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Abstract—Agekyan’s λ-factor that allows for the effect of multiplicity of stellar encounters with large
impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase
space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of
distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters,
is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was
shown previously by Kandrup using a different, more complex approach. In this case, the expressions for the
diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent
quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the
physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence
of two characteristic length scales inherent in the stellar medium.
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INTRODUCTION

The present-day description of collisional pro-
cesses in stellar systems dates back to the pioneering
works in the first half of the 20th century (Char-
lier 1917; Jeans 1919; Spitzer 1924; Rosseland 1928;
Smart 1938; Williamson and Chandrasekhar 1941;
Chandrasekhar 1941a, 1941b, 1942). An exhaustive
in-depth historical overview of the works on the
kinetic theory of homogeneous systems with long-
range interactions, including the stellar medium, can
be found in Chavanis (2013). Chandrasekhar (1941a)
was the first to use the the Holtsmark (1919) distri-
bution for a random force in a homogeneous stellar
medium and to show that the asymptotics of this
distribution in the approximation of large forces
completely coincides with the distribution of the force
due to the interaction with the nearest neighbor
(Hertz 1909). This very important circumstance
underlies the collisional kinetics of stellar systems
that considers the changes in stellar velocities in
terms of the hypothesis of binary encounters. Indeed,
large (in magnitude) random changes in stellar ve-
locities arise during close encounters of a test star
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with field stars at a characteristic distance much
smaller than the mean interparticle distance. The
cumulative effect of a series of such successive
encounters considered as an independent random
process of velocity change allows one to calculate
the diffusion coefficients in velocity space and to
derive the expressions for the collisional term in

the Boltzmann equation
∂f(t, �R,�V )

∂t = −
(
∂f
∂t

)
coll

in

the Fokker–Planck approximation. The consistent
development of the theory of irregular forces in stellar
dynamics in the 20th century was based precisely on
these basic principles.

There are several methods for estimating the cu-
mulative effect: from the deflection angle of the ve-
locity vector of a test star (Williamson and Chan-
drasekhar 1941; Parenago 1954), from the rate of
change of the parallel (dynamical friction) and normal
(scattering or diffusion) velocity components of a test
star (Chandrasekhar 1941a; King 2002; Binney and
Tremaine 2008; etc.). All estimates of the rate of
change of the velocity and kinetic energy usually lead
to close values of the time scale for these processes,
which is often identified with the collisional relaxation
time. A characteristic feature of the expressions for
the diffusion coefficients and the relaxation time is the
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presence of a logarithmic divergence at the upper limit
of integration over the impact parameter within the
concept of successive independent binary encounters.
The logarithmic factor Λ = ln dmax

p90
, an analog of the

so-called Coulomb logarithm encountered in plasma
physics, enters into the expressions for the linear and
quadratic diffusion coefficients

〈
ΔV‖

〉
and

〈
ΔV 2

⊥
〉

.
Here, dmax is the upper limit of the impact parameter,

p90 =
G(m+mf )

V 2
0

is the impact parameter of a close

encounter at which the relative velocity vector of the
encountering stars is deflected through 90◦, where
G is the gravitational constant, m and mf are the
masses of the test and field stars, respectively, and V0

is the magnitude of the relative stellar velocity.

The problem of the upper limit of integration
over the impact parameter has been repeatedly dis-
cussed in the works on stellar dynamics. For
example, Williamson and Chandrasekhar (1941),
Parenago (1954), and Henon (1958) pointed out that
within the concept of binary encounters the mean
interparticle distance, d̄ ≈ 0.554ν−1/3 (here, ν is the
mean number density of the stellar medium), is a
natural upper limit of the impact parameter, because
all weaker encounters are actually multiple and in-
complete ones. The changes in the relative velocity
are described by the formulas of hyperbolic relative
motion under the assumption of their completeness
(see, e.g., Binney and Tremaine 2008, p. 155), which
are inapplicable for distant encounters whose formal
allowance leads to a significant overestimation of the
cumulative effect. We share this viewpoint and note
that the treatment of all encounters (including the
distant ones) as binary ones actually incorporates not
only the irregular forces but also to some extent the
regular force component into the diffusion coefficients
being calculated. Ambartsumyan (1938), Ogorod-
nikov (1958), Binney and Tremaine (2008), and other
authors mentioned in the latter monograph, on the
contrary, believe that dmax should be set equal to the
characteristic size of the entire stellar system (the star
cluster radius, the galactic disk thickness, the Jeans
length, the size of a regular stellar orbit, the size of
a characteristic inhomogeneity in the stellar system).
Note, however, that the precise choice of a maximum
impact parameter is not critical for practical purposes
(calculating the diffusion coefficients, estimating the
characteristic time scales) due to the comparatively
weak logarithmic divergence that cannot change
radically the dynamical estimates. Indeed, in the
solar neighborhood of our Galaxy d̄ ≈ 1 pc, p90 ≈ 1–
2 AU, and Λ ≈ ln d̄

