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ABSTRACT: We study the form factor of the lowest component of the stress-tensor multiplet
away from the origin of the moduli space in the spontaneously broken, aka Coulomb, phase
of the maximally supersymmetric Yang-Mills theory for decay into three massive W-bosons.
The calculations are done at two-loop order by deriving and solving canonical differential
equations in the asymptotical limit of nearly vanishing W-masses. We confirm our previous
findings that infrared physics of ‘off-shell observables’ is governed by the octagon anomalous
dimension rather than the cusp. In addition, the form factor in question possesses a nontrivial
remainder function, which was found to be identical to the massless case, upon a proper
subtraction of infrared logarithms (and finite terms). However, the iterative structure of
the object is more intricate and is not simply related to the previous orders in coupling as
opposed to amplitudes/form factors at the origin of the moduli space.
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1 Introduction

The so-called Coulomb branch of the spontaneously broken maximally supersymmetric Yang-
Mills (sYM) theory [1] is a natural laboratory to study off-shell amplitudes and form factors
in four-dimensional gauge theories. Endowing some (or all) scalars of the model with vacuum
expectation values, one can adjust their values in a way as to yield matrix elements which
possess massive external states, i.e., W-bosons, Higgs-like scalars etc., but only massless
excitations propagating in quantum loops.

The N = 4 model away from the origin of the moduli space can naturally be obtained
from a generalized form of the dimensional reduction [2-4] akin to the original one used to
discover its Lagrangian in the first place from the ten-dimensional N'=1 sYM [5, 6], or the
six-dimensional A" = (1,1) sYM (see, e.g., [7]). Instead of setting the extra-dimensional, i.e.,
D > 4, components of momenta to zero, one can trade them in lieu of the scalars’ moduli, i.e.,
vacuum averages of D > 4 components of the ten-dimensional gauge field. The 16 supercharges
remain unbroken in this phase, but the supersymmetric algebra gets a central extension
with BPS charges induced by nonvanishing masses, and thus the theory shares a gamut of
properties of its conformal sibling. One-loop analyses demonstrated that the Coulomb branch
scattering amplitudes obey a no-triangle rule,! thus enjoying only boxes in their integral
expansion [3, 8] at a generic point of the moduli space, — a generalization of the background-
field gauge proof from refs. [9, 10] applicable to off-shell massless amplitudes. Further, there
are no rational terms as well [3, 11] and, therefore, integrands on the Coulomb branch are cut-
constructible [12]. Making use of this latter property, a proof of the dual conformal invariance

!Bubbles and tadpoles are excluded form the get-go based on their poor ultraviolet properties.



of massive loop integrals from a six-dimensional viewpoint was elucidated in refs. [7, 13]. Also
correctness of the four-leg amplitudes at four-loop order (including nonplanar contributions) [7]
was demonstrated to expressions built using solely four-dimensional momenta in the cuts [14]
by lifting four-dimensional inner products of momenta up to six dimensions.

The above higher-dimensional perspective provides a natural bridge between the dimen-
sionally regularized theory and its massive version to tame infrared divergences in scattering
amplitudes and form factors in a gauge invariant manner. Their explicit structure for the
four-gluon amplitude and the Sudakov form factor was deduced at up to three-loop level [1, 15—
17] by promoting massless integral bases constructed in four dimensions to involve massive
propagators only around graphs’ periphery. Infrared structure was shown to be in accord
with the well-known conformal phase of N' =4 sYM in D = 4 — 2¢ [18] (see refs. [19-21],
for earlier QCD studies) for a minor difference in kinematically-independent contributions
and in compliance with a common wisdom that infrared properties of gauge theories are
encoded in the so-called cusp anomalous dimension [22, 23].

The situation drastically changes, however, when all internal propagators are left massless,
but the external legs are kept massive, or off-shell, as we will refer to them hereafter. Four- [24]
and five-leg [25] W-boson amplitudes as well as the two-W-boson Sudakov form factor [26, 27]
enjoyed the same recurrent feature in variance to the naive expectation: the infrared logarithms
are governed by an exponent different from the cusp anomalous dimension. Instead they exhibit
dependence on the so-called octagon anomalous dimension which made its debut in completely
different circumstances: the light-cone limit of correlation functions of infinitely heavy BPS
operators [28, 29] and the near-origin asymptotics of the six-gluon remainder function [30].

In the current paper, we continue our exploration of the Coulomb branch by addressing
a more involved quantity, a three-particle form factor F3 of the chiral part of the stress
tensor supermultiplet 7 [31]

T(z,04) =tr¢?, (z) +-- +01L(2). (1.1)

Here we displayed its lowest and highest components only. The lowest one is built from
harmonic projections [32] of the sextet of the N' = 4 scalars, while

1 -
L= ~3 tr(Fop + Fap)* + fermions and scalars, (1.2)

is the chiral on-shell Lagrangian. By considering a super-matrix element of 7 in the states
created by the Nair super-wave function [33] ®; = ®(p;, 6;), i.e., (P1P2P3|T (x, 6 )[0), various
terms in its f-expansion are related by the Poincare supersymmetry generator (), which
obeys an algebra that closes off the mass shell [31]. In this manner, dependence on a
particular choice of external states and/or operators involved enters solely through an overall
kinematical tree-level factor, with all dynamical information encoded in a universal function
of the coupling constant and Mandelstam-like invariants. In particular, a two-scalar plus
gluon form factor of the lowest component of the chiral stress tensor multiplet considered
in ref. [34] is the same as the three-gauge-boson form factor of £, see section 3.2 of ref. [35].
So in the following, we will refer to it as the form factor of three W-bosons.



Thus, the main observable of our consideration is

/d% e T (py, pa, p3| tr ¢y (2)]0) = (2m)*6W (g — p1 — po — p3) 3. (1.3)

Here we explicitly extracted the energy-momentum conserving delta function. This is the
simplest ‘observable’ which possesses nontrivial remainder function after factoring out infrared
divergences [34]. In the conformal phase of the theory, it was bootstrapped to a staggering
eight-loop order [36, 37| using techniques adopted from scattering amplitudes [38]. Our
goal will be much more modest: we will calculate its off-shell version at two loops. The
incentive for our analysis is multifold. First, we would like to confirm the octagon anomalous
dimension as the Sudakov exponent of ‘off-shell observables’ Second, we will establish
similarities/differences to the iterative structure of the form factor with increased perturbative
order compared to its conformal analogue. Third, given that the infrared logarithms are
different in the on- and off-shell cases, will the remainder functions differ as well?

Our subsequent presentation will be organized as follows. In the next section, we set
up our notations. Then, in section 3, we perform the one-loop calculation, which is then
followed by two loops in section 4. The only graph that was not touched upon in the existing
literature corresponds to the tri-pentagon. So we perform its calculation from scratch in
section 4.1. It is then followed by all other contributing graphs. In section 5, we add them
up and use symbol analysis to simplify the sum and uncover the structure of the form factor
at two-loop order. Finally, we conclude.

2 Setting up conventions

The form factor of three W-bosons contains an overall prefactor encoding polarization
dependence of the external states. We will not be interested in it in what follows and thus
introduce the ratio function

F3 = f3/f3,tree . (2.1)

F3 depends on three invariants s;; and the off-shellnesses of the W-legs, which will be taken
to have the same value u,

sij = (pi —|—pj)2, pr=—p. (2.2)
These are linearly dependent, however,
_ 2
812 + s23 + 831 = q¢° — 3. (2.3)

Since the form factor is a homogeneous function of these kinematical variables, one can
set one scale to one, e.g., ¢> = —1 below. Equivalently this can be done by introducing
Mandelstam-like variables and the ‘mass parameter’ m

u = 312/(]2, U= 523/(]27 w = 331/q27 m = _/'L/q27 (24)

and ignore the overall mass scale ¢%: F3 is dimensionless.
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Figure 1. Double-line representation of a typical one-loop graph: the solid/dashed lines correspond to
SU(N — M) and SU(M) groups, respectively. The dual graph is shown here as well with dotted lines.
The external higher-dimensional coordinates XiM define the massless momenta HM =(X; — XZ-H)M
flowing through external legs. Their mass-shell condition P? = (0 provides non-vanishing masses/off-
shellness in four dimensions, i.e., (z; — x;+1)? = (y; — yi+1)?. On the other hand, the coordinate of
the internal vertex Xy is purely four-dimensional Xy = (zo, 0).

Before we proceed with the required calculations, let us address the difference between
the internal and external lines in Feynman graphs that determine our observable. This can
be understood either from a purely four-dimensional point of view or from the vantage point
of higher dimensions, either six or ten, as we already pointed out in the Introduction. The
four-dimensional perspective was used in refs. [1] by introducing a Higgs mechanism into
the N'= 4 sYM and breaking the SU(NN) gauge symmetry down to SU(N — M) x SU(M)
with N > M. Then, providing expectation values to some of the scalars of the SU(M)
subgroup yields masses for gauge bosons, aka W-bosons, and other excitations. A typical
one-loop graph contributing to the form factor with the double-line color flow shown in
figure 1 demonstrates that the heaviest states reside only outside the diagram with all inner
lines being light /massless. The higher-dimensional approach [2, 3] provides a complementary
understanding of mass generation. One can compactify the six-dimensional N' = (1,1) or the
ten-dimensional ' = 1 sYM down to four but keep the out-of-four-dimensional components of
fields momenta nonvanishing. The latter are then treated as complex masses. The dual graph
representation in figure 1 then exhibits the necessary conditions one has to impose on the dual
coordinates XM = (z*,y®) to induce nontrivial masses for external states while keeping the
ones propagating in quantum loops massless, namely (y; — y;4+1)? # 0 and yf = 0, respectively.

F3 admits perturbative series expansion in the gauge coupling ¢2,, accompanied at each
order by the number of colors N (in the planar limit), allowing us to introduce

2
2 _ gyulV -
= Are VB 2.5
g = Gt me e’ (25)
which comes hand-in-hand with a measure of the dimensionally-regularized loop momentum
integrals,
dPy
2
(™) [ S5 (26)
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Figure 2. Graphs contributing to the one-loop form factor F?El).

in D =4 — 2. We will dwell on the necessity to deal with the space-time away from D = 4,
even though we already have an infrared regulator m, when it becomes indispensable at
two-loop order.
Thus, we have to the lowest two orders

Fy=1+¢"F\" + ¢*F? + (2.7)
where Fg(i) are given by linear combinations of one- and two-loop integrals for ¢ = 1,2,
respectively. Instead of using Feynman rules of the Coulomb phase of A/ = 4 sYM in order to
find the latter, we will employ, as was advocated in the introduction, the connection between
the spontaneously broken phase in D = 4 and higher-dimensional theory with exact gauge
symmetry to recycle generalized unitarity analyses from refs. [39, 40] and [34], to ascertain
integral families defining the one and two-loop integrands, respectively. All calculations will
be done in the limit m — 0, i.e., they will be valid up to power corrections in m.

3 One loop

Without further ado, let us start our analysis with the one-loop form factor. At this order,
Fél) receives the following expansion in terms of the triangle Tri and box Box integrals [39, 40]

2

1 . 1

M = > pr {(812 + s13) Tri(p1, p2 + p3) + 551252330X(p1,p27p3) ) (3.1)
n=0

shown in figure 2. In this equation, we introduced an operator P that shifts momentum

indices of any function to its right by one

Pfij.. = fit1(mod3),j+1(mod3)... s (3.2)

modulo 3, which imposes periodicity. The Mandelstam-like variables then transform as
P(u,v,w) = (v, w,u). Both integrals in eq. (3.1) can immediately be expressed in terms of
the Davydychev-Ussyukina function ®;(z,y) [41, 42],

2 (=17 log™ 7 () Ly (— (p) ") — Lij (— (py)*)

Dy, y) :_JZ:% 0 — 0120 — 5)! A ’

(3.3)



where p and A are functions of z and y,

Mayy) =1 -z —y)? =42y, ple,y) =20 -z—y—Az,y)]™", (34
Tri(p1, p2 + p3) = ®1(m,v)/(1 —v) (3.5)
Box(p1, p2, ps) = @1 (m?/ (uwv),m/(wv)) /(uv). (3.6)

Their small-mass expansion yields the following expressions for the triangle and the box

logmlogv + 2Lis(1 — v)
1—w
21log? m — 2log m log(uv) + log?(uv) + 2¢,
uv ’

Tl"i(plpr +p3) = ) (37)

Box(p1,p2,p3) = — (3.8)

where we used the condition (2.3), up to terms vanishing as a power of m. Adding all
contributions up, we find

Fél) = —log? m_ log? m_ log? m
u v w
—logulogv — logvlogw — log wlog u
- 2L12(1 - u) - 2L12(1 - ’U) - 2L12(1 - w) - 3(2 . (39)

It is instructive to compare this results to the conformal case, calculated within dimensional
regularization (or rather reduction), [39],

() () ()

— logulogv — logvlogw — logwlogu

1

F:s(l)(g) -T2

— 9Lia(1 — ) — 2Lia(1 — v) — 2Lia(1 — w) + g@ . (3.10)

We observe that the finite parts are identical in the two cases, except for the coefficient of (s.
When eq. (3.10) expanded in the Laurent series, the coefficient of the double logarithms of
p2/(u,v,w) are half of the off-shell case, as anticipated. This is the well-known doubling
phenomenon observed back in the early days of QED [43, 44] and well-understood by now
as a result of an extra, the so-called ultra-soft, region [45-47] of loop momentum producing
leading effects on par with other regimes present in both.

4 Two loops

We now proceed to the two loop calculation. The integrands for the form factor F?EQ) were
constructed in ref. [34] using (generalized) unitarity cut technique. With a slight change
of the nomenclature compared to [34], the relevant graphs shown in figure 3 generate the
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Figure 3. Graphs contributing to the two-loop form factor Féz). The integrands, built from product of

propagators read off from these diagrams, are accompanied by numerators according to egs. (4.1)—(4.5).

following integrals®

dPe dPty ¢%sias
i _ 267E 1 2 §7512523
TI‘lPth(pl,pQ,pg) € /iTrD/Q/iWD/Q denom(a) ) (41)
dPe¢ dPly ¢*[s12 + s31]
_ . 2evE 1 2 q 12 31
TriBox(p1, p2 + ps) = e / imD/2 / iwP/2 denom #2)
dP ey dPly s12[s31 01 - p1 — S23 01 - p2]
DB , P2, p3) = €7 / / 4.
ox(p1,p2,p3) = © inD/2 | inD/2 denom, ’ 4
APty [ dPly s12[3803531 — s23l1 - P2 — s31 o - 1]
NB — 2m / / 4.4
OX(pprap?)) € iTrD/Q Z7TD/2 denom(d) ; ( )
NTriBox(p1 + pa, ps) = 2m/ o / 4ty 2 b+ ol 45
FBoKAPL T P2, P3) = € irP/2 ) ixP/2 denomy, (45)

2Here and below, we set the mass scale of dimensional regularization to one, pZz = 1.
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Figure 4. World-sheet perspective of the three-leg form factor and the non-planar graph from figure 3
(d) overlayed on it: it demonstrates why it produces contribution of leading order in color.

where the denominator structure can readily be read off from the corresponding graphs. In
terms of these integrals, the two-loop form factor is given by the expression

2
F§2) = Z P" [TriBox(pl,pg + p3) + TriBox(ps, p1 + p2) + TriPent(p1, p2, p3)

n=0

+ DBox(p1,p2, p3) + DBox(p3, p2, p1) + NBox(p1, p2, p3)

+ NTriBox(p1 + p2,p3)| - (4.6)

Notice that starting from this order, there are non-planar graphs which are leading order in
color, i.e., figure 3 (d) and (e). The reason for this is that the operator tr ¢3, is a singlet with
respect to the SU(V) and thus does not ‘participate’ in color traces. It becomes quite obvious
from the world-sheet perspective of the matrix element (1.3) demonstrated in figure 4 where
the operator corresponds to the closed string state, while the W-bosons to the open ones.

