УДК 541.135.4

НОВЫЕ ИОННЫЕ ПРОВОДНИКИ $Ln_{2+x}Ti_{2-x}O_{7-x/2}$ (Ln – Lu, Yb, Tm, Er, Ho, Dy; x = 0.132)

© 2004 г. А. В. Шляхтина*, А. В. Мосунов**, С. Ю. Стефанович**, О. К. Карягина***, Л. Г. Щербакова*

*Институт химической физики им. Н.Н. Семенова Российской академии наук, Москва **Научно-исследовательский институт им. Л.Я. Карпова, Москва

***Институт биохимической физики им. Н.М. Эмануэля Российской академии наук, Москва

Поступила в редакцию 08.07.2004 г.

Впервые получены и исследованы новые ионные проводники состава $Ln_{2+x}Ti_{2-x}O_{7-x/2}$ (Ln – Lu, Yb, Tm, Er, Ho, Dy; x = 0.132) со структурой разупорядоченного пирохлора. Величина ионной проводимости, составляющая 10^{-3} См/см при 740°С для всех фаз $Ln_{2+x}Ti_{2-x}O_{7-x/2}$ (Ln – Lu–Dy; x = 0.132), связана с возникновением дефектов в катионной и анионной подрешетках. В катионной подрешетке установлено ~5% антиструктурных дефектов Ln_{Ti} . Показано, что фазы $Ln_{2.132}Ti_{1.868}O_{6.934}$ термически стабильны в интервале 1600–1700°С.

введение

Ионные проводники с высокой проводимостью по кислороду широко изучаются в настоящее время в связи с перспективой их использования в качестве твердых электролитов в новых системах генерации электроэнергии (высокотемпературные топливные элементы), кислородных датчиков (автомобильные двигатели) и кислородпроводящих мембран (каталитические установки) [1–3].

Однако количество соединений, в которых обнаружена высокотемпературная ионная проводимость, невелико. Наиболее известным и широко используемым твердым электролитом является ZrO₂ (9 мол. % У₂О₃ или СаО), обладающий структурой флюорита и ионной проводимостью 10⁻² См/см при 740°С. Высокотемпературная β-форма La₂Mo₂O₉ и кислороддефицитные перовскиты типа La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85} имеют ионную проводимость 10⁻¹ См/см при 740°С [4, 5]. Высокие значения проводимости характерны и для слоистых перовскитов $Bi_4V_{2-x}M_xO_{11-y}$ [6]. K ионным проводникам относятся также высокотемпературные цирконаты гадолиния, самария, неодима со структурой пирохлора [7].

В 2003 году было открыто новое семейство ионопроводящих материалов со структурой пирохлора $Ln_{2+x}Ti_{2-x}O_{7-x/2}$ (Ln – Lu, Yb, Tm; x = 0-0.4) [8–10]. В соединениях стехиометрического состава $Ln_2Ti_2O_7$ (Ln – Lu, Yb, Tm) проводящими являются высокотемпературные модификации со структурой искаженного пирохлора, образующиеся при 1600–1670°С вблизи температуры плавления, которая составляет 1670°С для $Lu_2Ti_2O_7$ и 1690°С для Yb₂Ti₂O₇, Tm₂Ti₂O₇. Величина их ионной проводимости достигает 10⁻²–10⁻³ См/см при 740°С и максимальна для $Lu_2Ti_2O_7$. В случае $Lu_{2+x}Ti_{2-x}O_{7-x/2}$ (Ln – Lu; x = 0.072-0.4) температурная область ионной проводимости более широкая – 1400–1700°С [10].

Согласно фазовым диаграммам систем Ln_2O_3 -TiO₂ (Ln – Lu–Tm), у соединений $Ln_2Ti_2O_7$ наблюдаются значительные области гомогенности – 33.3–50 мол. % Ln_2O_3 [10–13]. У фаз с отклонением от стехиометрии $Lu_{2+x}Ti_{2-x}O_{7-x/2}$ (x = 0.072– 0.4, 33.3–40 мол. % Lu_2O_3) обнаружена ионная проводимость [10]. Диаграммы состояния систем Er_2O_3 -TiO₂, Ho_2O_3 -TiO₂, Dy_2O_3 -TiO₂ отличаются от упомянутых ранее Ln_2O_3 -TiO₂ (Ln – Lu–Tm) [11–13], а области гомогенности $Ln_2Ti_2O_7$ со структурой пирохлора в этих системах более узкие.

