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Abstract—The dynamics of two interacting concentric wide star rings located around a supermassive
black hole in the central parsec of the Galaxy is investigated. The most massive of them, the ring with
the retrograde motion of stars (known in the literature as a “clockwise” disk) is modeled as R-disk with
a small cutout in the center. Another ring with a direct motion of stars (“counter-clockwise” disk) is
represented by a thin circular ring with an inclination α ≈ 62◦ to the plane of the R-disk. The masses
of these rings M1, M2 (M1/M2 ≈ 60), their geometric parameters and spatial orientation are known from
observations. The mutual gravitational energy Wmut and the angular moment of force M between the
rings have been found, and graphs of these quantities depending on the angle of inclination have been
constructed. The angular momenta of the rings L(1) and L(2), whose ratio L(1)/L(2) ≈ 23.4 have also been
calculated. For the system of rings, the Laplace plane and the angles of its orientation are determined. It
has been established that the mutual perturbation of the rotating rings leads to precession of the nodes with
a period of TΩ ≈ 3.53× 105 years. The lines of the nodes of both rings in the Laplace plane move with the
same angular velocity but in opposite directions. This explains the large angle of divergence of the lines of
nodes known from observations.
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INTRODUCTION

The study of the Galaxy showed that in the central
parsec, in addition to the SMBH and the compact
nuclear star cluster, there are also two concentric
ring formations—disk 1 with the retrograde motion
of stars, and disk 2 with the prograde motion of
stars, which received their name from the direction of
motion of stars observed in them [1–3]. Numerical
modelling [4] confirmed the possibility of the existence
of a second stellar disk. The interaction of these disks
was studied in the articles [5, 6]. In work [7], the
apsidal and nodal precession of the orbits of stars in
disk 1 under the influence of a supermassive black
hole and a nuclear star cluster were studied. In [7], the
influence on the precession of orbits from the forces of
disk 1 itself, modeled by the R-ring, was also taken
into account. In [8], the tidal evolution of orbits in the
galactic casp was studied.

*E-mail: work@boris-kondratyev.ru

According to the laws of celestial mechanics [9,
10], the mutual disturbance of rotating rings should
lead to the precession of their planes and nodes. But
much remains insufficiently studied in the dynamics
of these ring structures. In particular, the secular
precession of these stellar disks under the influence
of their mutual attraction is now of great interest.
Overall, this dynamic problem is very difficult. In [11],
a simplified dynamic model was studied, where both
disks were represented by weighted-mean narrow
circular rings. The rings intersect in diameter, the
angle of inclination between them, according to ob-
servations, is equal to α ≈ 62◦ In this model, the
precession time of the disk nodes in the Laplace plane
turned out to be equal Tnode ≈ 7× 107 years. It is
interesting to note that this time is almost an order
of magnitude less than the time Taps ≈ 5× 108 years
of the apsidal precession of stars under the influence
of the central black hole.

In this paper, we fill some gaps in the study of the
dynamics of two nuclear stellar disks. In Section 1,
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Fig. 1. Scheme of two circular rings intersecting along
the axis Ox1 at an angle α. The plane of the thin ring is
shown in blue in the coordinates Ox1x

′
2, and the plane

of the wide R-ring is shown in white in the coordinates
Ox1x2. The scale of the outer radii of the rings is not
observed.

a model of a wide R-ring is introduced to describe
the massive disk 1, which is closer to reality than the
narrow ring model in [11]. Another ring star system
(disk 2) is represented by a weighted average narrow
circular ring with an inclination α ≈ 62◦ to the disk
plane. In Section 2 the mutual gravitational energy
of the rings Wmut is calculated here in analytical and
numerical versions. In Section 3, the moment of
forces between the two rings is calculated by differen-
tiating Wmut with respect to the angle of inclination.
In Section 4, the angular momenta for each disk are
found and the Laplace plane for the system as a whole
is determined. This made it possible in Section 5
to calculate the period of precession of nodes in this
plane for the specified disk system.