Out of all the contributions in eq. (4.6), a truly new integral, which was not addressed
in existing literature, is the tri-pentagon, figure 3 (a). So we start with its analysis first
in the next section.

4.1 Tri-pentagon

Let us begin with the construction of the canonical basis for the tri-pentagon family, see
figure 3 (a), by routing the loop momenta ¢; and ¢5 according to the following definitions of

propagator denominators D; (i = 1,...,7) and irreducible scalar products Dg and Dy,
Dy=—0;, Dy=—(t1+p1)>, D3=—(l1+p1+p2)°, Dy=—(ty+p1+p2+p3)?,
Ds=—05, Dg=—(ly—0)*, Dr=—(lo+pi+pa+ps)®, Ds=—(la+p1)?,
Dy = —(la+p1+p2)?, (4.7)



such that

dDgl / dDEQ ,al

G = eQE’YE / 48
(102a30405046070809 imD/2 Z7TD/2 ( )

The use of dimensionally regularized integrals is required for proper use of the integration-by-
part technique in order to work with vanishing surface loop integrals, which are at the heart
of the formalism [48]. An IBP reduction with the FIRE code [49-51] immediately reveals 49
initial Master Integrals (MIs), which are further reduced to 46 by finding equivalences among
them with the LiteRed software [52], generating thus the primary basis

I = {Go00111000; G001011000, G010001100, G010011000; G001011100, G001011200+
G001111000, Goo1112000, Go10011100, Go10011200, Go10110100, Go10111000,
G010112000, Go11001100, G011001200, G011011000, G011012000, G100110100,
G'1010011005, G101001200, G1010101005 G'1100011005, G110001200, G110010100,
Goo1111100, Go1o111100, Go11011100, Go11011200, Go11012100, Go11012200,
Go11021100, Go12011100, Go21011100, Go11110100, Go11111000, Go11112000,
G'101011100, G101110100, G1100111005 G110110100, G111001100, G111001200,

G111010100, Go11111100, G111011100, G111110100 } - (4.9)

Next we turn to the derivation of differential equations for I making use of a FIRE
interface to LiteRed,

oI =M;- I, (4.10)

in the kinematical invariants ¢ = u, v, w, m. The goal is now to convert them to the canonical
form [53]

oJ=cA;-J, eA;=T' M -T-T ' 9T, (4.11)

with some transformation matrix T'. In fact, what we need is an asymptotically canonical
basis, which captures all logarithmically enhanced and constant terms in m as m goes to
zero. This can easily be accomplished by keeping track of only singular power-like terms
in the ‘virtuality’ matrix

A, = S AY 1 0(mO), (4.12)
m

as was explained at length in ref. [54].

Splitting the basis elements of I into sectors, we form their linear combinations accompa-
nied by unknown functions of the Mandelstam-like variables (u,v,w) and fix the former by
enforcing the e-form of the differential equations (4.11). Having fixed the diagonal blocks
in this manner, the off-diagonal ones can be constrained by using two available software
packages Canonica [55, 56| and Libra [57, 58]. To achieve this, one first transforms the
equations to the Fuchsian, i.e., dLog, form followed by factorization of the e-dependence
into an overall factor [57]. Canonica is solely based on built-in Mathematica commands and



fails to successfully solve corresponding systems of linear equations. Therefore, we used two
strategies in our analysis. One was based exclusively on Libra. However, having constructed
canonical form of differential equations, we discovered that five of its elements did not possess
uniform transcendentality® (UT), namely, J;’s with indices i = 34,43, 44, 45,46. So in our
attempt to alleviate this problem, we deduced yet another form of the canonical differential
equations by the combined use of Canonica (to bring equations to the Fuchsian form) and
Libra (for the derivation of the e-form). Though, the basis found was slightly different from
the first one, nevertheless the very same five elements suffered from the very same problem.
Obviously, this was not in any way an obstruction in our subsequent steps of solving theses
‘canonical’ equations rather it was merely a nuisance: instead of fixing a set of integration
constant of uniform transcendentality at each €™-order, we had to use a sum of constants
of increasing transcendental weight w; < n. The asymptotically canonical basis, which we
used in the explicit iterative solution of the differential equations, is

J1 = 82(3m —-—Uu—-v— w)G000122000 y (4.13)
Jo = euGo01022000 » (4.14)
J3 = e2vG010002200 - (4.15)
J1 = €>mGo10022000 5 (4.16)
Js = 3(v 4+ w)Goo2011100 , 5 (4.17)
Jo = €2(u + v + w)((2e — 1)Goo1011200 + €Go02011100) » (4.18)
Jr = €*(2e — 1)mGoo2111000 , (4.19)
Js = &% (v + w)Goo1112000 (4.20)
Jg = € (u+ w)Go20011100 (4.21)
Jio = 82(1 — 25)(u + v+ U}>G010011200 , (4.22)
7
Ji = 2*562(1 — 2¢)*Go10110100 , (4.23)
J12 = 82(26 — 1)(36 — 1)G010111000, (4.24)
Jiz = €% (u + w)Goio112000 , (4.25)
J14 = 82(26 — 1)(38 — 1)G011001100, (4.26)
Ji5 = £2vGo11001200 (4.27)
Jig = 82(26 — 1)(38 — 1)G011011000, (4.28)
Jir = 3uGo11012000 5 (4.29)
1
Jig = ?562(1 — 26)?G100110100 5 (4.30)
J19 = 52(26 — 1)(36 — 1)G101001100, (4.31)
Jao = € (v + w)G101001200 » (4.32)
7
Jo1 = ?562(1 — 2¢)2G'101010100 ; (4.33)
Jog = €2(1 — 2¢)mGa10001100 » (4.34)

3We would like to thank Johannes Henn for instructive communications on this point.
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Jaz = &% (u + w)G110001200 » (4.35)
7
Jog = ?552(1 — 2¢)*G110010100 ; (4.36)
Jos = &* (v + w)Gooi111100 , (4.37)
Ja6 = &*(u + w)Goio111100 » (4.38)
Jor = &*(u +v)Gorro11100 (4.39)
Ly
Jog = € [ — vGo10002200 + MG 010022000 (4.40)
+ 2ev((u + v + w)Gor1o11200 — 2Go11001200)] 5
1
Jog = 582[ — 20Go10002200 — 11mGo10022000 + 26uvGo11012100] 5 (4.41)
2
g
T30 = v+ w [ — uwvGoro002200 — m(u — 2v — 2w)Go10022000 (4.42)
+u [2 (652 —5e + 1) Got1o01100 — 4€vGot1001200 + mo(u + v + w)G011012200} B
1
J31 = 582 [UGOlOOOQQOO + 12mGo10022000 + 25u(u +v+ w)G011021100] ) (4'43>
1
J30 = 182 [vG010002200 + 5MG010022000 (4.44)
+4[ (—652 + 5e — 1) Got1001100 + €vGo11001200 + em(v + w)Gor2011100) ] 5
1
J33 = —162 [3vGo10002200 + 17MG 010022000 (4.45)
+4 (652 —5e + 1) Gor1001100 — 4em(u + w)Gozio11100] »
1
J34 = 582[ (1482 — 9 + 1) (2Go10110100 — 4G110010100) + 5evGor1110100] 5 (4.46)
T35 = (1 = 2¢)e>vGorn111000 (4.47)
Ja = e*uvGor112000 , (4.48)
Jar = e* (v + w)Gro1011100 » (4.49)
7
J3s = —583(2&7 — 1)(v +w)G1o1110100 5 (4.50)
J39 = *(u + w)G110011100 » (4.51)
7
Jao = —563(26 — 1)(u + w)G110110100 , (4.52)
Ju = (1 = 2e)uGir1001100 , (4.53)
Jiz = 2uvGi11001200 (4.54)
1
Juz = 582 [2 (1452 —9e + 1) (2G101010100 — 4G110010100) + 5euG111010100] » (4.55)
1
Jig = ?52 [7€?v(v + w)Gorr111100 + 26(7e — 1)vGor1110100 (4.56)
+2(2e — 1)(7e — 1)(2Go10110100 — 4G110010100)] 5
1
Ju5 = 782[ (1482 —9¢ + 1) (2G101010100 — 4G'110010100) (4.57)

+ eu[2(7e — 1)G111010100 + 7€(u + w)G111011100] ] 5

— 11 —
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Figure 5. Diagrammatic form of the integrals forming the element J34 of the canonical basis (4.13).

