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Abstract. We study the scattering of a light particle on a bound pair of heavy particles (e.g., the deuteron)
within the fixed center approximation in the case of light-heavy attraction, solving the integral equation
for the three-body Green’s function both in the coordinate and in the momentum space. The results for
the three-body scattering amplitude appear to be ambiguous —they depend on a single real parameter.
This parameter may be fixed by a three-body input, e.g., the three-body scattering length. We also solve
the integral equation for the three-body Green function in the momentum space, introducing a finite cut-
off. We show that all three approaches are equivalent. We also discuss how our approach to the problem
matches with the introduction of three-body contact interaction as done by other authors.

1 Introduction

The three-body problem in quantum mechanics and quan-
tum field theory has recently been extensively discussed,
in particular, in relation to weakly bound states of three
particles —the trimers [1, 2]. Various approaches giving
rise to the three-body problem have been used to study,
e.g., some of the highly excited states in charmonium [3–6]
and bottomonium [7] spectra, see also review [8] and ref-
erences therein. For example, the resonance X(3872) is
often considered as a weakly bound DD̄∗ state [9–12]. A
more long-studied system where one also needs to describe
three-particle dynamics is the lightest hadronic atoms,
in particular, pionic deuterium [13–15] and kaonic deu-
terium [16], see also review [17].

The three-particle dynamics can be treated by the Fad-
deev equations that give the exact answer for the three-
particle scattering amplitude. However, one in general has
to know the full two-body t-matrix t(p, p′;E) in order to
solve the Faddeev equations. Such information is not avail-
able for many systems: one has to use approximations. The
above examples all share a common feature, namely, one of
the particles being light compared to the other two that
form a bound state. The dynamics of such systems can
be studied within the fixed center approximation (FCA),
which treats the two heavy particles as infinitely heavy.

a e-mail: kudryavt@itep.ru
b e-mail: vagani@mephi.ru
c e-mail: einzehl@gmail.com

This approach has been applied to such systems as ρKK̄,
ηKK̄, K̄NN and so on, see, e.g., [18–23].

Another approximation often used to solve the three-
body problem is the Skornyakov-Ter-Martirosyan (STM)
equation [24]. This equation uses only two-body inputs,
namely, the two-particle scattering length. It is clear, how-
ever, that in order to describe three-particle dynamics
such as the (low-energy) scattering phases and the three-
particle bound states one needs to complement this in-
formation by three-body inputs, e.g., the three-particle
scattering length.

The standard approach to solve the STM equation is to
introduce ultraviolet cut-off with the cut-off parameter Λ
in the integral equation in the momentum space [25]. The
dependence of the three-particle scattering length a3 on Λ
is eliminated by adding a contact three-particle interaction
with the Λ-dependent strength H(Λ). The functional form
of the latter is chosen such as to make a3 independent
of Λ. However, a new parameter Λ∗ emerges, such that
a3 = a3(Λ

∗) and H = H(Λ,Λ∗).
In this article we discuss the details of the dependence

of the three-particle scattering length a3 on Λ, using an ex-
actly solvable model as an example. This model considers
scattering in the three-particle system of a light particle
(the π-meson, having the mass mπ) interacting with two
heavy particles (the nucleons, having the mass mN ) that
form a bound state (the deuteron). Within the fixed cen-
ter approximation, we find an exact analytic solution for
a3 in this system, and clarify the nature of the cyclic de-
pendence of a3 on Λ. We also discuss the relation of our
solution to the results of [25].
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Our paper is organized as follows. In sect. 2 we write
out and solve the FCA equation in the coordinate space.
In sect. 3 we solve the FCA equation in the momentum
space and demonstrate that the two solutions coincide. In
sect. 4 we introduce the cut-off parameter Λ and show that
the absence of a definite limit of the resulting solution at
Λ → +∞ is connected with the ambiguity of the solution
of the problem without the cut-off. The parameter Λ can
be viewed as a physical parameter, and the three-particle
scattering length a3 depends on Λ. We conclude with a
discussion of the results in sect. 5. Selected technical de-
tails are presented in the appendices.