1. STATEMENT OF THE PROBLEM
AND POTENTIAL OF THE R-DISK

Let us consider a wide inhomogeneous circular
ring with inner R1 and outer R2 radii (Fig. 1). At
the center of this ring is a supermassive black hole.
It is known from observations that many stars move
around SMBHs in orbits whose apsidal lines are
uniformly distributed over the azimuthal angle. As
shown in [12, 13], a model for such a disk can be an
R-disk with a density distribution

σ
(
r′

)
=

M1

π2 (R1 +R2)
√
(R2 − r′) (r′ −R1)

. (1)

A direct check using the formula

M1 = 2π

R2∫

R1

r′σ
(
r′

)
dr′, (2)

shows that the R-ring does indeed have a mass M1.
The potential of the R-ring at the point (r, x3) is

equal to [12, 13]:

φ (r, x3) =
4GM1

π2 (R1 +R2)

×
R2∫

R1

r′dr′
√

(R2 − r′) (r′ −R1)

K (k)
√

(r + r′)2 + x23

, (3)

where K (k) is the complete elliptic integral of the first
kind with modulus

k =

√
4rr′

(r + r′)2 + x23
. (4)

This wide R-ring interacts with a narrow circular ring
of radius r2. These rings are concentric, the angle
of inclination between their planes is 0 ≤ α ≤ π/2.
In the Cartesian coordinate system Ox1x2, the wide
ring is in the plane Ox1x

′
2, and the thin ring is in the

plane Ox1x
′
2, with the axis Ox′2 inclined to the axis

Ox2 at an angle α. Then the coordinates of the test
point on the thin ring can be expressed through the
coordinates of the main coordinate system Ox1x2x3:

x1 = x′ = r2 cos θ,

x2 = x′2 cosα = r2 sin θ cosα,

x3 = x′2 sinα = r2 sin θ sinα, (5)

where the coordinate angle 0 ≤ θ ≤ 2π is measured
along the ring from the axis Ox1. Then, as is easy to
see,

r =
√

x21 + x22 = r2
√
n,

(r′ + r)2 + x23 = r′2 + r22 + 2r′r2
√
n, (6)

where
n = sin2 θ cos2 α+ cos2 θ. (7)

Introducing an auxiliary quantity

m =

√
r′2 + r22
r′r2

+ 2
√
n, (8)

we write the potential of the wide ring (3) at the points
of the narrow one in the form:

φ (r, x3) =
4GM1

π2 (R1 +R2) r2

×
R2∫

R1

√
r′dr′

√
(R2 − r′) (r′ −R1)

K (k)

m
, (9)

and the modulus of the elliptic integral of the first kind
will be equal to

k =
2n

1
4

m
. (10)
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Fig. 2. Dependence of the normalized mutual energy

W̃mut = Wmut/
(
− 8GM1M2

π2√a1r2

)
for the system of the R-ring

and the narrow ring on the angle of inclination α between
them. The inflection point on the graph is shown by
dashes. The parameters of the R-ring are taken from
observations of disk 1: R1 = 1′′ = 0.04 pc, R1 = 10′′ =
0.4 pc. The narrow ring is a model of disk 2 with a radius
r2 = 12a1 = 0.48 pc.

2. MUTUAL GRAVITATIONAL ENERGY

To find the mutual gravitational energy of a system
of wide and narrow rings, we multiply potential (9)
by the mass element of the narrow ring μ2r2dθ and
integrate over the coordinate 0 ≤ θ ≤ 2π. Here, μ2 =
M2
2πr2

is the one-dimensional density on the second
ring with mass M2. After integration, we obtain an
expression for the mutual gravitational energy in the
form of a double integral:

Wmut = − 16GM1M2

π2 (R1 +R2)
√
r2

×

π
2∫

0

dθ

R2∫

R1

√
r′

√
(R2 − r′) (r′ −R1)

K (k)

m
dr′. (11)

In order to get rid of divergences in the denominator
of the integrand in (11) in the upcoming numerical
calculations, we will make a replacement of the inte-
gration variable [13]:

r′ = a1 (1 + e sin η) , η =
(
−π

2
,
π

2

)
, (12)

where the semimajor axis and the eccentricity of the
auxiliary orbit of the star are equal

a1 =
R1 +R2

2
, e =

R2 −R1

2a1
. (13)
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Fig. 3. Three-dimensional dependence of the normalized

mutual energy W̃mut = Wmut/
(
− GM1M2

π2(R1+R2)

)
between

the R-ring and the narrow ring on the tilt angle α (in rad)
and the radius r2 (in arcseconds).

After replacement (12), the radical will disappear, and
expression (11) will take the form:

Wmut = −8GM1M2

π2√r2a1

π
2∫

0

dθ

×
π/2∫

−π/2

√
1 + e sin η

m
K (k) dη. (14)

Here,

m =

√
a1 (1 + e sin η)

r2
+

r2
a1 (1 + e sin η)

+ 2
√
n.

(15)

The graph of the mutual energy of two rings, calcu-
lated using formula (14), is shown in Fig. 2.

Figure 3 shows the 3D dependence of the normal-

ized mutual energy Wmut/
(
− GM1M2

π2(R1+R2)

)
on the tilt

angle α and radius of the narrow ring r2.
In addition, Fig. 4 shows the projection of the

indicated dependence of the normalized gravitational

energy Wmut/
(
− GM1M2

π2(R1+R2)

)
.

3. MOMENT OF FORCES
BETWEEN THE RINGS

To find the precession of the ring nodes, it is
necessary to calculate the moment of gravitational
forces M between the rings. Direct calculation of
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Fig. 4. Projection of the graph of the dependence
of the normalized gravitational mutual energy W̃mut =

Wmut/
(
− GM1M2

π2(R1+R2)

)
.

the moment of forces between the gravitating rings
is a difficult task. However, the advantage of our
approach is that, knowing the mutual energy of the
two rings Wmut, the component of the moment of
forces along the axis Ox1 can be expressed through
the derivative of the mutual energy Wmut with respect
to the angle of inclination α [14]:

M =
∂

∂α
Wmut. (16)

The torque graph for a system of two rings of this
type is shown in Fig. 5.

According to the calculations (see Fig. 5), with the
inclination of the rings known from observations α ≈
62◦, the moment of force between them is equal to

M ≈ −0.447
8GM1M2

π2√a1r2
. (17)

This result is used in Section 5.

4. LAPLACE PLANE
FOR THE RING SYSTEM

Assuming that the motion of the stars in the disks
occurs under the attraction of the black hole, it can be
shown that the angular moments (moduli) are:

L
(1)

= M1

√

GMbh
2R1R2

R1 +R2
;

L
(2)

= M2

√
GMbhr2, (18)

where Mbh is the mass of the central black hole.
Let us introduce a special plane perpendicular to

the vector Lt of the total orbital moment of the ring
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Fig. 5. Dependence of the normalized moment of forces

M̃ = M/
(
− 8GM1M2

π2√a1r2

)
between the wide R-ring and the

narrow ring on the angle of mutual inclination α. The
curve has a maximum at α ≈ 0.433 (24.8◦). The max-
imum point on this curve coincides with the inflection
point of the graph in Fig. 1. The position of the system
“disk 1–disk 2” (α ≈ 62◦) is marked with bold strokes.

system. In celestial mechanics, this plane is usu-
ally called the Laplace plane. The peculiarity of the
problem under consideration is that here the angular

momentum vector L(1) of disk 1 will be directed below
the Laplace plane, and the vector L(2) of disk 2 will be
directed above this plane (see Fig. 6).
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Fig. 6. Scheme of orbital angular momentum vectors
L(1) and L(2) for two rings. The Laplace plane is shown,
as well as the angle of inclination α of the rings and
auxiliary angles β1 and β2. According to [11].
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In the Cartesian coordinate system, the projec-
tions of the angular momentum vectors are equal
(Fig. 6)

L(1)
1 = L(1) sinβ2; L(2)

1 = −L(2) sin β1;

L(1)
2 = L(1) cos β2; L(2)

2 = L(2) cos β1, (19)

where β1 and β2 are auxiliary angles to the Laplace
plane. Then the perpendicularity condition is satis-
fied if

L(1) sin β2 = L(2) sin β1. (20)

Thus, we have a system of equations for angles β1
and β2:

sinβ1
sinβ2

=
L(1)

L(2)
=

M1

M2

√
2R1R2

r2 (R1 +R2)
= γ;

β1 − β2 = α. (21)

Solving system of equations (21), we find:

sin β1 =
γ sinα

√
γ2 + 2γ cosα+ 1

;

sin β2 =
sinα

√
γ2 + 2γ cosα+ 1

. (22)

5. APPLICATION OF THE METHOD TO
STELLAR DISKS IN THE CENTRAL PARSEC

OF THE GALAXY

Let us apply the two-ring model to estimate the
precession time of their planes. Recall that at the
center of our Galaxy there is a supermassive black
hole (SMBH) with a mass of Mbh = 4.3× 106M� [3].
This supermassive black hole is surrounded by a
compact cluster of B-type stars with randomly ori-
ented orbits [15]. Outside the nuclear cluster of stars
there are two stellar disks under consideration: disk 1
and disk 2. Disk 1 has the following parameters
[16, 17]:

R1 ≈ 1′′ (0.04 pc), R2 ≈ 10′′ (0.4 pc),

M1 ≈ 3× 105M�. (23)

The thickness of the disk can be neglected here.
The cavity inside disk 1 is relatively narrow (0 < r ≤
1′′), the inner edge, according to observations, is
sharp. The potential increases monotonically inside
this cavity, then begins to decrease smoothly inside
the disk, and beyond the outer edge of the disk the
potential decreases even more steeply [7].