Целью настоящей работы является синтез образцов состава $Ln_{2+x}Ti_{2-x}O_{7-x/2}$ (Ln – Yb, Tm, Er, Ho, Dy; x = 0.132), находящихся в области гомогенности $Ln_2Ti_2O_7$, и исследование их проводящих свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Гидроксиды Ln(III) (Ln – Lu, Yb, Tm, Er, Ho, Dy) и Ti(IV) осаждали добавлением солянокислых растворов хлоридов указанных элементов в водный раствор аммиака при pH 10.7–11. Полученные осадки центрифугировали и промывали горячей водой несколько раз до удаления хлоридионов, после чего высушивали при 105° C в течение 24 ч. В отличие от [8–10], вместо сублимационной сушки использовали метод термической сушки продуктов соосаждения на воздухе.

Продукты соосаждения и последующей сушки отжигали при 650°С в течение 2 ч, прессовали при давлении10 МПа в таблетки диаметром 10 мм, за-

Рис. 1. Температурные зависимости проводимости образца $Lu_{2.132}$ Ti_{1.868}O_{6.934}, полученного при различных способах сушки (1, 2 – термическая сушка с разложением гидроксидов при 650°С, 2 ч и 740°С, 2 ч соответственно, 3 – сублимационная сушка с разложением гидроксидов при 740°С, 2 ч) и последующем отжиге при 1600°С, 4 ч.

тем отжигали при 1600°С, 4 ч и охлаждали вместе с печью. Образцы Ln_{2.132}Ti_{1.868}O_{6.934} (Ln – Yb, Tm, Er, Ho, Dy) отжигали также при 1690°С, 2 ч.

Кристаллическую структуру изучали на рентгеновском дифрактометре ДРОН-3М (Си K_{α} -излучение; 2 θ = 15°–45°), дефектную структуру – рентгеноструктурным анализом по Ритвельду [14].

Электропроводность и диэлектрическую проницаемость керамики измеряли двухконтактным методом на частоте 1 МГц в интервале темпера-

Рис. 2. Температурные зависимости проводимости для $Lu_{2.132}Ti_{1.868}O_{6.934}$: *1–4* – на переменном токе при частотах 1, 10, 100, 1000 кГц соответственно, 5 – на постоянном токе.

тур 350–950°С с помощью моста переменного тока TESLA BM-431 Е. Предварительно на образцы наносили Pt-электроды путем вжигания платиновой пасты (Degussa 6706). Электронную составляющую электропроводности Lu_{2.132}Ti_{1.868}O_{6.934} определяли DC-методом.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 (кривые 1-3) представлены температурные зависимости общей электропроводности образца Lu_{2.132}Ti_{1.868}O_{6.934} (35.5 мол. % Lu₂O₃), полученного при различных способах сушки продукта соосаждения с последующим разложением гидроксидов и дальнейшем отжиге 1600°С, 4 ч. Видно, что кривые 1-3 практически одинаковы и, следовательно, способ сушки осадка гидроксидов не влияет на конечные свойства образцов.

Согласно РФА, кристаллическая структура $Ln_{2.132}Ti_{1.868}O_{6.934}$ (Ln – Yb, Tm, Er, Ho, Dy) относится к структурному типу пирохлора, что соответствует более ранним исследованиям [10].

На рис. 2 представлены данные электропроводности для $Lu_{2.132}Ti_{1.868}O_{6.934}$, полученные на переменном (кривые 1-4; диапазон частот 1-1000 кГц) и постоянном токе (кривая 5). Электронная составляющая проводимости этого образца на 2 порядка ниже его общей электропроводности при 740°С. Таким образом, образец $Lu_{2.132}Ti_{1.868}O_{6.934}$ является ионным проводником с проводимостью 10^{-3} См/см при 740°С.