2 Fixed Center Approximation in the
coordinate space

The multiple scattering series (MSS) plays an important
role in the description of interactions of mesons with nu-
clei. The expression for the sum of all terms that corre-
spond to the rescattering of a meson on a pair of fixed
nucleons was obtained by Foldy in 1945 [26]. This result
was applied to πd-scattering by Brückner in 1953 [27,28].
According to Brückner, the πd-scattering amplitude is the
FCA amplitude weighted with the deuteron wave function

Fπd =

∫

|ψd(r)|2 f1 + f2 + 2 f1f2

r
eikr

1 − f1f2

r2 e2ikr
dr. (1)

Here f1 and f2 are the amplitudes of the pion scat-
tering on the first and the second nucleon, respectively,
and ψd(r) is the deuteron wave function, normalized by
∫

|ψd(r)|2dr = 1. Equation (1) can also be obtained by
summing up the multiple scattering Feynman graphs [29].
More recently the MSS terms have been discussed in the
context of the effective field theory (EFT) approach to
pion-nucleus scattering, starting from the first EFT cal-
culation of πd-scattering made by Weinberg [30]. Various
aspects of MSS related to the EFT formalism have been
studied in the next twenty years, see, e.g., [31–35]. In par-
ticular, ref. [36] showed in the framework of the EFT that
the divergences of individual MSS terms cancel each other.

Here we work with the expression given by (1), concen-
trating on the case of pion-nucleon attraction. We assume
f1 = f2 = a. This results in the following expression for
the scattering amplitude at zero energy (i.e., the scatter-
ing length):

a3 = F (S)(a) + F (M)(a), (2)

where F (S)(a) = 2ā/(1+ ξ/2) is the single scattering con-
tribution, ā = a(1 + ξ), ξ = mπ/mN , and F (M)(a) is the
sum of all multiple scattering terms. Note that only the
rescaled scattering length ā = a(1 + ξ) enters the expres-
sions from this point on, and we omit the bar for conve-
nience. The coordinate space expression for F (M)(a) reads

F (M)(a) =
2a2

1 + ξ/2

∫ |ψd(r)|2
r − a

dr. (3)

In the case of pion-nucleon attraction, a > 0, the integral
in eq. (3) is divergent. As we will demonstrate, the inte-
gration kernel 1

r−a
in this case should be replaced by the

operator

Â(r) = p.V.
1

r − a
+ B · δ(r − a), (4)

where p.V. stands for the principal value of the integral,
and B is a dimensionless parameter undetermined by the
equations that needs to be fixed from experiment. This
gives

F (M)(a) =
2a2

1 + ξ/2

∫

Â(r) |ψd(r)|2 dr. (5)

We conclude that for a given a > 0 the three-particle scat-
tering length a3 is ambiguous; it depends on the arbitrary
constant B. Knowing a3 one can determine B and in this
way predict the energy dependence of the three-particle
s-wave scattering phase.

3 Fixed Center Approximation in the
momentum space

Considering the Feynman graphs it is easy to obtain the
n-tuple rescattering amplitudes f (n)(a) within the FCA
(see, e.g., [27, 28]):

f (n)(a)=

∫

ϕd(p)

(2π)3
Σ(n)(p,p′)

ϕd(p
′)

(2π)3
dpdp′, n=2, 3, . . . ,

(6)
where ϕd(p) is the deuteron wave function in the momen-
tum space, normalized by

∫

|ϕd(p)|2dp = (2π)3, and

Σ(2)(p,p′)=
2a2

1 + ξ/2

4π

(p − p′)2
,

Σ(3)(p,p′)=
2a3

1 + ξ/2

∫

ds

(2π)3
4π

(p − s)2
4π

(s − p′)2
,

Σ(4)(p,p′)=
2a4

1 + ξ/2

∫

ds dt

(2π)6
4π

(p − s)2
4π

(s − t)2
4π

(t − p′)2
,

(7)

and so on. Taking into account only the leading s-wave
part of the deuteron wave function, we can integrate over
the angles in (6), obtaining

f (2)(a) =
2a2

1 + ξ/2

(4π)2

(2π)6

×
∫ +∞

0

pϕd(p) · π ln(p, p′) · ϕd(p
′)p′dp dp′,

f (3)(a) =
2a3

1 + ξ/2

(4π)2

(2π)6

∫ +∞

0

pϕd(p)