p90
∼ 11–12. Choosing dmax ∼

Hz ≈ 100 pc (the effective thin-disk thickness), we
will increase the Coulomb logarithm Λ to Λ ∼ 15–16,

i.e., only by 40–45%, which will not lead to a radical
change in all our dynamical estimates. Nevertheless,
the problem of optimally choosing an upper limit
for the impact parameter has another aspect directly
related to the physical justifications of the collisional
kinetics of stellar systems. We are sure that a deeper
understanding of these phenomena and attempts to
describe them in a consistent way are of fundamental
importance for stellar dynamics. It is this problem
that is discussed in our work.

MULTIPLICITY OF STELLAR ENCOUNTERS

Agekyan (1959, 1962) proposed and implemented
a probabilistic approach to the description of stellar
encounters and derived an analytical expression for
the probability of a stellar encounter Φ

(
V 2, h

)
as a

result of which the velocity of the test star changes
by a specified value for several special cases. Here,
h = ΔV 2

V 2 , ΔV 2 is the change in the squared velocity
(i.e., the kinetic energy) of the test star. A weak
point of Agekyan’s approach was the divergence of
the expression for the probability for small change
in velocity, Φ(V 2, h) ∼ |h|−3, which, in particular,
prevented the calculation of the average change in
stellar energy. It is obvious that the multiplicity of
stellar encounters, which provide small changes in
velocity, is responsible for this divergence. To mitigate
the divergence effect, Agekyan (1961) introduced a
reduction factor that allows for the multiplicity of
encounters (Agekyan’s λ-factor). It is numerically
equal to the ratio of the magnitude of the total random

force
∣∣∣δ �F

∣∣∣ acting on the test star from all stars in a

thin spherical layer (p, p+ dp) surrounding the test
star to the arithmetic sum of the magnitudes of the

forces
∑∣∣∣ �Fi

∣∣∣ produced by the same stars, i.e.,

λ (p) =

∣∣∣δ �F
∣∣∣

∑ ∣∣∣ �Fi

∣∣∣
< 1. (1)

The physical meaning of the λ-factor is that the
total random force is equal to the geometric sum of
the force vectors from all stars, while the classical
calculations of the cumulative effect actually realize
a simple arithmetic summation of the effects from
individual encounters that are deemed independent.
Obviously, the true role of each field star (the contri-

bution to the random force vector
∣∣∣δ �F

∣∣∣) is, on aver-

age, smaller than follows from the calculations of the
result of its binary encounter with the test star due
to the gravitational leveling of the contributions from
distant stars. As the impact parameter increases,
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the numerator in Eq. (1) decreases, while the de-
nominator grows. The rapid decrease in the λ-factor
with distance is directly related to the fact that the
angular distribution of field stars at large distances
becomes increasingly uniform, and the contributions
of individual stars to the random force effectively can-
cel each other out. At the same time, the random
force acting on the test star must be determined only
by the distribution of nearest neighbors, where the
polarization of the angular distribution is larger, and
the leveling effect is comparatively small. Therefore,
one might expect the upper limit of integration over
the impact parameter to be no greater than several
mean interparticle distances d̄.

These problems were subsequently considered by
Kandrup (1980), who reached the qualitative conclu-
sion that the forces acting from distant stars must
effectively cancel each other out. A quantitative de-
scription of the field of irregular forces in a locally
homogeneous stellar medium is given in his next fun-
damental paper (Kandrup 1981). He was the first to
note that the integration of the diffusion coefficients in
the collisional Fokker–Planck term over the impact
parameter should not lead to any divergence at the
upper limit. A similar conclusion was reached by
Petrovskaya (1992), who investigated a thin gravitat-
ing stellar layer.