1
Jue = 562 [(2e — 1)(Te — 1) [2Go10110100 + 2G101010100 — 8G110010100] (4.58)

+ 2e(7e — 1) [vGo11110100 + uG111010100] — 7€(26 — 1)uvGi11110100] -
First, we solved the ‘virtuality’ differential equation, in the small-virtuality limit
J =mm . J, (4.59)

related to the ‘massless’ MIs Jg via the matrix exponent mEAm. Next, we solved the m =0
limit of the differential equations in Mandelstam-like variables via the Chen iterated integrals
on a piece-wise contour [59]

JO = Pfy exp (6/ AO> Jo(), (4.60)
[0,u]U[0,v]U[0,w]

with the differential of the A-matrices A = duA® + dvAY 4+ dwAS. At each order of the
e-expansion, we found solutions in terms of multiple polylogarithms [60)].

Finally, we had to fix the vector of the integration constants Jyg at each order of the
g-expansion

Joo = erel?). (4.61)
p>0

To accomplish this, we used two criteria: (i) the absence of spurious poles in the right-hand
sides of differential equations at the location of u+wv, v+ w and w+ u poles and (ii) numerical
integration with FIESTA [61] with subsequent use of the PSLQ algorithm [62]. However, these
considerations alone did no allow us to fully analytically determine all of the integration
constants. We needed further input. We found that all undetermined contributions are
reduced a set of unknowns which can be determined in turn by evaluating one of the elements
of the canonical basis explicitly. The element in question is Js4, which is given by a linear
combination of factorized products of bubbles and triangles, eq. (4.46), as demonstrated in
figure 5. This can be easily calculated making use of the code MBcreate.m [63]. It yielded
the following expressions

e (1 — ¢)'(e)?
r2—292

e (1 —¢)T(e)

[(1—2e)0(2 — 2)

x [m*T(—2)2T(e + 1) + v*T(1 — &)T(e) (2mT(—¢) + *T(1 — 2:)T(e)) ]

e (1 —¢)*T'(e)?
(2 —2¢)? '

£

Gotot10100 = v~ (u+v+w)” (4.62)

—2e

Gotito100 = m ™ v Hu+v+w)™® (4.63)

G110010100 = M (u +v +w)™¢ (4.64)
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Matching their expansions to the iterative solution, we found our final result. The expressions
are too lengthy to be displayed here in the body or appendices, so they are relegated to the
accompanying Mathematica notebook TriPentagonA2Z.nb in the supplementary material,
where an interested reader could find as well all steps from-A-to-Z for the determination
of their expressions starting with necessary initial IBP reductions. The tri-pentagon (4.1)
is then given by the integral

TriPent = wv(u + v + w)G111111100 5 (4.65)

which is not one of the elements of the above basis, but can be easily reduced to them by
means of an IBP reduction. The latter gives

) 1 11 21 =Te)(u+v+w)
TriPent = — | — Js — —J4 — 5J11 — J:
riPent = — 35— 5 Ja T+ w) [5J11 — J34]
21 -Te)(u+v+w)
— dJa1 — J.
T(u+ w) [5J21 = Jas]
20(1 — 7)) (u? + 2uv + v? + 3uw + vw + 2w?) J
7(u+w)(v+w) 2
v )
—J J: J. J. J. —Ji6| - 4.66
29 + J36 + 42+v—|—w 44+u+w 45+746 (4.66)

Notice that some of the MIs in this expression do not possess UT individually, however, in
the sum TriPent is indeed UT. However, it is not a pure function: multiple polylogarithms
are accompanied by rational prefactors of the (u,v,w) variables.

4.2 Tri-box

The tri-box graph in figure 3 (b) is related to the Davydychev-Ussyukina function ®9 given
in eq. (3.3),

TriBox(p1, p2 + p3) = (u + w)Pa(m, v). (4.67)

Its small-m expansion immediately produces the sought after expression

1 U 1
TriBox(p1, p2 + p3) = |:2L12 ( — 1) + Zl g? CQ} log?m (4.68)

logm

1—u 1-—
+[3L13( u1> ng( 4 )logu—log(l—u)log 7—§210g(7u
u

+6L14< >—3L13< >log( )+2L12( “ )log u

log (1-— )log —_— + Cg log? u + 3¢z log(1 — u) log

21
+ ?Czl

4.3 Double boxes and nonplanar tri-box

The non- and planar double boxes in the near-off-shell kinematics were calculated recently in
ref. [54]. The asymptotically canonical bases for the families of graphs in figure 3 (¢) and (d)
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consist of 62 and 97 elements, respectively. Thus, all we need to do in order to evaluate the
integrals in egs. (4.3) and (4.4) is to perform their IBP reduction to the canonical elements
constructed in [54]. This task is elementary making use of the FIRE code and we found

v

1
DBox = —— EJ54 + J55 — Js9 — Je1| (4.69)
2¢ | v

U+ w
and

B 1 [1585645 949 72337 4403017 7045 1153
X ——— | ————— _—— _ —_
464 | 22176 71 52872 T 1848 73T 22176 Y1 528 70T 88

1715, 589 3406615 58561 84 1/22 | 6794
88 07 44 M Tsmaa YT 11088 11T T 15 63
8495 638 12673 42541 64103 9 793
Y Jie— —= Jio— — — Sy R |
196 7157 91 719" 3606 72 308 72 3606 7237 M
78637 55897 5064085 799 42905
Jos + Jog+ ———Jor+ —Jog — Jog + J33 —8J34
17 71

Js (4.70)

Ji7

308 5 1848 22176 352 7392
5 7 1
- §J35 + §J36 +6J37 —4J38 +3J39 +15J40 — 2J41 + 6J43 ——Ju

6" 21
82 788 464 5 13 176
= o= a2 g st D s — g — —
- Jae — Jar + 1 Jug + 51 Jy9+8J50 —2J54 + 2J55 5 JI56 51 /57
281 667 352

- HJss ———J59+ HJGO —2Jg1 —2J62 +6Jg3 + 1154 + Jo5 + 766

21
122711 60253 271 1
— Jo7 +6J6s +2Jg9 + 470 — WJH - WJW + @Jm - §J74

82953 118609 17 2w 2v 2w

- ——Jp——J J J;
308 77 Taee 0T T T
2(v+w)

3
Bl GOy S
w 1 82+
8(utv+
N (u+v+w)

v+w

Jus

3 25 25 25
2 T 22 Jea b 22 Ty — Ads + -2 )
79 J33 59 Jga+ 59 Jgs —4Jge + 59 /87

J88+%J89+4*14J90—%Jgﬁrgeﬂn—%J93+%J94—J95+J96 ;
for the planar and non-planar graphs in figures 3 (c¢) and (d), respectively. These are way
too lengthy to be presented in the explicit form in the body of the paper. Therefore, for
the reader’s convenience, we spell them out in the Mathematica notebook Integrals.nb
attached in the supplementary material.