×
(

∫ +∞

0

π ln(p, s) · π ln(s, p′)
ds

2π2

)

ϕd(p
′)p′dp dp′,

(8)
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and so on, where

ln(p, p′) = ln

(

p + p′

p − p′

)2

. (9)

The full multi-scattering amplitude F (M)(a) =
∑+∞

n=2 f (n)

(a) in the momentum space is (see ref. [37])

F (M)(a) =
2a2

1 + ξ/2

(4π)2

(2π)6

×
∫ +∞

0

pϕd(p)·R(p, p′)·ϕd(p
′)p′dp dp′, (10)

where the function R(p, p′) is the solution of the following
integral equation:

R(p, p′) = π ln(p, p′) +
a

2π2

∫ +∞

0

π ln(p, s)R(s, p′)ds.

(11)
First, we consider the integral equation (11) with the

infinite upper limit of integration. The corresponding so-
lution is given by the following integral (see appendix A
for the derivation):

R∞(p, p′) =

4π

∫ +∞

0

sin pr sin p′r

(

p.V.
1

r−a
+B·δ(r−a)

)

dr. (12)

The amplitude F (M)(a) is a matrix element of the op-
erator R(p, p′), see eq. (10). From eq. (12) we see that
R∞(p, p′) can be represented as a sum

R∞(p, p′) = RIn(p, p′) + RHom(p, p′), (13)

where the function

RIn(p, p′) = 4π p.V.

∫ +∞

0

sin pr sin p′r

r − a
dr (14)

is a solution of the inhomogeneous equation (11) as can
be checked by substitution. As shown in appendix B, the
function RIn(p, p′) takes the following form for p > p′:

RIn(p, p′) = 2π [cos(aP+) · ci(aP+)−sin(aP+) · si(−aP+)]

−2π [cos(aP−) · ci(aP−) − sin(aP−) · si(−aP−)] , (15)

and for p′ > p:

RIn(p, p′)=2π [cos(aP+) · ci(aP+) − sin(aP+) · si(−aP+)]

−2π [cos(a|P−|) · ci(aP−) + sin(aP−) · si(−a|P−|)] , (16)

where P+ = p + p′, P− = p − p′, with ci(x) and
si(x) being the integral cosine and the integral sine, re-
spectively [38]. It follows from eqs. (15) and (16) that
RIn(p, p′) = RIn(p′, p). The asymptotic expression for
RIn(p, p′) at p ≫ p′ can be obtained from eq. (15) (see
appendix B) and reads

R
(as)
In (p, p′) = 4π2 cos pa sin p′a. (17)

The general solution of the homogeneous equation, RHom

(p, p′), is

RHom(p, p′) = 4πB sin ap sin ap′. (18)

The integral equation (11) in the momentum space yields
the same solution as obtained above in the coordinate
space. Below we compare these results with those obtained
by solving the integral equation introducing a finite cut-off
Λ, and discuss the Λ-dependence of the solution.

4 The problem of Λ-dependence in the
momentum space

The function R∞(p, p′), defined by (12), is a solution of
the integral equation (11). This equation could be solved
(e.g., numerically) by replacing the infinite upper integra-
tion limit by a finite cut-off Λ. References [36, 37] showed
that the function RΛ(p, p′) obtained in that way strongly
depends on the value of Λ, see also [39, 40]. There seems
thus to be no way to get a solution of eq. (11) that would
not depend on Λ asymptotically in the limit of large Λ.
We will try to solve this problem.

First of all, we have to assume that the solutions of
eq. (11) with and without the cut-off coincide at large Λ, at
least asymptotically. It means that the solutions RIn(p, p′)
and RHom(p, p′), see eqs. (15) and (18), fulfill the equation
with the cut-off at large Λ.