In this paper for the first time we calculate the dif-
fusion coefficients by taking into account Agekyan’s
reduction factor (1) that compensates the overesti-
mation of the contribution from distant encounters to
the change in velocity for a three-dimensional Pois-
sonian medium. To calculate the reduction factor
λ(p), Agekyan (1961) applied a technique leading
to the Holtsmark (1919) distribution and obtained
the following rigorous expression for a homogeneous
infinite medium with a mean number density ν:

λ (p) =
4

π

∞∫

0

x− sinx

x3
exp

(
−a

4π

3
νp3x3/2

)
dx, (2)

where a = 2
5

√
2π ≈ 1.00265. Given that 4π

3 νp3 ≡
N (p) is the average number of field stars within the
sphere of radius p, where p is the impact parameter of
the encounter under consideration, let us rewrite (2)
in an equivalent form by assuming the λ-factor to be
a function of N = N(p):

λ (N) =

∞∫

0

x− sinx

x3
exp

(
−aNx3/2

)
dx. (3)

Thus, Agekyan’s λ-factor is completely deter-
mined by the average number of stars within the
sphere whose radius is equal to the impact parameter
of the encounter under consideration. This will be

used in the text of the paper. The reduction factor λ(p)
at large N shows a well-known asymptotic behavior,
λ(N) ∼ N−2/3 ∼ p−2 (Agekyan 1961), and rapidly
decreases with increasing impact parameter. Fig-
ure 1 shows the dependence of Agekyan’s λ-factor
on the impact parameter expressed in units of the
mean interparticle distance p′ = p/d̄. The encounter
multiplicity effect is seen to overestimate the random
force by more than an order of magnitude even at two
mean interparticle distances. This fact qualitatively
justifies the intuitive conclusion of Williamson and
Chandrasekhar (1941) that in a 3D Poisson model
of the stellar medium the nearest neighbors to the
test star make a major contribution to the random
gravitational force.

Strictly speaking, it will be logically correct to
use Agekyan’s λ-factor to take into account the
contribution of stellar encounters directly in the
integration over the impact parameter in an ordinary
scheme of calculations of the diffusion coefficients
in the Fokker–Planck approximation (see, e.g.,
Eqs. (L.1)–(L.26) in the monograph by Binney and
Tremaine (2008)) or when deducing the probability
of an encounter with a given change in velocity
describing a Markov process of velocity changes
with the Kolmogorov–Feller collisional integral term
(Agekyan 1959; Petrovskaya 1969a, 1969b). Note
that Agekyan obtained an explicit form of the λ-factor
two years after the publication of his first fundamental
paper, where he proposed the probabilistic approach
to describing the random process of change in the
velocity of a test particle (Agekyan 1959). Based on
the great complexity of the method for deriving the
probability of an encounter with a given change in
velocity used by Agekyan (1959, 1962), we can as-
sume that it is unlikely that he would be able to derive
an analytical expression for this probability even for
the simplest cases if the λ-factor were immediately
built into the algorithm of integration over the impact
parameter. Therefore, Agekyan (1961, 1962) took a
palliative decision and introduced a correction factor
to the previously found probability. The probability
corrected in this way is

Φ̃(V 2, h) = λ(p̄)Φ(V 2, h), (4)

where p̄ is some effective mean impact parameter at
which the encounter with a field star leads to a relative
change in the squared velocity, on average, by h. In
this case, it is possible to “soften” the divergence
of the expression for the probability at large impact
parameters (or small relative changes in the squared
velocity) to Φ̃(V 2, h) ∼ |h|−1 (Agekyan 1961), while
the probability correction method itself is a corol-
lary of the integral mean-value theorem (Fikhten-
golts 1969).
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Fig. 1. Dependence of Agekyan’s λ-factor on impact parameter p′ expressed in units of the mean interparticle distance d̄.

