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6Physics Department, Università degli Studi di Pisa, Pisa 56127, Italy
7Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

8INFN Sezione di Roma, Roma 00185, Italy
9INFN Cagliari, Cagliari 09042, Italy
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14Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy
15Physics Department, Princeton University, Princeton, New Jersey 08544, USA
16Physics, Kings College London, Strand, London WC2R 2LS, United Kingdom

17INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
18Gran Sasso Science Institute, L’Aquila 67100, Italy
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Dark matter may induce an event in an Earth-based detector, and its event rate is predicted to show an
annual modulation as a result of the Earth’s orbital motion around the Sun. We searched for this modulation
signature using the ionization signal of the DarkSide-50 liquid argon time projection chamber. No
significant signature compatible with dark matter is observed in the electron recoil equivalent energy range
above 40 eVee, the lowest threshold ever achieved in such a search.
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I. INTRODUCTION

The combined effect of Earth’s rotations around the Sun
and the Galactic Center is expected to produce an annual
modulation of the dark matter particle interaction rate in
terrestrial detectors [1], thereby offering a unique signature
for directly probing dark matter particles and unveiling
their true nature. The DAMA/LIBRA experiment claimed
the detection of such a signature in their NaI detectors in
the keV range [2,3]. The interpretation of this claim with
the weakly interacting massive particle (WIMP) hypoth-
esis is however currently facing challenges due to the
null detection of WIMP-induced nuclear-recoil signals in
other experiments [4–15]. Several experiments, such as
ANAIS-112 [16] and COSINE-100 [17], have been
making progress toward a model-independent test of the

DAMA/LIBRA’s claim adopting NaI detectors. Another
approach to test this claim and possibly to reveal WIMP
properties can be offered by searching for the modulation
with other detectors which have different target materials,
background sources, energy resolution, and experimental
sites. Such results from xenon-based dark matter experi-
ments are reported by XENON-100 [18], LUX [19], and
XMASS [13] collaborations, though none of them have
confirmed the positive claim above 1 keV electron recoil
equivalent (keVee).
Dual-phase noble-liquid time projection chambers

(TPCs) measure the scintillation and ionization signals
from a particle interacting in the liquid. Such detectors were
originally designed to discover and have led the search for
WIMPs with masses above 10 GeV=c2. Moreover, in the
last decade, they have also exhibited world-class sensitivity
to light dark matter candidates exploiting only the ioniza-
tion signal spectrum above a few detected ionization
electrons (Ne) [20–28]. Among them, the DarkSide-50
detector, a liquid argon (LAr) TPC located underground at
the Laboratori Nazionali del Gran Sasso (LNGS) [8,29,30],
recently demonstrated an unprecedented sensitivity in this
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energy region [31–34]. This achievement was accom-
plished by looking for an event excess in the energy
spectrum with respect to the background model above
0.06 keVee. In this work, we report for the first time on the
search for the annual rate modulation of events down to
0.04 keVee, the lowest threshold ever achieved in a dark
matter modulation search. The analysis relies on two
approaches: the maximum likelihood fit and the Lomb-
Scargle periodogram [35]. The results are also compared to
the claim by the DAMA/LIBRA experiment assuming that
the dark matter produces signals of the same electron-
recoil-equivalent-energy in both NaI and LAr detectors.

II. DETECTOR

The DarkSide-50 detector and associated apparatus are
described in detail in Refs. [29,36,37]. Here we give a brief
overview of the experimental apparatus.
DarkSide-50 consists of three nested detector systems, the

