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Abstract—Features are studied of the phase formation, structural parameters, microstructure, and dielectric
and ferroelectric properties of non-stoichiometric (Na0.5 + xBi0.5)TiO3 ceramics with x = 0–0.1. The investi-
gated samples exhibit ferroelectric phase-transition behavior as anomalies and peaks in dielectric permittivity
near 400 and 600 K, respectively. Study of the second harmonic generation shows that phase transitions near
400 K exhibit relaxor-type behavior, indicating there are polar regions in the nonpolar matrix. An increase in
the Na/Bi ratio in the initial compositions improves the dielectric and ferroelectric properties of the ceramics.
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INTRODUCTION
Oxides of perovskite-like structure based on the

rhombohedral ferroelectric relaxor of sodium-bis-
muth titanate (NBT), (Na0.5Bi0.5)TiO3, are some of
most promising lead-free materials intensively studied
over the last decade. A feature of these compositions is
the notable dependence of functional properties on
stoichiometry, which is determined by the conditions
of preparation [1–11]. 

In this work, we studied features of the phase forma-
tion, structural parameters, microstructure, dielectric
and ferroelectric (SE) properties of ceramics of non-
stoichiometric compositions for (Na0.5 + xBi0.5)TiO3
(x = 0–0.1).

EXPERIMENTAL
Ceramic samples of (Na0.5 + xBi0.5)TiO3 (x = 0–0.1)

were synthesized by double firing at T1 = 970–1070 K
(for 6 h) and T2 = 1270–1470 K (for 1–2 h). Na2CO3
(98%) and Bi2O3 and TiO2 (>99.9%) were used as the
initial reagents.

The phase composition and parameters of the
crystal structure were investigated at room tempera-
ture via X-ray diffraction (XRD) (DRON-3M dif-
fractometer, CuKα radiation). The second harmonic
of laser radiation (SHG) (Nd:YAG laser, λ =
1.064 μm) was used to estimate the magnitude of
spontaneous polarization. Dielectric properties of
the ceramics were studied via dielectric spectroscopy
(Agilent 4284A LCR meter, 1 V) at 300–1000 K and
100 Hz–1 MHz.

RESULTS AND DISCUSSION
According to the XRD data, our samples of per-

ovskite-like structure were formed at T1 = 973–
1173 K. Dense single-phase samples with x < 0.075
were prepared by sintering the ceramics at T2 = 1450–
1470 K (2 h). The compositions with x ≥ 0.075 con-
tained Na2Ti6O13 impurities (Fig. 1). Figure 2 shows
parts of the diffractograms with diffraction peaks N =
h2 + k2 + l2 = 4 (hkl = 200) for (Na0.5 + xBi0.5)TiO3 with
x = 0, 0.0, 0.02, 0.03, 0.04, 0.05, 0.075, 0.10. The dis-
placement of the peak position toward the region of
smaller angles at x = 0–0.03 indicates a volume
increase in the pseudocubic perovskite cell as a result
of the substitution of vacancies in sublattice A, due to
the loss of low-melting cations A at high tempera-
tures. The widening and change in the shape of the
peak at x > 0.04 indicates a transition from
pseudocubic lattice symmetry to rhombohedral sym-
metry, which corresponds to the literature [6–9].

The microstructure of the samples with x < 0.04 is
characterized by isometric grains ~(1 ± 5) μm in size
(Fig. 3). The microstructure of the samples with x ≥
0.04 is characterized by an increase in the average
grain size to ~10 μm. On the samples’ surfaces, we
were also able to observe grains of elongated shape
corresponding to the formation of the Na2Ti6O13
phase (Fig. 3).

Upon an increase in the Na/Bi ratio in the initial
compositions, an rise in the spontaneous polarization
value was confirmed by SHG measurements. The
change in the SHG signal, q = I2w/I2w(SiO2), from q ~
10 at Na/Bi < 1.05 to q ~ 130 at Na/Bi > 1.2, improved
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Fig. 2. Parts of diffractograms of (Na0.5 + xBi0.5)TiO3 with x = 0–0.1. The numbers on the curves correspond to the x-value.
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Fig. 1. Diffractograms of (Na0.5 + xBi0.5)TiO3 with x = (1) 0.0, (2) 0.02, (3) 0.03, (4) 0.075, (5) 0.10.
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the dielectric and SE properties of the ceramics
(Fig. 4).

The samples were characterized by SE phase tran-
sitions observed as anomalies in dielectric permittivity
at ~400 K and peaks at Tm ~ 600 K (Fig. 5). The
phase transitions at 390–420 K show pronounced
relaxor behavior, indicating there were polar regions
in the nonpolar matrix [12, 13]. This is supported by
the SHG data and agrees with the studied NBT com-
positions consisting of SE clusters embedded in a
nonpolar matrix. Charge disorder in A-positions
BULLETIN OF THE RUSSIAN ACADE
occupied by randomly arranged Bi3+ and Na+ cations
determines the formation of random electric fields
affecting the local balance between the displace-
ments from the central positions of Ti4+ cations in
positions B and of cations in positions A of the per-
ovskite lattice in opposite directions, facilitating local
correlations of dipoles and the relaxational properties
of NBT compounds [14]. At high temperatures, the
effects of dielectric relaxation associated with the
presence of vacancies in the oxygen sublattice are
also revealed.
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Fig. 4. Dependence of SHG signal intensity on the initial concentration of Na1+ cations.
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Fig. 3. Microstructure of (Na0.5 + xBi0.5)TiO3 with x = (a) 0, (b) 0.02, (c) 0.04, (d) 0.075, and (e, f) 0.10.
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CONCLUSIONS

The change in the parameters of the structure and

dielectric properties of the investigated ceramics con-

firms the effect of the cation deficit in sublattice A on

their functional properties. Upon an increase in the

Na/Bi ratio in the initial compositions, a rise in spon-

taneous polarization was observed through SHG mea-

surements, indicating improvement in the dielectric

and SE properties of the ceramics. The observed
BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES
increase in the dielectric permittivity at room tem-

perature in compositions with x = 0.01–0.04 also tes-

tifies to the potential for improving the piezoelectric

properties of the investigated ceramics.
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Fig. 5. Temperature dependences of (a) dielectric constant ε(T), (b) tangent of the dielectric loss angle tanδ(T), and (c) electric
conductivity logσ(1000/T) of (Na0.5 + xBi0.5)TiO3 with x = (1) 0.0, (2) 0.03, (3) 0.05, (4) 0.075, measured at 100 Hz–1 MHz.
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