The probabilistic approach turned out to be highly
efficient in problems of analytical stellar dynamics
but, in our opinion, not popular enough due to the
extreme complexity of calculations. For example,
Petrovskaya (1969a, 1969b) used it to describe the
change in the velocity of a test star in an irregular
force field in terms of a purely discontinuous random
process. Indeed, the corrected probability of an
encounter (4) can be directly substituted into the
expression for the collisional term in the most general
form of the balance equation (Eq. (7.62)) in the
monograph by Binney and Tremaine (2008). As
a result, it will take the form of a Kolmogorov–
Feller integro-differential equation for the phase-
space density. In their series of papers Kaliberda
and Petrovskaya (1970, 1971, 1972) and Kaliberda
(1971, 1972) derived the equilibrium solutions of
the Kolmogorov–Feller equation for the local ve-
locity distribution of stars of different masses using
numerical methods. An indubitable advantage of
the description of collisional kinetics in terms of a
purely discontinuous random process compared to
the classical description of diffusion in velocity space
is the possibility of a direct calculation of not only
the mass loss rate but also the energy losses, which,
obviously, accelerates the dynamical evolution of the
stellar system and reduces its lifetime.

RIGOROUS ALLOWANCE
FOR THE MULTIPLICITY OF STELLAR

ENCOUNTERS IN A THREE-DIMENSIONAL
MEDIUM IN THE DIFFUSION

APPROXIMATION
Let us consider the problem of calculating the

diffusion coefficients in a homogeneous infinite three-
dimensional medium by taking into account the mul-
tiplicity of stellar encounters and using the funda-
mental results of Agekyan (1961). This problem

seems quite solvable in terms of the classical ap-
proach, in contrast to the difficulties with the prob-
abilistic approach that we noted above. In contrast
to the approach of Kandrup (1981), we will perform
direct integration of the diffusion coefficients over the
impact parameter to understand whether the loga-
rithmic divergence is retained on large scales.

When deriving the modified expressions for the
diffusion coefficients, we will rely on the classical
approach described in the monograph by Binney and
Tremaine (2008, Appendix L.6). The initial expres-
sions for the diffusion tensor components in velocity
space for a test star averaged over the orientation
angle of the relative orbit of the encountering stars are
(k, l = 1, 2, 3)

〈ΔVk〉 = −ΔV‖

(−→ek ·
−→
e′1

)
, (5)

〈ΔVkΔV 〉l =
(
ΔV‖

)2 (−→ek ·
−→
e′1

)(−→el ·
−→
e′1

)
(6)

+
1

2
(ΔV⊥)

2
[ (−→ek ·

−→
e′2

)(−→el ·
−→
e′2

)

+
(−→ek ·

−→
e′3

)(−→el ·
−→
e′3

) ]
,

where (−→e1 ,−→e2 ,−→e3) are the unit vectors of the labora-

tory coordinate system, and
(−→
e′1 ,

−→
e′2 ,

−→
e′3

)
are the unit

vectors of the coordinate system associated with the
center of mass of the encountering stars, with the

unit vector
−→
e′1 being directed along the vector of their

initial relative velocity
−→
V0 =

(−→
V ′′

)
−−→

Vf (see Fig. L.1

in the monograph of Binney and Tremaine (2008)).
The changes in the longitudinal and transverse ve-
locity components appearing in Eqs. (5) and (6) for
the diffusion coefficients transformed to the laboratory
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frame of reference will be, respectively (ibid., Fig. L.7)

ΔV‖ =
2Gmfp90

V0

(
p2 + p290

) , ΔV⊥ =
2Gmfp

V0

(
p2 + p290

), (7)

where mf , V0, and p are the mass of the field star,
the magnitude of the relative velocity, and the impact
parameter, respectively.

The change in the velocity component ΔV‖ is cal-
culated in a unit time interval and, consequently, can
be treated as an acceleration of the test star (to be
more precise, a deceleration due to dynamical friction)
in the stochastic field of irregular forces. The logic of
reasoning suggests that, on the one hand, the velocity
change ΔV‖ should be integrated over the impact
parameter in this case with a weight λ (p) equal to the
reduction factor for the stochastic force acting on the

test star. On the other hand, the coefficients
(
ΔV‖

)2
and (ΔV⊥)

2 may be considered as the changes in the
components of the kinetic energy tensor per unit time,
which within our concept are proportional to the work
of the random force; this means that they should be
integrated over the impact parameter with the same
weight λ (p).

As in the classical case, we take into account the
fact that the test star experiences dη (p) = 2πνfV0pdp
encounters with field stars with a relative velocity
V0 and impact parameters in the interval (p, p+ dp)
per unit time. Recall that νf is the number den-

sity of field stars with the relative velocity
−→
V0, i.e.,

νf = f
(−→
Vf

)
d
−→
Vf and

−→
Vf =

−→
V −−→

V0, where
−→
Vf is the

velocity of the field star and f
(−→
Vf

)
is the velocity

distribution function of field stars. Here, we will re-
strict ourselves only to the integration over the impact
parameter, because the subsequent integration over
the velocity distribution of field stars is performed
in the same way as in the classical works on stellar
dynamics (see, e.g., Appendix L in the monograph of
Binney and Tremaine (2008)), leading to Rosenbluth
potentials (Rosenbluth et al. 1957).