From the analysis of the numerical solution of eq. (11)
with the cut-off one can see [41] that in the limit p ≫ p′,
p � Λ the function RΛ(p, p′) takes the form

RΛ(p, p′) = A(Λ) · sin(a(p − Λ) + ϕ0) · sin p′a, (19)

where ϕ0 does not depend on Λ. Let us show that the
sum of the functions RIn(p, p′) and RHom(p, p′) at p ≫ p′,
p � Λ is consistent with the asymptotic expression (19).
The asymptotic of this sum is

R(as)
∞

(p, p′) = 4π2(cos pa + b sin pa) · sin p′a, (20)

where b = B/π. It is convenient to rewrite (20) in the form

R(as)
∞

(p, p′) =
4π2

sin φ
sin(pa + φ) · sin p′a, (21)

where sin φ = 1/
√

1 + b2 and cos φ = b/
√

1 + b2. No-

tice that R
(as)
∞ (p, p′) coincides with RΛ(p, p′) (19) if φ =

a(Λ
(i)
cr −Λ) and A(Λ) = 4π2/ sin a(Λ

(i)
cr −Λ). One thus gets

R
(as)
Λ (p, p′) =

4π2

sin a(Λ
(i)
cr − Λ)

· sin[(p + Λ(i)
cr − Λ)a] sin p′a. (22)

This expression is only valid in the limit p ≫ p′, p � Λ.

The parameter Λ
(i)
cr in (22) is the critical point near-

est to Λ, i.e. the point where RΛ(p, p′) goes to infinity,

see, e.g., [37]. Any two adjacent critical points Λ
(i)
cr are
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Fig. 1. Solution of the integral equation (11) with the cut-
off Λ = 700MeV (solid line) and without the cut-off for b =

0.07 (dashed line, Λ
(2)
cr = 1000 MeV). Here p′ = 50 MeV, a =

0.005 MeV−1.

separated by approximately the same distance on the Λ
axis [41], i.e.

Λ(i)
cr = Λ(1)

cr + ∆Λ · (i − 1). (23)

Λ
(i)
cr in eq. (22) can be replaced by any Λ

(j)
cr , and, in par-

ticular, by Λ
(1)
cr .

So we obtained the general solution for RΛ(p, p′) in the
asymptotics p ≫ p′, p � Λ

Rsum
Λ (p, p′) = RIn(p, p′) + RHom(p, p′), (24)

where b = B/π is connected with the cut-off Λ through
the parameter φ, see above. As we shall see later from the
numerical analysis, this expression is valid for all p, p′ � Λ,
not only at p ≫ p′.

We thus arrive at a conclusion that the solution
RΛ(p, p′) can at arbitrary Λ be expressed through the sum
of the solutions of the homogeneous and inhomogeneous
main equation (11) with infinite upper integration limit.
This means that the solutions of eq. (11) with the cut-
off Λ do not bear any new information. One can, in fact,
eliminate the parameter Λ by substituting

cot a(Λ(i)
cr − Λ) = b, (25)

where the parameter b is chosen to reproduce the empirical

value of a3, and the nearest critical value Λ
(i)
cr > Λ should

be used. This connection between Λ and b leads to a good
agreement between the solutions for all p, p′ � Λ, as we
shall see later.

We solved the integral equation (11) with the cut-off
numerically, using a rectangular grid in the (p, s) plane,
while p′ was fixed to p′ = 50MeV. The grid spacing was
adjusted in order to achieve the desired accuracy (we used
the grid spacing 5MeV).
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Fig. 2. Solution of the integral equation (11) with the cut-
off Λ = 3800 MeV (solid line) and without the cut-off for b =

0.20 (dashed line, Λ
(7)
cr = 4075 MeV). Here p′ = 50 MeV, a =

0.005 MeV−1.
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Fig. 3. Solution of the integral equation (11) with the cut-
off Λ = 1050 MeV (solid line) and without the cut-off for b =
−3.05 (dashed line, Λcr = 1615 MeV). Here p′ = 50MeV, a =
0.005 MeV−1.

In figs. 1–3 we compare the solutions of eq. (11) ob-
tained with and without the cut-off. Our choice of the
upper integration limit Λ for the numerical solution is dic-

tated by the positions of the critical values Λ
(i)
cr . In par-

ticular, a = 0.005MeV−1 corresponds to Λ
(1)
cr = 385MeV,

Λ
(2)
cr = 1000MeV, Λ

(3)
cr = 1615MeV, and so on.