The second stellar ring (disk 2), is described by the
parameters [3]:

R1 ≈ 5′′ (0.2 pc), R2 ≈ 15′′ (0.6 pc),

M2 ≈ 5× 103M�. (24)

To simplify the calculations of the moment of
forces and the precession of the rings, we model the
second disk, whose mass is approximately 60 times
less than the mass of the first disk, as a narrow ring
with parameters

r2 ≈ 12′′ (0.48 pc),M2 ≈ 5× 103M�. (25)

From observations [3], the angle of inclination of
the rings is also known

α ≈ 62◦ (1.082 rad) . (26)

For the known parameters of the disks (23), (24)
we find, according to (18), the ratio of the angular
momenta of the disks:

γ =
L(1)

L(2)
=

M1

M2

√
2R1R2

r2 (R1 +R2)
≈ 23.355. (27)

Now, using formulae (22), taking into account
(27), we calculate the auxiliary angles:

β1 ≈ 59◦.8717; β2 ≈ 2◦.1223. (28)

Since the angle β2 is small, the Laplace plane almost
coincides with the plane of disk 1. This is under-
standable since the mass of the main disk is almost
60 times greater than the mass of the ring.

Let us now calculate the precession time of the
nodes using the formula [11, 14, 18]

dψ

dt
=

M

L(2) sin β1
. (29)

Substituting into (29) the expression for the mo-
ment of forces M from (17) and the angular mo-
mentum L(2) of the ring from (18), after reductions
and transformations, we obtain the frequency of nodal
precession in the form:

dψ

dt
= 0.447

8GM1

π2
√
GMbha1r2 sin β1

, (30)

where, we recall, the semi-major a1 of the auxiliary
orbit of the star is given in (13). Then the period of
precession of the nodes will be equal to

T
(2)
Ω =

2π

ψ̇(2)
=

π3
√
GMbha1r2 sin β1
1.788GM1

. (31)

Substituting quantities known from observations
here, we ultimately obtain

T
(2)
Ω ≈ 3.53 × 105 years. (32)
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The lines of the nodes of both rings move in the
Laplace plane with the same angular velocity but in
opposite directions. Indeed, due to the condition of
the existence of the Laplace plane (20), the period of
the nodal precession of the first disk turns out to be
the same:

T
(1)
Ω = T

(2)
Ω ≈ 3.53 × 105 years. (33)

CONCLUSIONS

In this paper, a dynamic model of a system of two
interacting stellar disks (rings) located in the central
parsec of the Galaxy is constructed. The mass and
geometric parameters of both disks are known from
observations. The most massive and wide ring with
retrograde motion of the star (here disk 1) is here
modeled by an R-disk with a small cutout in the
center. Let us recall [12, 13] that the R-disk model
can be formed not only due to the precession of the
apsidal lines of the star’s orbit, but also due to the
fact that, in agreement with observations, many stars
move around black holes in orbits with apsidal lines
uniformly distributed along the azimuth. Another
stellar system with prograde rotation, designated here
as disk 2, is represented by a weighted average narrow
the circular ring inclined to the plane of the R-disk at
an angle of α ≈ 62◦.

The mutual gravitational energy Wmut of the rings
was found, and the derivative of this energy with
respect to the angle α, expressing the moment of
force M between the rings, was calculated. Graphs of
these values depending on the angle of inclination α

were plotted. The angular momenta of the rings L(1)

and L(2), the ratio of the moduli of which L(1)/L(2) ≈
23.36, were also calculated. For the system of rings,
the Laplace plane and the angles of its orientation
were determined.

Mutual disturbance of the rotating rings leads to
precession of the nodes. It has been established that
in the Laplace plane the lines of the nodes of the
first and second rings move with the same angular
velocity, but in opposite directions. The period of
nodal precession for both rings TΩ ≈ 3.53× 105 years
has been found. This time of precession of the nodes,
on the scale of the Galaxy, turns out to be quite short.
The reason is that, when replacing a thin ring (see
work [11]) with a wide R-ring of the same mass, the
magnitude of the moment of force increased notice-
ably.

It is also known from observations that the angle
between the node lines of the disks is very large and
equal to [3]

χ ≈ 243◦ ± 14◦. (34)

The discovered rather rapid movement of the node
lines in opposite directions explains why the node
lines of the stellar disks are not collinear and are
directed at a large angle to each other.
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