LAr TPC, the neutron veto, and the cosmic muon veto. The
TPC contains an active liquid target of ð46.4� 0.7Þ kg. It is
housed in a stainless steel double-walled, vacuum-insulated
cryostat, shielded by a 30 t boron-loaded liquid scintillator
veto instrumented with 110 8-inch PMTs. The purpose of
this is to actively tag neutrons in situ. A 1 kt waterČerenkov
veto, equipped with 80 PMTs, surrounds the neutron veto to
actively tag cosmic muons and to passively shield the TPC
against external backgrounds [38].
Two arrays of 19 3-inch photomultiplier tubes (PMTs),

located at the top and the bottom of the TPC, detect light
pulses from scintillation (S1) induced by particle interactions
in the liquid bulk. The same interactions generate ionization
electrons, which are drifted through the LAr volume by a
200 V=cm electric field up to the top of the TPC. Then, they
are extracted into the gas phase by a 2.8 kV=cm field and
induce delayed photon pulses (S2) by electroluminescence
under a 4.2 kV=cm field, as characterized in Ref. [39].
DarkSide-50 started taking data in April 2015 with a

low-radioactivity LAr target, extracted from a deep under-
ground source (UAr) [30], and concluded the operations in
February 2018. We do not use a short period of time in July
2015 in which the inline argon purification getter was
bypassed and an enhanced event rate was observed near the
analysis threshold [24]. In addition, the first four months of
data were contaminated by the cosmogenic 37Ar isotope,
with a half-life of 35.0 d [40], and were only used to
calibrate the ionization response [41]. About 25% of the
rest of the data taking was devoted to calibration campaigns
with dissolved and external radioactive sources. The live-
time used in this paper corresponds to 693.3 d.

III. ANALYSIS

A. Dataset

The data used in this analysis is acquired upon a hardware
event trigger requiring a coincidence of two or more PMT
signals above 0.6 photoelectron within 100 ns [36]. Selected

events for further analysis in this dataset are required to be
single-scatter, i.e., with a single S2 pulse. These events must
also be isolated in time from the preceding events, following
a veto of 20ms after any event triggering the data acquisition
system. Additional cuts are used to remove pile-up pulses,
which are too close in time such that the pulse finder
algorithm is unable to separate the clusters, and surface α
events, characterized by a large S1 plus an anomalously low
S2 because of absorption of the ionization electrons into the
detector wall. Finally, we remove events reconstructed in the
outer ∼7 cm thick cylindrical shell of the TPC, resulting in
the 19.4 kg fiducial volume in the center. The low energy
threshold for this analysis is defined in order to reject
spurious electrons (SEs) [24,31]. These are considered to
originate from ionization electrons trapped on impurities
along the drift in LAr, and released with a certain delay, as
will be the object of a paper in preparation. A full description
of the selection criteria can be found in Ref. [31].

B. Background model

The time evolution of background events can be described
by the combination of a set of decaying exponentials and a
constant term. The latter component includes the radioactive
backgrounds whose lifetime is much longer than the data-
taking period of about three years and is dominated by the
β-decay of 39Ar (268 yr [42]). The exponential components
arise from the decays of 37Ar (35.0 d [40]), 85Kr (10.8 yr [43]),
54Mn (312.1 d [43]), and 60Co (5.27 yr [44]). The first two
isotopes are intrinsically present in LAr, while the latter two
are contaminants of the PMTs, and 60Co is also present in the
cryostat stainless steel. The latter two emit γ- and x-rays,
which deposit energy in the LAr target. The background
model is generated with the DarkSide-50 Geant4-based
Monte Carlo [45] code. The model is built on data from
an extensive material screening campaign to characterize the
trace radioactivity content of every detector component. It
also uses in situ measurements with DarkSide-50 [31] and
incorporates the detector response model [41].

C. Detector stability

A crucial aspect for this analysis is the long-term stability
of the detector performance, monitored by various sensors
incorporated inside the cryogenic system, as well as by the
recorded events from the TPC itself. The two parameters
whose fluctuations may potentially have a high impact on
the modulation search are the electric drift field, F, and the
average number of detected S2 photons per ionization
electron extracted in the gas phase, g2. The stability of F is
monitored in situ via the stability of the edge of the drift-
time distribution that corresponds to the very bottom of the
TPC [39]. This is allowed by the fact that a large part of the
events in DarkSide-50 come from the diffused isotopes
of 39Ar and 85Kr. The maximum fluctuation of F was
estimated to be less than 0.01%, too small to affect the
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ionization response. Based on the S2/S1 ratio for electro-
nic recoil events above the region of interest (RoI)
(½0.04; 20.0� keVee), g2 varies at most by 0.5% over the
whole data-taking period. The impact on the modulation
signal searches described later from the measured insta-
bility is evaluated by pseudoexperiments. It is found that
any possible bias on the result is smaller than the size of
statistical fluctuations.
We also check the temporal evolution of other detector

parameters, such as the liquid argon purity, pressure and
temperature of the gaseous argon, PMT response to single
photoelectron, and the condition of the inline filters to
maintain pure argon. A systematic study on the stability of
such parameters can be found in Ref. [37]. Throughout the
work we find that the stabilities of most parameters are
typically Oð0.1%Þ or less such that they do not affect the
observed event rate. An exception is the liquid argon purity
which continuously increases from O2 equivalent contami-
nation of 60 ppt (corresponding to the drift electron lifetime
of 5 ms) to <15 ppt (>20 ms). A toy Monte Carlo study
shows that such an increase cannot make any fake
modulation signal, as the maximum electron drift time
(376 μs) is much shorter than that level. Another exception
is the temperature of a charcoal trap for radon removal
which is put inside the gas circulation line to maintain
purified liquid argon. The instability is observed at the level
of 1%. Since we do not see any correlation between the
temperature and the observed event rate in various energy
ranges, and we do not find any way for the instability to
affect the TPC observed event rate, we affirm that it does
not influence the following analysis.

IV. RESULT

A. Phase-free likelihood fit

We first perform a likelihood fit to search for annual
modulation signal without constraining its phase. Since the
observed events below 4 e− are contaminated by the SE
background [31], of which a priori expectation is still
missing, we define two ranges to be analyzed as ½4; 41� e−
and ½41; 68� e− ranges, corresponding to ½0.06; 2.0� keVee
and ½2.0; 6.0� keVee, respectively.
Figure 1 shows the measured time-dependent event rates

for events with Ne in the ½4; 41� e−1 and ½41; 68� e−1
ranges. The signal and backgrounds are modeled with

fðtÞ ¼ Aχ cos

�
t − ϕ

T=2π

�
þ
X
l

Al

τl
e−t=τl þ C; ð1Þ

where l¼ ð37Ar;85Kr;54Mn;60 CoÞ, Aχ is the amplitude of
the modulated term of the signal, ϕ the phase, and T the
period fixed to 1 yr. The constant term C is the sum of the
time-averaged signal component and long-lived back-
grounds. The parameters τl and Al correspond to the decay
times and amplitudes, respectively, of the short-lived

isotopes l. The background-only fits to data, by fixing
Aχ ¼ 0, are shown in Fig. 1 for the two ranges.
The statistical significance of a possible modulated

signal is assessed using the following binned likelihood
with the bin width of 7 d,

L ¼
Y

i∈ tbins

P
�
nijmiðAχ ;ϕ; C;ΘÞ

�
×

Y
θk ∈Θ

Gðθkjθ0k;ΔθkÞ: ð2Þ

The first term represents the Poisson probability of observ-
ing ni events in the ith time bin with respect to the expected
ones, miðAχ ;ϕ; C;ΘÞ, evaluated with Eq. (1). In the fit, Aχ ,
ϕ and C are left free to vary, while the other parameters are
contained inside Θ, which represents the set of remaining
nuisance parameters constrained by the Gaussian penalty
terms in the last factor of Eq. (2). In the latter, θ0k and Δθk
represent the nominal central values and uncertainties,
respectively, of the nuisance parameters and are listed in
Table I. The nuisance parameters account for uncertainties
on the fiducial volume of the TPC (which induces a 1.1%
uncertainty on the event rate from 54Mn and 60Co in the
PMTs and cryostat; and a 1.5% uncertainty on the other
event rates, acting in a correlated way [31]) and on the
activities of short-lived decays in the energy range of
interest. These are obtained from the combination of the
uncertainty on the measured rate (14%, 4.7%, 40%, 12%
for 37Ar, 85Kr, 54Mn, 60Co, respectively [31]), with the
uncertainty arising from the definition of the energy range
due to the ionization response. In addition, the uncertainty
on the 85Kr activity is combined with the spectral