Из температурной зависимости проводимости $Ln_{2.132}Ti_{1.868}O_{6.934}$ (Ln – Yb, Tm, Er, Ho, Dy) (рис. 3) видно, что прямолинейный участок зависимостей имеет один и тот же наклон ~0.89 эВ в температурном интервале 400–950°С, что свидетельству-

Рис. 3. Температурные зависимости проводимости для $Ln_{2.132}Ti_{1.868}O_{6.934}$, где Ln – Yb (1), Tm (2), Er (3), Ho (4), Dy (5).

ет о близкой энергии активации и подобном механизме проводимости для исследованных образцов при температурах измерения. Следовательно, Ln_{2.132}Ti_{1.868}O_{6.934} (Ln – Lu, Yb, Tm, Er, Ho, Dy) характеризуются ионной проводимостью 10^{-3} Cm/см при 740°C.

Область ионной проводимости для нестехиометричных пирохлоров $Lu_{2+x}Ti_{2-x}O_{7-x/2}$ (x = 0.072, 0.132, 0.4) начинается от 1400°С для составов с x == 0.072 и 0.132 и распространяется до 1700°С, расширяясь при этом в область более высоких концентраций Lu₂O₃ [10]. Для выяснения возможности получения ионпроводящей фазы Ln_{2.132}Ti_{1.868}O_{6.934} при более высокой температуре образцы были синтезированы при 1690°С в течение 4 ч. Кривые lgæ (1/T) Er_{2.132}Ti_{1.868}O_{6.934} (рис. 4), отожженного при 1600 и 1690°С (кривые *1* и *2* соответственно), практически совпадают. Это означает, что область ионной проводимости для Er_{2.132}Ti_{1.868}O_{6.934} находится в температурном интервале 1600-1700°С. Для Yb_{2.132}Ti_{1.868}O_{6.934}, Tm_{2.132}Ti_{1.868}O_{6.934}, Но_{2.132}Ті_{1.868}О_{6.934} и Dy_{2.132}Ті_{1.868}О_{6.934} получены аналогичные результаты. Величина ионной проводимости одинакова и составляет 10⁻³ См/см при 740°С для всего семейства $Ln_{2+x}Ti_{2-x}O_{7-x/2}$ (Ln – Yb, Tm, Er, Ho, Dy; x = 0.132). Нижняя температурная граница ионной проводимости указанных фаз находится, по-видимому, вблизи 1400°С, как и y Lu_{2.132}Ti_{1.868}O_{6.934}.

Можно полагать, что возникновение ионной проводимости в исследуемых образцах $Ln_{2.132}Ti_{1.868}O_{6.934}$ (Ln – Lu, Yb, Tm, Er, Ho, Dy) связано с образованием антиструктурных дефектов в катионной подрешетке. Рентгеноструктурным анализом по Ритвельду обнаружено, что в $Lu_{2.132}Ti_{1.868}O_{6.934}$ (таблица) избыточный Lu располагается в свободных позициях титана в количестве 5% и одновременно наблюдается нестехиометрия по кислороду в позиции O(1). Аналогичную

Рис. 4. Температурные зависимости проводимости для Er_{2.132}Ti_{1.868}O_{6.934}, полученного при 1600 (*1*), 1690°С (*2*).

картину следует ожидать и в остальных образцах $Ln_{2.132}Ti_{1.868}O_{6.934}$ (Ln – Lu, Yb, Tm, Er, Ho, Dy).

ЗАКЛЮЧЕНИЕ

Получены новые ионные материалы $Ln_{2+x}Ti_{2-x}O_{7-x/2}$ (Ln – Lu, Yb, Tm, Er, Ho, Dy; x = 0.132), имеющие структуру разупорядоченного пирохлора с антиструктурными дефектами Lnтi. Наличие дефектов в катионной подрешетке связано с образованием дефектов по Френкелю в кислородной подрешетке, что и обеспечивает ионную проводимость в указанных фазах. Величина ионной проводимости составляет 10^{-3} См/см при 740°С. Установлена термическая стабильность этих материалов в интервале 1600-1700°С.

Авторы благодарят Е.П. Харитонову за помощь при измерениях электропроводности и А.В. Кнотько за проведение рентгеноструктурного анализа по Ритвельду.