Finally, the nonplanar tri-box in figure (3) (e) is just one of the MIs in the nonplanar
doublebox basis, namely,

2(u+ v+ w)

NTriBox =
PO T )

Jgs . (4.71)

Of course, this graph was calculated in ref. [64], where it was found into factorize after a
Fourier transform to the square of ®;:

1—
NTriBox = Tu[fbl(m,u)]Q . (4.72)

We indeed confirmed our agreement with it on the constraint (2.3), v + v+ w =1+ O(m).
This concludes our calculation of contributing two-loop graphs. All of the integrals reported
in this section are UT, however, none are pure.
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5 Adding things up
Finally, we are in a position to add up all of the calculated integrals.

5.1 Infrared exponentiation and general structure

As we alluded to in the introduction, we anticipate [25-27] that the infrared logarithms, i.e.,
log m, exponentiate such that the form factor takes the form

FOC .
log F3 = —;L(g) {log2 (?) + log? (T) + log? (ZLH + Fing (u, v, w; g) + O(m?), (5.1)

with Toet being the octagon anomalous dimension [28-30] and Fing being a finite part: it
depends only on scalar products of momenta of external states and the 't Hooft coupling
constant g. It also depends on the type of the operator insertion in (1.3) as well as helicities
of external states. Fing develops a perturbative expansion

Fing = g> ) + g* % + ... (5.2)

The infrared exponent Iy, is known exactly to all orders in the coupling g and is given by [29]:

2
Toct(g) = ——5 logcosh (2mg) = 4¢% — 16(ag™ + . .. . (5.3)

Here, we expanded it to the first two orders, relevant for our current study. We would like to
point out the absence in eq. (5.1) of linear powers in logm in contrast to the kinematical
regime considered in refs. [1, 15-17], where all external particles’ momenta were strictly
massless and states propagating in loops’ perimeters where taken massive:* there is no
analogue of the collinear anomalous dimension in the off-shell regime!

The expansion of log F3 in powers of ¢ is given by

1
log Fy = 2P 4+ ¢ (F§2> _ 2[F§”12> 4o (5.4)

and can be matched onto the expressions for F?fl) and F3(2) in terms of scalar integrals given
by (3.1) and (4.6), respectively. Focusing on the infrared divergent part first, we combine
the integrals computed above to find

= [—3¢% + 12C2g* + .. ] log? m + [29° — 8C2g” + . . .| log m log(uvw) , (5.5)

log F:
8 3div

in full agreement with our expectation (5.1).

Several comments are in order. Individual two-loop integrals in (4.6) contain log? m as
well log® m terms. They cancel, however, in the difference between FéQ) and the square of
one-loop form factor F3(1) in the O(g*) coefficient in (5.4). Individual two-loop integrals, i.e.,
coefficients accompanying the powers of logm, are, in general, expressed in terms of multiple
polylogarithms [60]. As can be seen in attached Mathematica notebook Integrals.nb (see
the supplementary material), the coefficients of log?m and logm in (5.5) are determined

“The relation (5.1) is, strictly speaking, a conjecture supported by an array of explicit computations [25-27]
as well as a general intuition about IR properties of gauge theories [19-21].
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solely by ordinary logarithms. To observe the cancellations of higher powers of the infrared
logarithms as well as simplifications of log? m and logm terms in (5.5) we used a combination
of the symbol map [65] along with high-precision numerical computations offered by the GiNaC
integrator [66] through the interactive Ginsh environment of the PolyLogTools package [67].
As we emphasized in earlier sections, individual two-loop integrals are not pure UT functions.
They, however, do neatly combine into a pure UT expression when collected together in F?EQ).

5.2 Finite part

Let us now move on to the finite part Fing. From eq. (3.1) it is easy to see that at one
loop we have

fél)(u,v,w) = —logulogv — logvlogw — logwlogu
— 2Lig(1 — u) - 2L12(1 - ’U) - 2Li2(1 - w) - 3(2 . (56)

The two-loop finite part fi,EQ) is given by the log m-free term of the O(g*) coefficient® in (5.4). It
is a complicated combination of multiple polylogarithms of weight 4. On the route to simplify
this expression, it is instructive to consider its symbol map first. Using the PolyLogTools,
we found out that the symbol of f?ES) is given by

1—u

S = 2@ (- wel-uo " +tus(l-uous

1—-v w
—u®(1—u)®v®T—u®(1—u)®w®T

—Uu

1—vw 1
—u®v®(1—u)®T—u®v®(1—v)® "
1—u 1—vw
+u®v®w®T+u®v®w®

1—w 1—w
+uRUAWR —— —uRuw (1 —u) @ ——
w w

1—w

l1—u
+u®w®v®7+u®w®v®

1—u

1—w
+uRUWRUVR — —uRuw®® (1 —w)®
w u

+ cyclic permutations . (5.7)

This symbol is identical to the symbol of a local function of the following combination of
logarithms and classical polylogarithms:

3 4
(2) _ _w _ww ~wu\] . o log™ u;

2

LA 1 ’ 1 9 log* (uvw)
-2 Zng(l —u; )| + 3 Zlog TR (5.8)
i=1 i=1 :

SLess 4(2 (log2 (u) +log?(v) + log2(w)) due to our definition of the divergent part which includes a finite
term as well.
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with the J(z) function defined as

log®(—2)
2l

log*(—2)

log*(—2)
31 ‘

J(z) = Lia(2) — log(—=2)Li3(z) + 48

Lig(z) — Lil(z) — (59)

Here for brevity of the presentation, we employed the set of variables u; = u, ug = v and
ug = w. The Rgf) function was first uncovered in the computation of the finite part of
the three-gluon form factor in the conformal regime [34], i.e., at the origin of the moduli
space of N' = 4 sYM. However, numerical evaluations of f32) and Réz) in several kinematical
points clearly indicate that they are different and the difference is not a constant. This is not
surprising given that the symbol map is blind to terms such as 72 x function(u, v, w). We have
constructed an ansatz of all possible terms® of the form 72 x {log(x;) log(z;), Lia(z;), 72}

with rational coefficients plus R:())Z). The values of x; were taken from the following list

w,v,w,l—u,l-v,1l-w,1——1—-—-1—-—— ——, — —— (5.10)

{ 1 1 1 w vw wu }
u v w o ow ou v
Evaluating numerically our ansatz and f§2) in several kinematical points using the Ginsh

integrator allowed us to unambiguously fix these coefficients, and we arrived at

f§2) (u,v,w) = R§2) (u, v, w) + 3¢ [log(u) log(v) + log(v) log(w) + log(w) log(u)]

3 3
63
—4¢ ) Liy (1—u;1) +9¢ > log? ui+#. (5.11)
i=1 i=1
This concludes our calculation of the finite part at the two-loop order. We see that it is a

pure function of uniform transcendentality just as in the conformal case.

5.3 Iterative structure

In the massless case of scattering amplitudes, it became customary to split results according
to the so called BDS ansatz [18] and a finite remainder [68, 69]. The same decomposition
was established for the case of form factors as well [34]. Such a decomposition admits the

following generic from
1 -
B = SR +4eR + Ry (5.12)

(1)

In the massless case, 1531 was found to enjoy a very powerful feature, namely, it was

determined at two loops to be merely given by the one-loop form factor [34]

~1) 1 _a

BV = ZFS( )(2¢), (5.13)
where the factor of % is introduced to accommodate the change from I'oc; to I'eysp of the
massless case. This is the well-known cross-order relation [18] encoding the iterative structure
of massless amplitudes. It was also confirmed on the Coulomb branch where the external

legs were kept massless [16].