FIG. 1. Temporal evolution of the observed event rates
for ½3; 4� e− (corresponding to ½0.04; 0.06� keVee), 4; 41 e−
(½0.06; 2.0� keVee), and ½41; 68� e− (½2.0; 6.0� keVee) ranges.
The bin width is 7 d. The colored solid lines represent the
background-only fit. The vertical dotted lines correspond to June
2nd, which is when the dark matter induced event rate has its
maximum. The blue-shaded region corresponds to the first four
months devoted to the detector calibration and is thus excluded
from this analysis.

P. AGNES et al. PHYS. REV. D 110, 102006 (2024)

102006-4



uncertainties from the β-decay Q-value and atomic
exchange and screening effects [46,47], as discussed
in Ref. [31].
Figure 2 shows the best fit values of (Aχ , ϕ) when fitting

the data with Eq. (2), together with the associated 68% and
95% confidence level (CL) contours, for the two analyzed
ranges. The χ2=NDF (number degrees of freedom) for the
best-fit in ½4; 41� e− (½41; 68� e−) is 132.6=124 (154.1=124).
The same analysis has been repeated by varying the bin
width from 1 d to 10 d, and no significant variations have
been found.
The fit does not show any evidence ofmodulation in either

of the two energy ranges, however, it has to be noted here
that the fit is expected to be biased due to the nonlinearity of
the pair of the parameters of interest (Aχ , ϕ) to the signal
rate in Eq. (1)1 [16,48]. We estimate the bias using
1000 pseudo experiments based on the background model
without a modulation signal. Figure 3 shows an example of
the result of such pseudo experiments in the ½41; 68� e−
range. The bias is extracted to be 0.011 counts=d=kg=keVee
(0.008 counts=d=kg=keVee) in the ½4; 41� e− (½41; 68� e−)
range as the mean of the amplitudes of the pseudo datasets. It
is confirmed that the result is consistentwith the theoretically
predicted bias,

ffiffiffiffiffiffiffiffi
π=2

p
σðAχÞ, where σðAχÞ is the variance of

the modulation amplitude for a fixed phase. The estimated

bias is overlaid with a dash-hatched line in Fig. 2. The best fit
results are consistent with the mean bias of the background-
only pseudo samples within 1σ.
The result in the ½2.0; 6.0� keVee range is used to test the

modulation observed by DAMA/LIBRA in the same
interval, compatible with a dark matter signal over 14
cycles with a significance of >13σ [3]. An assumption
behind this analysis is that dark matter produces electron
recoils in both NaI and LAr detectors with the same
probability per unit detector mass.2 The significance of
the analysis is such that we can neither confirm nor reject
the DAMA/LIBRA observation over the null hypothesis.
For completeness, the same conclusion is drawn for the
½1; 3� keVee range, also analyzed by DAMA/LIBRA.

B. Modulation amplitude
as a function of energy

Additional constraints on the modulation amplitude are
obtained by simultaneously fitting the event timestamps
and energies after fixing the period (1 yr) and the phase
(maximum at June 2nd) to those expected from the
Standard Halo Model [51,52]. This approach does not
require any assumption on the SE rate and thus allows
the range to be extended down to 3 e− or 0.04 keVee,
which corresponds to the primary electron induced by the

TABLE I. List of the nuisance parameters, together with their central values (θ0k) and uncertainties (Δθk).
The uncertainties are given as percentages of the corresponding central values. The uncertainties arising from the
β-decay spectrum and the ionization response are reported in terms of the event rate.

