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Abstract—Collective oscillations and quantum decoherence in neutrino physics are two rapidly developing
lines of research that act as gateways to a potentially new physics. Moreover, they promise to shed light on
still unresolved problems, particularly the neutrino mass hierarchy. In this paper we study the interplay
of these two effects, namely we consider the possible suppression effect on the collective oscillations
when neutrinos are viewed in the formalism of open quantum systems, i.e., when quantum decoherence
is taken into account. We consider a model of a homogeneous neutrino gas to take into account angular
asymmetries, which play a special role in the formation of collective unstable modes. Using numerical
analyses of the emerging slow modes, we find that in the case of neutrino fluxes from supernovae there is a
potential to differentiate between two hierarchies of neutrino masses by taking into account the dissipative
effect of quantum decoherence on collective oscillations.
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The mass ordering of neutrinos is one of the major
unresolved problems in the field of neutrino physics.
One of the promising phenomena that could shed
some light on this issue is collective oscillations
arising from the interactions between the neutrinos
themselves. Despite the intense efforts in this rel-
atively new field, the study of collective oscillations
is still an extremely difficult task due to the non-
linearity of the resulting equations of motion. In this
regard, simplified models have been developed, such
as the “light-bulb” model, which, although providing
a number of predictions on the collective behavior of
neutrinos in supernova fluxes, still cannot describe a
number of effects related to the angular distribution
of neutrinos of different flavours. The incorporation of
the latter into the consideration of neutrino evolution
has led to the discovery of a number of new types
of collective oscillations under the general term “fast
oscillations.” Their characteristic feature is the
rapid growth of flavour conversion independent of the
vacuum mixing parameters. For a recent review of
collective oscillations see, e.g. [1].

Apart from more accurate portrayal of neutrino
propagation, another key factor may be the phe-
nomenon of quantum decoherence which is present
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in the models where neutrino is considered to be an
open quantum system. Generally speaking, quantum
decoherence is a destruction of the quantum super-
position of neutrino mass states via the interaction
with the reservoir. The source of such an effect might
be the interaction of neutrinos with the fluctuating
medium and with the fluctuating magnetic field [2, 3],
as well as the interaction with the fluctuating grav-
itational field [4]. Another proposed mechanism is
the neutrino decay into a lighter state and a massless
particle, as well as the inverse process [5]. Usually,
this loss of quantum coherence does not qualitatively
disturb the flavor conversion process. However in the
case of collective oscillations coherence is the leading
factor as it is relevant to the neutrino–neutrino inter-
action and it was shown in our previous works that
quantum decoherence can in theory fully suppress the
collective behavior [6, 7].

In the present work we consider the evolution of
ultrarelativistic neutrinos of three flavours with quan-
tum decoherence at some large distance from the
neutrinosphere surface (∼ 102 km), where the col-
lective behavior might occur. We have analyzed the
influence of the quantum decoherence on collective
oscillations before within a one-angle approximation
using the “light-bulb” model. Yet, in general one
needs to worry about the situations where neutrinos
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stream in all directions. One can model that by
thinking in terms of an interacting neutrino gas that
is roughly homogeneous at various scales.

Consequently, in present work we consider a ho-
mogeneous neutrino gas described by a toy-model of
“colliding beams.” In this model we essentially have
four beams: a right moving neutrino beam (index r)
and a right moving antineutrino beam (r̄) separated
by the relative angle α interacting with a left mov-
ing neutrino beam (l) and a left moving antineutrino
beam (l̄). Each one is characterized by the appropri-
ate EoM and by the neutrino density gi, i ∈ {r, l, r̄, l̄}.
The latter are assumed to be constant and are nor-
malized by the following condition: |gl|+ |gr|+ |gl̄|+
|gr̄| = 2. These densities can be conveniently ex-
pressed in terms of symmetry parameters: a, which
accounts for the neutrino-antineutrino asymmetry,
and b, which accounts for the left-right asymmetry.
With these conditions one can employ the following:

gl =
1

2
(1 + a)(1− b),

gr =
1

2
(1 + a)(1 + b),

gl̄ = −1

2
(1− a)(1 + b),

gr̄ = −1

2
(1− a)(1 − b). (1)

We describe the evolution of the neutrinos and
antineutrinos in the flavor basis in terms of the density
matrices ρ(t) and ρ̄(t), respectively, using the Lind-
blad equation:

dρ(t)

dt
= −i[H, ρ(t)] +D[ρ(t)]. (2)

A similar equation holds for the antineutrino evo-
lution. The total Hamiltonian of the neutrino H
includes the usual three contributions from neutrino
masses, background matter, and from other neutri-
nos, H = Hvac +Hλ +Hνν .

In the present study we include the neutrino mix-
ing as we are interested primarily in the “slow os-
cillations” driven by the neutrino masses. Thus, the
vacuum term, Hvac, for a neutrino mode of energy E
in the flavor basis using the neutrino mixing matrix U
reads as follows

Hvac =
UM2U †

2E
,

M2 := diag(0,Δm2
21,Δm2

31). (3)

Here Δmkl := m2
k −m2

l denotes square mass differ-
ences of the neutrinos. For convenience we have
also introduced a mass-squared difference ratio η =
Δm2

31/Δm2
21 between atmospheric and solar mass

differences.

The second term, Hλ, describes neutrino inter-
actions with the background matter and in the case
of the core-collapsed supernova is dominated by the
charged current interaction of electron neutrinos with
electrons of a net density Ne. In the weak interaction
basis it can be written as

Hλ =
√
2GF diag(Ne, 0, 0), (4)

where GF is the Fermi coupling constant. Here, we
also define the effective MSW-potential strength as
λ =

√
2GFNe.

The neutrino–neutrino interaction is depended on
the velocities of the interacting modes. As neutrinos
are considered to be ultrarelativistic, the four velocity
vector is denoted by vμ = (1, v) and in our simple
model |v| = 1. Hence, the interaction between a neu-
trino and other neutrinos of N discrete modes with
velocities vj reads

Hνν :=
√
2GFnν

N∑

j=1

(1− vvj)ρ. (5)

This part of the Hamiltonian is also proportional to
the effective neutrino density nν := 1

2(nνe − nν̄e +
nνx − nν̄x + nνy − nν̄y) and the relative angle of the
propagation direction of the neutrino modes. In
addition, here we have introduced the notion of the
effective neutrino–neutrino potential μ =

√
2GFnν

for later evaluation.
The last term in the Eq. (2) is a dissipator, D[ρ],

which describes the quantum decoherence of the neu-
trino mass states and is given by the expression

D[ρ] =
1

2

8∑

k=1

[
Vk, ρV

†
k

]
+
[
Vkρ, V

†
k

]
, (6)

where Vk are dissipative operators corresponding to
the interaction of the neutrino with the reservoir.

Following the approach that is widely used in
studies of collective neutrino oscillations to simplify
the equations (e.g., [8]) we work in a basis spanned
by |νe〉, |νx〉, and |νy〉:

⎛

⎜⎜⎜⎝

νe

νμ

ντ

⎞

⎟⎟⎟⎠ = R†
23

⎛

⎜⎜⎜⎝

νe

νx

νy

⎞

⎟⎟⎟⎠ ,

R23 =

⎛

⎜⎜⎜⎝

1 0 0

0 c23 s23

0 −s23 c23

⎞

⎟⎟⎟⎠ . (7)

Here and in the following, we use the shorthand ckl :=
cos(θkl), skl := sin(θkl), