 9 patients with reference Hb levels varying from 90 to
150 g/L. The median values of non-invasively predicted Hb levels are also presented in
Table S1 in the Supplementary Materials. The Hb level prediction MAE was 17 g/L, which
is comparable to the error obtained when the thickness, hemoglobin concentration, and
depth of the vessel were simultaneously varied in a range of up to 2 mm.

We compared the absolute residuals between invasive and non-invasive Hb assess-
ment techniques, stratified by sex and age. Our findings revealed no statistically significant
differences in Hb prediction error among patients when separated by gender (unpaired
t-test, p > 0.05) and no correlations between Hb prediction error and patient age, assessed
using both Pearson and Spearman criteria, were observed (p > 0.05). This outcome suggests
that the developed method is not substantially affected by physiological parameters such
as a patient’s gender and age, although some differences may be observed with a larger
sample size.
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Figure 4. (a) An example of a diffuse transmittance map for a region of the arm obtained at 850 nm
for a volunteer with a total blood Hb concentration of 116 g/L. Red crosses indicate the positions of
the profiles used to determine the Hb concentration. (b) Examples of experimental intensity profiles
in a direction transverse to the vessel. The red lines denote the baseline, which takes into account the
heterogeneity of background illumination obtained using the AirPLS method. Blue crosses indicate
the values of the intensities Ivessel and Itissue used for Hb prediction. (c) Dependence of the intensity
contrast ∆ Ivessel/Itissue on the estimated vessel width dvessel for the image demonstrated in panel (a).
(d) Scatterplot of the predicted vs. true Hb levels obtained for patients using the experimental
implementation of the method. The red dotted line shows the line with zero intercept and unity
of slope.

4. Discussion

The non-invasive determination of biochemical blood parameters, in particular
hemoglobin, is in high demand for both clinical and point-of-care diagnostics. Being
a convenient target for optics, determining the Hb level in the blood is often proposed
as an assessment to be carried out using methods based on assessing the attenuation of
light by hemoglobin in tissue areas where Hb is a dominant chromophore, for instance in
fingernails [13–15] or the conjunctiva [5–9], or by using time resolution to directly measure
the light attenuation by the blood using photoplethysmography [2–4].

In contrast to these methods, we assessed the possibility of determining hemoglobin
concentration “directly” via utilizing relative light attenuation by vessels ∆Ivessel/Itissue
and the thickness of the vessels, dvessel , which were estimated from the obtained images.
Through a Monte Carlo simulation of light transport in tissue, we obtained a lower bound
estimate of the error for this method, using simple linear regression as a predictive model.
Under ideal conditions, a model trained with ∆Ivessel/Itissue and dvessel values was able to
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reach the Hb level prediction MAE at the level of 5–6 g/L. However, the Hb prediction
error significantly increased, up to 15 g/L in the case of different depths of veins (in our
experiments, we varied the depths from 0.1 to 2.1 mm, as in Figure 3e–g). The increase in
error could be explained by both the variation of the contrast (Figure 3d) with vessel depth
and changes in the apparent vessel width, due to diffuse light propagation through tissues.
At the same time, we observed the Hb prediction error to be stable to variations in scattering,
the volume fraction of blood, or the volume fraction of melanin in tissues (Figure 3h–j).
Presumably, with an increase in melanin to higher levels corresponding to Fitzpatrick skin
types III or IV, the influence of melanin will be more pronounced. Potentially, if the depth
of the veins in the tissue is known, for example, when estimated using spatial frequency
domain imaging [38,39] or other techniques with depth resolution [40], the error of the
method could be reduced.

In practice, the error seen in determining hemoglobin in this way may encounter
additional problems associated with inhomogeneities in different tissue areas, the absence
of superficial veins in humans, more significant changes in the optical density of tissues,
and changes in blood oxygenation in the veins, which can increase the error in hemoglobin
prediction. Using a model trained on Monte Carlo simulation data from patients with
varying levels of hemoglobin in the blood, we observed that the error in hemoglobin
estimation was 17 g/L (1.7 g/dL), which is close to the estimate we obtained from the
simulation. In a study conducted by [28], a similar non-invasive technique for assessing
hemoglobin (Hb) levels was evaluated. The authors utilized an approach that estimated
light transmission through blood vessels in the finger to assess blood Hb levels. While it is
unclear whether this method incorporated both contrast and vein width measurements to
determine Hb levels, the authors obtained promising results from a sample of 309 patients.
Specifically, they found a correlation coefficient of r = 0.591 between non-invasive Hb
levels and reference values. Considering the variability in reference blood Hb values, this
correlation coefficient corresponds to a root mean squared error in Hb prediction of ~18 g/L,
which is comparable to our results.

Thus, this method, although based directly on the assessment of light absorption by
hemoglobin in blood vessels, has errors similar to those for other methods, putting the
method on par with other optical non-invasive methods for predicting hemoglobin. It
is likely that the biological variability of the optical and geometric parameters of tissues
provides a certain fundamental limit on the error in determining the level of hemoglobin
in tissues, and other approaches that do not depend on biological variability, for example,
directly determining the absorption of light by hemoglobin in a vessel and cutting off
the optical response from tissues, will have higher accuracy when determining blood
hemoglobin level.

5. Conclusions

In this work, using a Monte Carlo simulation and experimental validation, we assessed
the possibility of determining total blood Hb concentration by using light attenuation by
vessels and adjacent tissues in the near-IR range via transmission illumination geometry.
We showed that although, in an ideal case, the mean absolute error of Hb could be as low as
5–6 g/L, due to a significant variation in physiological parameters—primarily a variation
in the depth of the vessel—the error of Hb level prediction would be at least 15 g/L in
the case of vessel depths varying from 0.1 to 2.0 mm from the skin surface and Hb levels
varying from 60 to 160 g/L. We assessed the applicability of this method experimentally,
detecting and analyzing diffusely transmitted light through volunteers’ palms, and found
the experimental Hb level prediction error to be equal to 17 g/L (1.7 g/dL), putting it on
par with other optical non-invasive methods for predicting hemoglobin. It is likely that the
biological variability of tissue parameters imposes a fundamental limit on the accuracy of
optical Hb level assessment when using simple techniques that assess the Hb content via
light attenuation by different tissue regions. Possibly, approaches that directly determine
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the light absorption by hemoglobin in a vessel, without interference from the surrounding
tissues, may offer lower errors in the context of non-invasive Hb level assessment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/photonics11010049/s1, Table S1: Summary table for patients
involved in study by gender, age, and hemoglobin level assessed invasively using a reference method
and using a non-invasive optical method.
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