Parameter Energy range θ0k Δθk (%) References

T 1 yr 0
Fiducial volume All 19.4 kg 1.5a [31]
τ37Ar All 35.0 d 0 [40]
τ85Kr All 10.8 yr 0 [43]
τ54Mn All 312.1 d 0 [43]
τ60Co All 5.27 yr 0 [44]
A37Ar ½0.06; 2.0� keVee 0.85 counts=ðd kgÞ 14

½2.0; 6.0� keVee 2.1 counts=ðd kgÞ
A85Kr ½0.06; 2.0� keVee 1.0 counts=ðd kgÞ 4.7 [31]

½2.0; 6.0� keVee 1.7 counts=ðd kgÞ
A54Mn ½0.06; 2.0� keVee 0.01 counts=ðd kgÞ 40 [31]

½2.0; 6.0� keVee 0.02 counts=ðd kgÞ
A60Co ½0.06; 2.0� keVee 0.25 counts=ðd kgÞ 12 [31]

½2.0; 6.0� keVee 0.58 counts=ðd kgÞ
85Kr (β)-decay spectrum ½0.06; 2.0� keVee 1.0 counts=ðd kgÞ 0.4 [31,46,47]

½2.0; 6.0� keVee 1.7 counts=ðd kgÞ 0.4
Ionization response ½0.06; 2.0� keVee 2.1 counts=ðd kgÞ 2.2 [31,41]

½2.0; 6.0� keVee 4.4 counts=ðd kgÞ 0.1
aMore details in the text.

1Although an unbiased fit could be performed by choosing the
parameters as (S1 ≡ Aχ cosϕ0, S2 ≡ Aχ sinϕ0), where ϕ0 ¼ ϕ

T=2π,
we opt to use the nonlinear pair for the comparison to the other
experiments.

2For completeness, the ½2.0; 6.0� keVee in this analysis corre-
sponds to [8.6, 21.6] keV for nuclear recoils taking into account
the quenching effect [41]. Such energy range for nuclear recoils
in turn corresponds to about ½1; 3� keVee in NaI [49,50].
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interaction plus, on average, two subsequent ionization
electron. The likelihood,

L ¼
Y

i∈ tbins

Y
j∈Ebins

P
�
nji jmj

iðAj
χ ; Cj; Θ̃Þ�

×
Y
eθk ∈ Θ̃

Gðθ̃kjθ̃0k;Δθ̃kÞ; ð3Þ

is the product of the Poisson probabilities in each of the
ij-bins defined by the event time (i) and energy expressed
in terms of number of electrons (j) given the signal
amplitude, Aj

χ , and the constant background component,
Cj. The chosen bin width along the time axis corresponds
to 7 d and the bin widths along the energy axis are
0.02 keVee in the range ½0.04; 0.06� keVee, 0.25 keVee in
the range ½0.06;1.0� keVee, 1 keVee in the range
½1.0;6.0� keVee, and 2 keVee in the range ½6.0; 20.0� keVee
The sample of events with 3 e− (½0.04; 0.06� keVee) is
contaminated by SE’s. To account for this background, we
anchored its time variation to that of events below 3 e−,
selected in coincidence with the previous event, largely

dominated by SE. This approach is justified by the obser-
vation that the spectrumof events occurring in a 2mswindow
from the previous event, which consists of more than 90% of
SE’s, is stable over time. The amplitude of the signal in each
energy interval, Aj

χ , is assumed uncorrelated with the others.
Nuisance parameters Θ̃, in Eq. (3) are the same as in Eq. (2),
but account for energy spectral distortions of the background
components as done in Ref. [31].
The measured event rate with 3 e− is shown in Fig. 1,

together with the fitted background model including the SE
component. Figure 4 shows the best-fitted amplitude as a
function of the energy, together with the 1- and 2-σ
significance coverages, as derived with background-only
Monte Carlo datasets. The χ2=NDF for the best-fitted
amplitude is 2275.9=2055. The results from DAMA/
LIBRA [3], COSINE-100 [17], and XMASS [13] are also
shown. In contrast to our approach, the DAMA/LIBRA
looked at each energy bin independently and measured the
amplitude by looking at the residuals of a yearly averaged
event rate.