5Taking into account cyclic symmetry as well as functional relations between Lis reduces the number of
terms in the ansatz quite significantly.
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Adopting the same nomenclature in the current ‘off-shell’ case, we find that 153(1) possesses
all of the building blocks of the one-loop form factor Fz,fl) but is not directly related to it

except for the infrared-divergent terms. It has the form
ﬁzg(l) = 3log? m — 2log mlog uvw (5.14)
+ Z[logQU +log? v + log® w + log ulog v + log u log w + log v log w]
+ Lia(1 — u) + Lia(1 — v) + Lis(1 — w),

cf. eq. (5.5), such that ﬁ‘él)]div = Fél)]div. With this convention, the ‘off-shell’ remainder
function Rgf) is related by a constant shift

R (u, v,w) = RS (u, v,w) + %C‘* : (5.15)

to the one of the conformal case,” Rgf) [34]! Indeed, we could enforce the same iterative

structure of the ‘off-shell’ form factor as in the conformal case at the expense of changing
(2)

the remainder function Rj3".

6 Conclusion

With this paper, we continued our excursion into the land of the Coulomb branch away from
the origin in its moduli space. The object under our study was form factor of the lowest
component of the stress-tensor multiplet for three massive W-bosons. We were particularly
interested in the asymptotic region of their vanishing masses, m — 0. In this case, the
emerging infrared divergences are encoded by the logarithms of m, which replace inverse
powers of € in dimensional regularization. However, this is not to be confused with another use
of the Coulomb branch advocated in ref. [1], as a means to make amplitudes and form factors
finite by giving vacuum expectation values to scalars propagating around quantum loops
perimeters. In the latter case, it was established that amplitudes and Sudakov form factors
echo the well-known infrared behavior of massless scattering amplitudes and form factors with
the infrared physics driven by the cusp anomalous dimension. In counter-distinction, we find
instead, that like in the case of scattering amplitudes of four- [24] and five W-bosons [25] and
the Sudakov form factor of two W-bosons [26, 27], the infrared logarithms are accompanied by
a completely different function of the coupling, the octagon anomalous dimension [28-30]. This
reconfirms the role of the latter as the critical infrared exponent of the off-shell kinematics.

Further, the form factor of three W-bosons possesses a nontrivial remainder function.
After a proper subtraction of infrared logarithms with judiciously-chosen finite parts, we
found it to be identical to the one in the massless case (up to a constant), i.e., the origin of the
moduli space. The structure of the collinear limit is however quite different in the two cases.
While the massless case inherits its iterative structure in terms of one-loop amplitude/form
factor, the case of massive W-bosons is trickier. In order to put it on a firmer foundation,
analysis of the five-W amplitude at generic values of Mandelstam-like variables needs to be
studied, as opposed to the symmetric point discussed in ref. [25].

"Note that the remainder function in ref. [34] contains an additive constant —22¢s, which we did not
include in our definition (5.8).
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Last but certainly not least is the question of the dual description of scattering amplitudes
and form factors on the Coulomb branch. A proposal for an off-shell Wilson loop was put
forward in ref. [70] starting from a higher-dimensional holonomy and dimensionally reducing
it down to four-dimensions. However, while the one-loop expectation value for four sites
was found to be in agreement with the amplitude of the W-bosons, starting from two loops
the two ‘observables’ started to deviate. The reason for this fact remains obscure. The
T-dual gauge theory was chosen to be the conformal N = 4 sYM. Had it rather be something
else or one had to use a different variant of dimensional reduction? This question will have
to be readdressed in the future.

Acknowledgments

We would like to thank Johannes Henn, Roman Lee and Alexander Smirnov for useful
communications and discussions. The work of A.B. was supported by the U.S. National
Science Foundation under the grant No. PHY-2207138. The work of L.B. was supported
by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.
The work of V.S. was supported by the Ministry of Education and Science of the Russian
Federation as part of the program of the Moscow Center for Fundamental and Applied
Mathematics under Agreement No. 075-15-2022-284.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

References
[1] L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N=4
super Yang-Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [INSPIRE].

[2] K.G. Selivanov, An infinite set of tree amplitudes in Higgs- Yang-Mills, Phys. Lett. B 460 (1999)
116 [hep-th/9906001] [INSPIRE].

[3] R.H. Boels, No triangles on the moduli space of maximally supersymmetric gauge theory, JHEP
05 (2010) 046 [arXiv:1003.2989] [INSPIRE].

[4] N. Craig, H. Elvang, M. Kiermaier and T. Slatyer, Massive amplitudes on the Coulomb branch of
N=4 SYM, JHEP 12 (2011) 097 [arXiv:1104.2050] [INSPIRE].

[5] L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121
(1977) 77 [INSPIRE].

[6] F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, supergravity theories and the dual spinor
model, Nucl. Phys. B 122 (1977) 253 [INnSPIRE].

[7] Z. Bern et al., Generalized unitarity and siz-dimensional helicity, Phys. Rev. D 83 (2011) 085022
[arXiv:1010.0494] [INSPIRE].

[8] R.M. Schabinger, Scattering on the moduli space of N=4 super Yang-Mills, arXiv:0801.1542
[INSPIRE].

[9] S.J. Gates, M.T. Grisaru, M. Rocek and W. Siegel, Superspace or one thousand and one lessons
in supersymmetry, hep-th/0108200 [INSPIRE].

,19,


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP01(2010)077
https://doi.org/10.48550/arXiv.0908.0684
https://inspirehep.net/literature/827901
https://doi.org/10.1016/S0370-2693(99)00760-1
https://doi.org/10.1016/S0370-2693(99)00760-1
https://doi.org/10.48550/arXiv.hep-th/9906001
https://inspirehep.net/literature/500971
https://doi.org/10.1007/JHEP05(2010)046
https://doi.org/10.1007/JHEP05(2010)046
https://doi.org/10.48550/arXiv.1003.2989
https://inspirehep.net/literature/848854
https://doi.org/10.1007/JHEP12(2011)097
https://doi.org/10.48550/arXiv.1104.2050
https://inspirehep.net/literature/895867
https://doi.org/10.1016/0550-3213(77)90328-5
https://doi.org/10.1016/0550-3213(77)90328-5
https://inspirehep.net/literature/111553
https://doi.org/10.1016/0550-3213(77)90206-1
https://inspirehep.net/literature/111434
https://doi.org/10.1103/PhysRevD.83.085022
https://doi.org/10.48550/arXiv.1010.0494
https://inspirehep.net/literature/871725
https://doi.org/10.48550/arXiv.0801.1542
https://inspirehep.net/literature/777165
https://doi.org/10.48550/arXiv.hep-th/0108200
https://inspirehep.net/literature/195126

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[24]

[25]

[27]

[28]

[29]

Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes,
unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

S.D. Badger, Direct extraction of one loop rational terms, JHEP 01 (2009) 049
[arXiv:0806.4600] [INSPIRE).

Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into
loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

T. Dennen and Y.-T. Huang, Dual conformal properties of sixz-dimensional mazimal super
Yang-Mills amplitudes, JHEP 01 (2011) 140 [arXiv:1010.5874] INSPIRE].

Z. Bern et al., The complete four-loop four-point amplitude in N=4 super-Yang-Mills theory,
Phys. Rev. D 82 (2010) 125040 [arXiv:1008.3327] [INSPIRE].

J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-reqularized three-loop
four-gluon amplitude in N=4 SYM: exponentiation and Regge limits, JHEP 04 (2010) 038
[arXiv:1001.1358] [INSPIRE].

J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in
Higgs-regulated N=4 SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].

J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N=4 SYM in
dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057] [INSPIRE].

Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in mazximally
supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001
[hep-th/0505205] [INSPIRE].

A H. Mueller, On the asymptotic behavior of the Sudakov form-factor, Phys. Rev. D 20 (1979)
2037 [INSPIRE].

L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys.
Rev. D 42 (1990) 4222 [iNSPIRE].

G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lelt. B
552 (2003) 48 [hep-ph/0210130] [INSPIRE].