Agekyan’s λ-factor cannot be expressed in terms
of elementary functions and, hence, we use its simple
piecewise continuous approximation. First, for con-
venience (as will be clear from the subsequent discus-
sion), we will consider the λ-factor to be a function
of λ̃(n), where n = (N/N0)

2/3 and N0 ≈ 0.7122 is
the average number of stars (expectation) within the
sphere with a radius equal to the mean interparticle
distance d̄. Consequently, we naturally introduce d̄
as a scale parameter of the stellar medium. Using

numerical methods, we found the following approx-
imation of the λ-factor with an accuracy of ∼2−3%:

λ̃(n) =

{
a exp[−bnc] + d, n ≤ 1,

en−1, n > 1,
(8)

where a ≈ 0.863 ± 0.001, b ≈ 2.281 ± 0.002, c ≈
0.924 ± 0.0005, d ≈ 0.141 ± 0.002, and e ≈ 0.235 ±
0.001 (at 95% confidence). This accuracy is quite
sufficient for estimating the integrals of the velocity
changes (7).

The current values of the impact parameter and the
average number of stars in the sphere of the corre-
sponding radius are related by the following obvious
relation:

p2 = d̄2 (N/N0)
2/3 = d̄2n. (9)

The next step in calculating the diffusion coefficients
is to integrate the velocity changes ΔV‖,

(
ΔV‖

)2,

and (ΔV⊥)
2 over the impact parameter with a weight

equal to dη (p) = 2πνfV0pdp:

DV‖ = πνfV0

∞∫

0

ΔV‖λ̃ (n) d
(
p2
)
, (10)

DV 2
‖ = πνfV0

∞∫

0

(
ΔV‖

)2
λ̃ (n) d

(
p2
)
, (11)

DV 2
⊥ = πνfV0

∞∫

0

(ΔV⊥)
2 λ̃ (n) d

(
p2
)
. (12)

It is obvious that DV 2
‖ 
 DV 2

⊥, because the inte-
gral (11) converges and the noted inequality holds
already in the classical approximation. The conver-
gence will be even more evident in our case after
multiplying the integrand by the rapidly decreasing
function λ̃ (n). For this reason, below we may also
neglect the contribution of (11) to the diffusion coef-
ficient (6).

Next, we will use Eq. (9) and pass from the inte-
gration over the impact parameter to the integration
over the variable n by transforming the linear diffusion
(dynamical friction) coefficient (10) to the form

DV‖ =
2πG2mf (m+mf ) νf

V 2
0

(13)

×
∞∫

0

λ̃ (n) d
(
p2
)

(
p2 + p290

) =
2πG2mf (m+mf ) νf

V 2
0

K2

×
∞∫

0

λ̃ (n) dn

1 +K2n
=

2πG2mf (m+mf ) νf
V 2
0

I1(K),

ASTRONOMY LETTERS Vol. 43 No. 8 2017



THE EFFECT OF MULTIPLICITY OF STELLAR ENCOUNTERS 541

10−1

13.5

13.0

12.5

12.0

11.5
100 101 102

n = (N/N0)2/3

I 1
 (K

 =
 1

00
0)

Fig. 2. Behavior of the integral I1 (K = 1000) in Eq. (13) as a function of the upper limit of integration nmax.
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Fig. 3. Behavior of the integral I2 (K = 1000) in Eq. (14) as a function of the upper limit of integration nmax.

where K = d̄/p90 is the ratio of two characteristic
length scales of the stellar medium. We similarly
derive the expression for the quadratic diffusion co-
efficient:

DV 2
⊥ =

4πG2m2
fνf

V0

∞∫

0

λ̃ (n) p2d
(
p2
)

(
p2 + p290

) (14)

=
4πG2m2

fνf

V0
K4

∞∫

0

λ̃ (n)ndn

(1 +K2n)2

=
4πG2m2

fνf

V0
I2(K),

where we introduce the dimensionless functions

I1 (K) = K2

∞∫

0

λ̃ (n) dn

1 +K2n
, (15)

I2 (K) = K4

∞∫

0

λ̃ (n)ndn

(1 +K2n)2
,

which are dependent on the ratio of the scale fac-
tors K and enter into Eqs. (13) and (14) for the
diffusion coefficients.