C. Periodogram analysis

Finally, a Lomb-Scargle periodogram analysis is per-
formed on the temporal evolution of the event rate to look
for sinusoidal signals with any period, including the one
expected from dark matter. The analysis is applied to the
data residuals, after the subtraction of the best-fitted
background model determined for each energy range
independently from each other [i.e., Eq. (1) but Aχ is fixed
to 0], as shown with the red and blue lines in Fig. 1. The
uncertainty from the background fit is propagated to the
data errors. To assess the significance of the sinusoidal
signals, we calculate the false alarm probability which is
defined as the probability for a Gaussian noise background
to produce a peak of the observed amplitude. In this work,
the bootstrap method [35] is adopted for the calculation.

FIG. 2. Best fit parameters in the phase versus amplitude space
from the likelihood analysis with the fixed period of 1 yr. The
vertical dotted line represents the phase of the dark matter signal
expected from the standard halo model. The horizontal dash-
hatched line corresponds to the estimated biases in the fit,
extracted from pseudo experiments. Also shown are the results
from other experiments using NaI(Tl) crystal scintillators
(DAMA/LIBRA [3], COSINE-100 [17], and ANAIS-112 [16])
and liquid xenon TPC (XENON100 [18] and LUX [19]).

FIG. 3. Distributions of the best-fit amplitude for background-
only pseudo datasets. The vertical red line is the mean of the
amplitude obtained by the fit, while the blue vertical line
corresponds to

ffiffiffiffiffiffiffiffi
π=2

p
σ where σ2 is the variance of the amplitude

obtained by the fit fixing the phase.
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The sensitivity of this analysis is evaluated by applying the
Lomb-Scargle analysis over 1000 pseudo experiments
where an annual modulation signal has been injected. A
median of 1σ significance for the false alarm probability is
obtained with the addition of 0.03 counts=ðd kg keVÞ. The
analysis of the data does not identify any significant
modulation, scanning periods up to 800 d, as shown in
Fig. 5. For the period of 1 yr for instance, the significance is
lower than 0.01σ for both ranges.

V. CONCLUSION

We searched for an event ratemodulation in theDarkSide-
50 data between 0.06 and 6.0 keVee without assuming a
specific dark matter signal model. In none of the two
analyzed ranges of ½0.06; 2.0� keVee and ½2; 6� keVee, a
modulation signal was observed within the sensitivity.
Also, a search is performed taking into account the
background energy spectrum, which also failed to

observe a significant modulation amplitude in the range
½0.04; 20.0� keVee. This is the first search for a dark
matter-induced modulation signal in the sub-keV region.
Unfortunately, the significance of this result is not sufficient
to confirm or reject the DAMA/LIBRA’s positive observa-
tion in ½0.75; 6.0� keVee.
The stability of the DarkSide-50 detector over nearly

three years of operation, the accuracy of the background
model, and the low-energy threshold achieved demonstrate
the competitiveness of the dual-phase LAr-TPC technology
in searching for modulation signals. This result is therefore
promising in view of future massive dual-phase liquid
argon experiments [53–55], expected to reach much larger
exposures and even lower background levels.
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[43] M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N.
Kuzmenko, R. L. Helmer, A. Nichols, E. Schönfeld, and R.
Dersch, Table of Radionuclides (Vol. 1—A =1 to 150),
edited by B. I. des Poids et Mesures (Bureau International
des Poids et Mesures, France, 2004).
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