A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading
order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

S. Caron-Huot and F. Coronado, Ten dimensional symmetry of N=4 SYM correlators, JHEP 03
(2022) 151 [arXiv:2106.03892] [INSPIRE].

L.V. Bork, N.B. Muzhichkov and E.S. Sozinov, Infrared properties of five-point massive
amplitudes in N=4 SYM on the Coulomb branch, JHEP 08 (2022) 173 [arXiv:2201.08762]
[INSPIRE].

A.V. Belitsky, L.V. Bork, A.F. Pikelner and V.A. Smirnov, Fzact off shell Sudakov form factor
in N=4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 130 (2023) 091605
[arXiv:2209.09263] [INSPIRE].

A.V. Belitsky, L.V. Bork and V.A. Smirnov, Off-shell form factor in N=4 sYM at three loops,
JHEP 11 (2023) 111 [arXiv:2306.16859] [INSPIRE].

F. Coronado, Bootstrapping the simplest correlator in planar N=4 supersymmetric Yang-Mills
theory to all loops, Phys. Rev. Lett. 124 (2020) 171601 [arXiv:1811.03282] [INSPIRE].

A.V. Belitsky and G.P. Korchemsky, Ezact null octagon, JHEP 05 (2020) 070
[arXiv:1907.13131] [INSPIRE].

— 20 —


https://doi.org/10.1016/0550-3213(94)90179-1
https://doi.org/10.48550/arXiv.hep-ph/9403226
https://inspirehep.net/literature/37455
https://doi.org/10.1088/1126-6708/2009/01/049
https://doi.org/10.48550/arXiv.0806.4600
https://inspirehep.net/literature/789337
https://doi.org/10.1016/0550-3213(94)00488-Z
https://doi.org/10.48550/arXiv.hep-ph/9409265
https://inspirehep.net/literature/376524
https://doi.org/10.1007/JHEP01(2011)140
https://doi.org/10.48550/arXiv.1010.5874
https://inspirehep.net/literature/874778
https://doi.org/10.1103/PhysRevD.82.125040
https://doi.org/10.48550/arXiv.1008.3327
https://inspirehep.net/literature/865697
https://doi.org/10.1007/JHEP04(2010)038
https://doi.org/10.48550/arXiv.1001.1358
https://inspirehep.net/literature/842450
https://doi.org/10.1007/JHEP08(2010)002
https://doi.org/10.48550/arXiv.1004.5381
https://inspirehep.net/literature/853667
https://doi.org/10.1007/JHEP12(2011)024
https://doi.org/10.48550/arXiv.1109.5057
https://inspirehep.net/literature/928302
https://doi.org/10.1103/PhysRevD.72.085001
https://doi.org/10.48550/arXiv.hep-th/0505205
https://inspirehep.net/literature/683206
https://doi.org/10.1103/PhysRevD.20.2037
https://doi.org/10.1103/PhysRevD.20.2037
https://inspirehep.net/literature/7923
https://doi.org/10.1103/PhysRevD.42.4222
https://doi.org/10.1103/PhysRevD.42.4222
https://inspirehep.net/literature/28567
https://doi.org/10.1016/S0370-2693(02)03100-3
https://doi.org/10.1016/S0370-2693(02)03100-3
https://doi.org/10.48550/arXiv.hep-ph/0210130
https://inspirehep.net/literature/599074
https://doi.org/10.1016/0550-3213(80)90507-6
https://inspirehep.net/literature/157352
https://doi.org/10.1016/0550-3213(87)90277-X
https://inspirehep.net/literature/246684
https://doi.org/10.1007/JHEP03(2022)151
https://doi.org/10.1007/JHEP03(2022)151
https://doi.org/10.48550/arXiv.2106.03892
https://inspirehep.net/literature/1867510
https://doi.org/10.1007/JHEP08(2022)173
https://doi.org/10.48550/arXiv.2201.08762
https://inspirehep.net/literature/2015451
https://doi.org/10.1103/PhysRevLett.130.091605
https://doi.org/10.48550/arXiv.2209.09263
https://inspirehep.net/literature/2154238
https://doi.org/10.1007/JHEP11(2023)111
https://doi.org/10.48550/arXiv.2306.16859
https://inspirehep.net/literature/2672945
https://doi.org/10.1103/PhysRevLett.124.171601
https://doi.org/10.48550/arXiv.1811.03282
https://inspirehep.net/literature/1702673
https://doi.org/10.1007/JHEP05(2020)070
https://doi.org/10.48550/arXiv.1907.13131
https://inspirehep.net/literature/1747241

[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

B. Basso, L.J. Dixon and G. Papathanasiou, Origin of the siz-gluon amplitude in planar N=4
supersymmetric Yang-Mills theory, Phys. Rev. Lett. 124 (2020) 161603 [arXiv:2001.05460]
[INSPIRE].

B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude
duality. Part I, Nucl. Phys. B 869 (2013) 329 [arXiv:1103.3714] [INSPIRE].

A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace,
Cambridge University Press, Cambridge, U.K. (2007) [DOI:10.1017/CB09780511535109] [INSPIRE].

V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215
[NSPIRE].

A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N=4 SYM, JHEP
05 (2012) 082 [arXiv:1201.4170] [NSPIRE].

A. Brandhuber et al., Harmony of super form factors, JHEP 10 (2011) 046 [arXiv:1107.5067]
[INSPIRE].

L.J. Dixon, A.J. McLeod and M. Wilhelm, A three-point form factor through five loops, JHEP
04 (2021) 147 [arXiv:2012.12286] [INSPIRE].

L.J. Dixon, O. Gurdogan, A.J. McLeod and M. Wilhelm, Bootstrapping a stress-tensor form
factor through eight loops, JHEP 07 (2022) 153 [arXiv:2204.11901] [INSPIRE].

L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11
(2011) 023 [arXiv:1108.4461] [INSPIRE].

A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in N=/ super Yang-Mills
and periodic Wilson loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [InSPIRE].

L.V. Bork, D.I. Kazakov and G.S. Vartanov, On MHYV form factors in superspace for N=4 SYM
theory, JHEP 10 (2011) 133 [arXiv:1107.5551] [INSPIRE].

N.I. Usyukina and A.I. Davydychev, An approach to the evaluation of three and four point ladder
diagrams, Phys. Lett. B 298 (1993) 363 [INSPIRE].

N.I. Usyukina and A.I. Davydychev, Exact results for three and four point ladder diagrams with
an arbitrary number of rungs, Phys. Lett. B 305 (1993) 136 [INSPIRE].

V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP
3 (1956) 65 [INSPIRE].

R. Jackiw, Dynamics at high momentum and the vertex function of spinor electrodynamics,
Annals Phys. 48 (1968) 292 [iNSPIRE].

P.M. Fishbane and J.D. Sullivan, Asymptotic behavior of the vertex function in quantum
electrodynamics, Phys. Rev. D 4 (1971) 458 [INSPIRE].

A H. Mueller, Perturbative QCD at high-energies, Phys. Rept. 73 (1981) 237 [INSPIRE].
G.P. Korchemsky, Sudakov form-factor in QCD, Phys. Lett. B 220 (1989) 629 [INSPIRE].

K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate B-functions in
4 loops, Nucl. Phys. B 192 (1981) 159 [InSPIRE].

A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107
[arXiv:0807.3243] INSPIRE].

A.V. Smirnov and F.S. Chukharev, FIRE6: Feynman Integral REduction with modular
arithmetic, Comput. Phys. Commun. 247 (2020) 106877 [arXiv:1901.07808] [inSPIRE].

A.V. Smirnov and M. Zeng, FIRE 6.5: Feynman integral reduction with new simplification
library, Comput. Phys. Commun. 302 (2024) 109261 [arXiv:2311.02370] [iINSPIRE].