In fig. 1 we show the function RΛ(p, p′) for p′ = 50MeV
and Λ = 700MeV. The latter value is roughly halfway
between the first and the second critical values of Λ. The
corresponding parameter b, which is given by eq. (25),
appears to be small (b = 0.07).
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Figure 2 demonstrates the oscillating character of the
asymptotic of the solution. In order to do so, we selected
a rather large value of the cut-off, Λ = 3800MeV, which is
also roughly at the midpoint between two adjacent critical
values of Λ.

Furthermore, fig. 3 shows the results corresponding to

Λ = 1050MeV, which is close to Λ
(2)
cr . In this case the

absolute value of the parameter b appears to be large (b =
−3.05).

Figures 1 and 2 show that the numerical solution of the
integral equation (solid curve) almost coincides with its
analytical solution (dashed curve) if Λ is far from critical
values. However, the agreement becomes worse if Λ is close
to a critical value, see fig. 3. This may be a consequence

of the finite accuracy of the numerical extraction of Λ
(i)
cr .

5 Conclusion

We have studied the process of scattering of a light par-
ticle on a pair of heavy particles within the fixed center
approximation. We have shown that the summation of the
multiple scattering series gives the same results both in the
coordinate and in the momentum representation. In the
momentum representation the general solution R(p, p′) of
the integral equation (11) for the Green’s function can be
expressed as a sum of the general solution of the corre-
sponding homogeneous equation and a partial solution of
the inhomogeneous equation. The solution of the homo-
geneous equation is defined up to a constant factor. We
have obtained analytical expressions for a partial solution
of the inhomogeneous equation and for the general solu-
tion of the corresponding homogeneous equation. We have
also obtained an analytical expression for the solution of
the inhomogeneous equation at p ≫ p′ (17).

We have solved the integral equation (11) by introduc-
ing a finite integration cut-off Λ. We analyzed the corre-
sponding numerical solutions in the limit p ≫ p′, p � Λ
and identified the dependence (19) of the solution on the
cut-off. This dependence being periodic has been argued
to be a consequence of the ambiguity of the solution of
eq. (11) without the cut-off. Within this approach, we
have obtained a relation between the cut-off Λ and the
constant b (or B) which is incorporated in the solution
of the homogeneous equation without the cut-off. Apart
from that, in the numerical calculations we observed that
the correspondence between the solutions with and with-
out the cut-off holds for all p, p′ � Λ, i.e., not only in the
asymptotic limit p ≫ p′.

The obtained results can be interpreted in the follow-
ing way. The periodic dependence of the solution (19) on
the cut-off Λ (i.e., the absence of a limit at Λ → +∞)
is connected to the ambiguity of the solution of eq. (11)
with the infinite upper limit of integration. This ambigu-
ity does not allow one to predict the three-body scattering
length a3. On the other hand, the single parameter that
each of the solutions depends on —B (or b) without the
cut-off or Λ with the cut-off— can be fitted to the empiri-
cal value of a3. After adjusting the parameter, the theory
provides a unique answer. The procedure proposed by us

is in that sense different from that used in, e.g., [25], where
a three-body contact interaction is introduced in order to
eliminate the dependence of a3 on Λ.

We would also like to briefly comment on the STM
equation. Unlike the STM, the FCA equation is exactly
solvable, however, the solutions of the two equations have
much in common. The solution of the STM equation
with the infinite upper limit of integration is ambiguous
because of the solution of the corresponding homogeneous
equation. After introducing the cut-off Λ, the same cyclic
dependence of the answer on Λ appears in the STM equa-
tion, as in the FCA. So we can assume that the solutions
of the STM with the cut-off can be expressed through the
solutions of the STM without the cut-off, and after that,
the free parameter (the cut-off Λ or another constant if
the equation is solved with the infinite upper integration
limit) should be fixed in order for the theory to reproduce
the empirical value of the three-body scattering length a3.
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and the Emergence of Structure in QCD” (NSFC Grant No.
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02.03.21.0005, 27.08.2013).

Appendix A. Solution of the main integral
equation (11) with the infinite upper
integration limit

Let us check that the function (12)

R∞(p, p′) =

4π

∫ +∞

0

sin(pr) sin(p′r)

(

p.V.
1

r − a
+ B · δ(r − a)

)

dr

is a solution of eq. (11):

R(p, p′) = π ln(p, p′) +
a

2π2

∫ +∞

0

π ln(p, s)R(s, p′)ds.