Элемент	Позиция	Занятость	X	Y	Ζ	В
Lu(1)	16	0.997(2)	0.625	0.625	0.625	0.02
Ti(1)	16	0.003	0.625	0.625	0.625	0.02
Ti(2)	16	0.949	0.125	0.125	0.125	0.02
Lu(2)	16	0.051	0.125	0.125	0.125	0.02
O (1)	8	0.952	0.500	0.500	0.500	0.02
O(2)	48	1	0.212	0	0	0
			(0.001)			

Данные рентгеноструктурного анализа по Ритвельду для $Lu_{2.132}Ti_{1.868}O_{6.934}$ ($R_{wp} = 6.34$, a = 10.0413 (0.0004) Å)

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 40 № 12 2004

Работа выполнена при поддержке Программы Президиума Российской академии наук "Синтез неорганических веществ с контролируемыми свойствами и функциональных материалов на их основе" (грант 12/04).

СПИСОК ЛИТЕРАТУРЫ

- Steele B.C.H. Oxygen Ion Conductors // High Conductivity Solid Ionic Conductors, Resent Trends and Applications / Ed. Takahashi T.T. Singapore: World Scientific Publishing, 1989. P. 402–446.
- Boivin J.C., Mairesse G. Recent Material Developments in Fast Oxide Ion Conductors // Chem. Mater. 1998. V. 10. P. 2870–2888.
- 3. *Вест А*. Химия твердого тела. Ч. 2. М.: Мир, 1988. С. 54.
- 4. *Georges S., Goutennoire F., Altorfer F. et al.* Thermal, Structural and Transport Properties of the Fast Oxide-Ion Conductors $La_{2-x}R_xMo_2O_9$ (*R* = Nd, Gd, Y) // Solid State Ionics. 2003. V. 161. P. 231–241.
- Ishihara T., Matsuda H., Takita Y. Doped LaGaO₃ Perovskite Type Oxides as a New Oxide Ionic Conductor // J. Am. Chem. Soc. 1994. V. 116. P. 3801–3803.
- Abraham F., Boivin J.C., Mairesse G., Nowogroski G. The BIMEVOX Series: a New Family of Hight Performances Oxide Ion Conductors // Solid State Ionics. 1990. V. 40–41. P. 934–937.
- 7. *Michel D., Perez M., Jorba Y., Collongues R.* Etude de la transformation order-disorder de la structure fluorite a la structure pyrochlore pour des phases (1 –

- x)ZrO₂Ln₂O₃ // Mater. Res. Bull. 1974. V. 9. P. 1457– 1468.

- Shlyakhtina A.V., Shcherbakova L.G., Knotko A.V., Steblevskii A.V. Study of the Fluorite-Pyrochlore-Pyrochlore Phase Transitions in Ln₂Ti₂O₇ (Ln = Lu, Yb, Tm) // J. Solid. State Electrochem. 2004. V. 8. № 9. P. 661–667.
- Шляхтина А.В., Карягина О.К., Щербакова Л.Г. Исследование фазовых превращений порядок– беспорядок в соединениях Ln₂Ti₂O₇ (Ln – Lu, Yb, Tm, Gd) // Неорган. материалы. 2004. Т. 40. № 1. С. 59–65.
- Shlyakhtina A.V., Mosunov A.V., Stefanovich S.Y. et al. Synthesis and Electrical Properties of Nanoceramics Lu_{2+x}Ti_{2-x}O_{7-x/2} Oxygenion Conductors // Solid State Ionics. 2004. (in Press).
- Queyroux F. Sur lexistence dun compose nouveau Yb₆TiO₁₁ et sur le diagramme dequilibre Yb₂O₃–TiO₂ // Bull. Soc. Fr. Mineral. Crystallogr. 1965. T. 88. P. 519– 520.
- Щербакова Л.Г., Мамсурова Л.Г., Суханова Г.Е. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты. М.: Наука, 1984. С. 194–224.
- Queyroux F. Sur la formation de composes nouveaux dans les systemes oxide de titan-oxydes de terrers rares // C. R. Séances Acad. Sci., Ser. C. 1964. V. 259. P. 1527–1529.
- 14. The Rietveld Method / Ed. Yong R.A. Oxford: Oxford University Press, 1993.