— 21 —


https://doi.org/10.1103/PhysRevLett.124.161603
https://doi.org/10.48550/arXiv.2001.05460
https://inspirehep.net/literature/1775791
https://doi.org/10.1016/j.nuclphysb.2012.12.015
https://doi.org/10.48550/arXiv.1103.3714
https://inspirehep.net/literature/893308
https://doi.org/10.1017/CBO9780511535109
https://inspirehep.net/literature/570842
https://doi.org/10.1016/0370-2693(88)91471-2
https://inspirehep.net/literature/24212
https://doi.org/10.1007/JHEP05(2012)082
https://doi.org/10.1007/JHEP05(2012)082
https://doi.org/10.48550/arXiv.1201.4170
https://inspirehep.net/literature/1085221
https://doi.org/10.1007/JHEP10(2011)046
https://doi.org/10.48550/arXiv.1107.5067
https://inspirehep.net/literature/920302
https://doi.org/10.1007/JHEP04(2021)147
https://doi.org/10.1007/JHEP04(2021)147
https://doi.org/10.48550/arXiv.2012.12286
https://inspirehep.net/literature/1838074
https://doi.org/10.1007/JHEP07(2022)153
https://doi.org/10.48550/arXiv.2204.11901
https://inspirehep.net/literature/2072539
https://doi.org/10.1007/JHEP11(2011)023
https://doi.org/10.1007/JHEP11(2011)023
https://doi.org/10.48550/arXiv.1108.4461
https://inspirehep.net/literature/924735
https://doi.org/10.1007/JHEP01(2011)134
https://doi.org/10.48550/arXiv.1011.1899
https://inspirehep.net/literature/875810
https://doi.org/10.1007/JHEP10(2011)133
https://doi.org/10.48550/arXiv.1107.5551
https://inspirehep.net/literature/920574
https://doi.org/10.1016/0370-2693(93)91834-A
https://inspirehep.net/literature/343180
https://doi.org/10.1016/0370-2693(93)91118-7
https://inspirehep.net/literature/353141
https://inspirehep.net/literature/9137
https://doi.org/10.1016/0003-4916(68)90087-0
https://inspirehep.net/literature/54576
https://doi.org/10.1103/PhysRevD.4.458
https://inspirehep.net/literature/67781
https://doi.org/10.1016/0370-1573(81)90030-2
https://inspirehep.net/literature/10270
https://doi.org/10.1016/0370-2693(89)90799-5
https://inspirehep.net/literature/267742
https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/literature/171845
https://doi.org/10.1088/1126-6708/2008/10/107
https://doi.org/10.48550/arXiv.0807.3243
https://inspirehep.net/literature/791167
https://doi.org/10.1016/j.cpc.2019.106877
https://doi.org/10.48550/arXiv.1901.07808
https://inspirehep.net/literature/1716466
https://doi.org/10.1016/j.cpc.2024.109261
https://doi.org/10.48550/arXiv.2311.02370
https://inspirehep.net/literature/2719314

[52]

[53]

[54]

[55]

[56]

[57]

R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.
523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110
(2013) 251601 [arXiv:1304.1806] [INSPIRE].

A.V. Belitsky and V.A. Smirnov, Near mass-shell double boxes, JHEP 05 (2024) 155
[arXiv:2312.00641] [NSPIRE].

C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical
form, JHEP 04 (2017) 006 [arXiv:1611.01087] [iNSPIRE].

C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with
CANONICA, Comput. Phys. Commun. 222 (2018) 295 [arXiv:1705.06252] [INSPIRE].

R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108
[arXiv:1411.0911] [INSPIRE].

R.N. Lee, Libra: a package for transformation of differential systems for multiloop integrals,
Comput. Phys. Commun. 267 (2021) 108058 [arXiv:2012.00279] [INSPIRE].

K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].
A.B. Goncharov, Multiple polylogarithms and mized Tate motives, math/0103059 [INSPIRE].

A.V. Smirnov, N.D. Shapurov and L.I. Vysotsky, FIESTAS5: numerical high-performance
Feynman integral evaluation, Comput. Phys. Commun. 277 (2022) 108386 [arXiv:2110.11660]
[INSPIRE].

H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding
algorithm, Math. Comput. 68 (1999) 351.

A.V. Belitsky, A.V. Smirnov and V.A. Smirnov, MB tools reloaded, Nucl. Phys. B 986 (2023)
116067 [arXiv:2211.00009] [INSPIRE].

N.I. Usyukina and A.I. Davydychev, New results for two loop off-shell three point diagrams,
Phys. Lett. B 332 (1994) 159 [hep-ph/9402223] INSPIRE].

A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238
[INSPIRE].

C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC' framework for symbolic
computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1
[cs/0004015] [INSPIRE].

C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP 08 (2019) 135
[arXiv:1904.07279] [INSPIRE].

7. Bern et al., The two-loop siz-gluon MHV amplitude in mazimally supersymmetric Yang-Mills
theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].

J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hezagon Wilson loop =
siz-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].

A.V. Belitsky and V.A. Smirnov, An off-shell Wilson loop, JHEP 04 (2023) 071
[arXiv:2110.13206] [INSPIRE].

— 922 —


https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.48550/arXiv.1310.1145
https://inspirehep.net/literature/1256956
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.48550/arXiv.1304.1806
https://inspirehep.net/literature/1227527
https://doi.org/10.1007/JHEP05(2024)155
https://doi.org/10.48550/arXiv.2312.00641
https://inspirehep.net/literature/2729293
https://doi.org/10.1007/JHEP04(2017)006
https://doi.org/10.48550/arXiv.1611.01087
https://inspirehep.net/literature/1495732
https://doi.org/10.1016/j.cpc.2017.09.014
https://doi.org/10.48550/arXiv.1705.06252
https://inspirehep.net/literature/1599983
https://doi.org/10.1007/JHEP04(2015)108
https://doi.org/10.48550/arXiv.1411.0911
https://inspirehep.net/literature/1326008
https://doi.org/10.1016/j.cpc.2021.108058
https://doi.org/10.48550/arXiv.2012.00279
https://inspirehep.net/literature/1834257
https://doi.org/10.1090/S0002-9904-1977-14320-6
https://inspirehep.net/literature/1235976
https://doi.org/10.48550/arXiv.math/0103059
https://inspirehep.net/literature/1289920
https://doi.org/10.1016/j.cpc.2022.108386
https://doi.org/10.48550/arXiv.2110.11660
https://inspirehep.net/literature/1950325
https://doi.org/10.1016/j.nuclphysb.2022.116067
https://doi.org/10.1016/j.nuclphysb.2022.116067
https://doi.org/10.48550/arXiv.2211.00009
https://inspirehep.net/literature/2174637
https://doi.org/10.1016/0370-2693(94)90874-5
https://doi.org/10.48550/arXiv.hep-ph/9402223
https://inspirehep.net/literature/371504
https://doi.org/10.48550/arXiv.0908.2238
https://inspirehep.net/literature/1235981
https://doi.org/10.1006/jsco.2001.0494
https://doi.org/10.48550/arXiv.cs/0004015
https://inspirehep.net/literature/526688
https://doi.org/10.1007/JHEP08(2019)135
https://doi.org/10.48550/arXiv.1904.07279
https://inspirehep.net/literature/1730046
https://doi.org/10.1103/PhysRevD.78.045007
https://doi.org/10.48550/arXiv.0803.1465
https://inspirehep.net/literature/781038
https://doi.org/10.1016/j.nuclphysb.2009.02.015
https://doi.org/10.48550/arXiv.0803.1466
https://inspirehep.net/literature/781039
https://doi.org/10.1007/JHEP04(2023)071
https://doi.org/10.48550/arXiv.2110.13206
https://inspirehep.net/literature/1952287

	Introduction
	Setting up conventions
	One loop
	Two loops
	Tri-pentagon
	Tri-box
	Double boxes and nonplanar tri-box

	Adding things up
	Infrared exponentiation and general structure
	Finite part
	Iterative structure

	Conclusion