Plugging in the first term of the function R∞(p, p′) into
the integral in eq. (11), we get
∫ +∞

0

π ln

(

p+s

p−s

)2

ds·4πp.V.

∫ +∞

0

sin(sr) sin(p′r)

r−a
dr=

4π2

∫ +∞

0

ds · 4
∫ +∞

0

sin(pr′) sin(sr′)

r′
dr′

×p.V.

∫

sin(sr) sin(p′r)

r − a
dr =

8π3 · p.V.

∫ +∞

0

sin(pr) sin(p′r)

r(r − a)
dr. (A.1)
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Here we used the following identities:

ln

(

p + s

p − s

)2

= 4

∫ +∞

0

sin(pr) sin(sr)

r
dr, (A.2)

2

∫ +∞

0

sin(sr′) sin(sr)ds =

∫ +∞

0

[cos(s(r − r′)) − cos(s(r + r′))]ds =

π [δ(r − r′) − δ(r + r′)] . (A.3)

Then the l.h.s. and the r.h.s. of the integral equation (11)
yield

4π p.V.

∫ +∞

0

sin(pr) sin(p′r)

r − a
dr =

4π

∫ +∞

0

sin(pr) sin(p′r)

r
dr

+ 4πap.V.

∫ +∞

0

sin(pr) sin(p′r)

r(r − a)
dr, (A.4)

or
1

r − a
=

1

r
+

a

r(r − a)
. (A.5)

This confirms that (12) is a solution of eq. (11).

Appendix B. The particular solution of the
inhomogeneous equation (11), and its
asymptotics

Equation (14) for RIn(p, p′) can be rewritten with the
help of the integral sine and integral cosine. Substituting
sin pr sin p′r by 1

2 [cos(P−r)−cos(P+r)], where P+ = p+p′,
P− = p − p′, we obtain

4π p.V.

∫ +∞

0

sin(pr) sin(p′r)

r − a
dr =

2π

[

p.V.

∫ +∞

0

cos[P−(r − a)]

r − a
dr · cos(P−a)

− p.V.

∫ +∞

0

sin[P−(r − a)]

r − a
dr · sin(P−a)

]

−2π

[

p.V.

∫ +∞

0

cos[P+(r − a)]

r − a
dr · cos(P+a)

− p.V.

∫ +∞

0

sin[P+(r − a)]

r − a
dr · sin(P+a)

]

. (B.1)

Taking into account that

p.V.

∫ +∞

0

cos[P (r − a)]

r − a
dr = − ci(−aP ), (B.2)

and

p.V.

∫ +∞

0

sin[P (r − a)]

r − a
dr = − si(−aP ), (B.3)

we finally get for P− > 0:

R(p, p′) = 2π{ci(aP+) cos(aP+) − si(−aP+) sin(aP+)}
−2π{ci(aP−) cos(aP−) − si(−aP−) sin(aP−)}. (B.4)

In the case P− < 0 the second term in the right-hand side
of the previous equation is replaced by

−2π{ci(−aP−) cos(aP−) + si(−a|P−|) sin(aP−)}. (B.5)

Using the identity − si(−x) = si(x) + π, we finally get for
P− > 0:

R(p, p′)=2π{ci(aP+) cos(aP+) + [si(aP+) + π] sin(aP+)}
−2π{ci(aP−) cos(aP−) + [si(aP−) + π] sin(aP−)}. (B.6)

In case of P− < 0 the second term in the right-hand side
has the form

−2π{ci(−aP−) cos(aP−) − [si(a|P−|) + π] sin(aP−)}.
(B.7)

This yields the correct answer for RIn(p, p′). To obtain the
asymptotics at p ≫ p′ we rewrite R(p, p′) in the following
form:

R(p, p′) = 2π{ci(aP+) cos(aP+) − ci(aP−) cos(aP−)}
+2π{sin(aP+)[π + si(aP+)] − sin(aP−)[π + si(aP−)]}.

(B.8)

Here we again used the identity − si(−x) = si(x)+π. The
term in the first curly braces vanishes at p ≫ p′. The term
in the second curly braces turns into

R
(as)
In (p, p′) = 2π2 · (sin(aP+) − sin(aP−)) =

4π2 cos pa sin p′a. (B.9)
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