We calculated the integrals (15) by numerical in-
tegration for a wide range of ratios K (1 < K < 105).
Note that the upper boundary of the parameter K cor-
responds to a low number density of stars, ∼0.1 pc−3,
typical for the solar neighborhood. Figure 2 shows
the behavior of the integral I1 with increasing upper
limit of integration for K = d̄/p90 = 1000. We see
that the integral reaches a plateau already at relatively
small values of the upper limit nmax, demonstrating
the complete absence of a logarithmic divergence.
As follows from (9), nmax =

(
pmax/d̄

)2 ≡ (
dmax/d̄

)2;
hence the integral is close to its limiting value at an
impact parameter of ∼2−3 mean interparticle dis-
tances, where distant encounters are “shielded” al-
most completely.

Figure 3 shows the behavior of the integral I2 as a
function of the upper limit of integration also for K =
d̄/p90 = 1000. We see that this integral converges
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Fig. 4. Dependence of the integral I1 in Eq. (13) on parameter K in the range 10 < K < 105. The dots indicate the results of
our calculations with a constant step in log(K2); the solid line is a linear approximation of the integral as a function of log(K2)
(the 95% confidence intervals are smaller than the size of the symbols).
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Fig. 5. Dependence of the integral I2 in Eq. (14) on parameter K in the range 10 < K < 105. The designations are the same
as those in Fig. 4.

even faster, and an efficient “shielding” of distant
encounters begins already from 1–2 mean interpar-
ticle distances. This is because Agekyan’s λ-factor
decreases rapidly with increasing impact parameter.

Figures 4 and 5 show the dependence of the inte-
grals I1 and I2 on the ratio of the scale factors K.

The parameters of the linear dependences of I1 and
I2 on log(K2) for K > 10 can be estimated from the
results of our calculations shown in Figs. 4 and 5:

I1 (K) ≈ (2.306 ± 0.010) log
(
K2

)
(16)

− (1.070 ± 0.030) ≈ 2 ln (K/1.7) ,

I2 (K) ≈ (2.302 ± 0.040) log
(
K2

)
(17)

− (2.224 ± 0.020) ≈ 2 ln (K/3.0) ,

where ln stands for the natural logarithm. Substitut-
ing Eqs. (16) and (17) for the integrals into Eqs. (13)
and (14) for the diffusion coefficients, respectively,
we will obtain the final expressions for the linear and

quadratic diffusion coefficients will allowance made
for the gravitational “shielding” of distant encounters:

DV‖ ≈
4πG2mf (m+mf ) νf

V 2
0

ln
(
d̄/1.7p90

)
, (18)

DV 2
⊥ ≈

8πG2m2
fνf

V0
ln

(
d̄/3.0p90

)
. (19)

DISCUSSION OF RESULTS

Let us compare our calculated diffusion coeffi-
cients with the results of classical calculations with
the intuitive “cutoff” of distant encounters at the
mean interparticle distance (see, e.g., Williamson and
Chandrasekhar 1941):

DV‖ ≈
4πG2mf (m+mf ) νf

V 2
0

ln
(
d̄/p90

)
, (20)
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DV 2
⊥ ≈

8πG2m2
fνf

V0
ln

(
d̄/

√
ep90

)
. (21)

Expressions (18) and (19) show that in our approx-
imation the ratios under the logarithm are smaller
than the corresponding terms in the classical expres-
sions (20) and (21) by a factor of 1.7–1.8. From a
practical point of view, this small difference of the log-
arithms (corresponding to about 0.55, i.e., ∼5−10%
of the Coulomb logarithm Λ) plays absolutely no role
in the calculations of the diffusion coefficients by a
particular method and the corresponding character-
istic time scales. However, from a conceptual point
of view, this means that when calculating the cumu-
lative effect within the concept of binary encounters,
the effective upper boundary of the impact parameter
should hardly exceed the mean interparticle distance.
More distant stars more likely contribute to the reg-
ular force or the density fluctuations, which should
be taken into account either within the framework of
collective interactions or using the methods of fractal
analysis.

Thus, our results on both logical and quantitative
levels support the viewpoint of those researchers that
previously restricted the upper limit of integration
over the impact parameter by the mean interparti-
cle distance from entirely reasonable considerations.
Based on (18) and (19), we can say that encoun-
ters with impact parameters p � 0.6d̄ may be con-
sidered as truly independent and complete in terms
of the classical approach, while encounters with p �
(2−3) d̄ actually make no contribution to the irregular
force in a homogeneous Poissonian system.

Finally, even more importantly, Eqs. (18) and
(19) contain a logarithmic factor, as in the classical
concept of the cumulative effect. However, its phys-
ical meaning in our approach differs fundamentally
from the classical case. For example, we showed
that allowance for the multiplicity of distant encoun-
ters and the gravitational “shielding” removes the
divergence at the upper limit. In our case, the log-
arithmic factor appears quite naturally and reflects
the presence of two independent length scales in the
stellar medium: the mean interparticle distance d̄ ≈
0.554ν−1/3, which is determined only by the mean
number density of stars, and the close-encounter pa-

rameter p90 =
G(m+mf)

V 2
0

, which reflects the dynam-

ical properties of the stellar field (dependent on the
masses and characteristic velocities of stars). It is
important to note that these two fundamental param-
eters will be related to each other only under virial
equilibrium conditions.

Virtually the same conclusions were previously
reached by Kandrup (1981), who analyzed the kinetic
processes in a locally homogeneous stellar medium

(i.e., homogeneous on scales of the order of several
mean interparticle distances). Using a distribution
of random forces similar to the Holtsmark distribu-
tion, he rigorously derived expressions for the diffu-
sion coefficients (Eqs. (139) and (140) in his pa-
per) coincident with the classical expressions for a
homogeneous stellar medium with the mean inter-
particle distance as the upper limit of integration.
Let us quote the concluding phrase from his paper
(p. 1059, Kandrup 1981): “This equation (139), (140)
is precisely the standard Fokker–Plank equation of
conventional stellar dynamics, differing only in that
here the logarithmic factor is not a divergence, but
instead the ratio of two well-defined lengths. The
basic conclusion of this stochastic analysis, therefore,
is that the effects of nearby particles are adequately
described in a binary encounter approximation and
that because of statistical cancellations very distant
particles contribute negligibly to the effects of fluctu-
ations.”

It can be seen from this text that our conclu-
sions about the efficient gravitational “shielding”
of encounters with impact parameters exceeding
the mean interparticle distance are qualitatively and
quantitatively very similar to the conclusions of
Kandrup (1981) but were reached in a much simpler
and transparent way. Consequently, an artificial
cutoff of the impact parameter when calculating the
cumulative effect seems superfluous.

We calculated Agekyan’s λ-factor based on the
Holtsmark distribution for an infinite homogeneous
stellar medium. In real stellar systems the character-
istic size of spatial irregularities (density fluctuations)
exceeds appreciably the mean interparticle distance.
Consequently, our proposed method of allowance for
the irregular forces with an effective cutoff on scales
comparable to the mean interparticle distance is also
well suited for the description of inhomogeneous sys-
tems, as was also pointed out, in particular, by Kan-
drup (1981). Obviously, the influence of spatial ir-
regularities on the stellar kinetics can manifest itself
through collective effects or effects associated with
the fractal structure of the medium (Chumak and
Rastorguev 2015). Vlad (1994), Chavanis (2009),
and Chumak and Rastorguev (2015, 2016) showed
that the distribution of the random force in a fractal
medium could be described by a complete analog of
the Holtsmark distribution, where the mean number
density of stars is replaced by the conditional density
calculated based on the fractal dimension of the sys-
tem. On this basis, Chumak and Rastorguev (2017)
performed detailed calculations of the influence of
the random force on the stellar kinetics in a fractal
medium. We also believe that fractal media may be
deemed locally homogeneous within several “inter-
cluster” distances.
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Analogies are often drawn between the descrip-
tions of a plasma and a stellar system (“graviplasma”).
We would like to note in this connection that, despite
a certain similarity of the descriptive apparatus for
these media, there are serious differences between
them. For example, the mean interparticle distance
in a “graviplasma” must serve as an analog of the
Debye screening length in a plasma (the size of the
region beyond which the plasma may be deemed
electrically neutral), as is shown by our results and
Kandrup (1981).
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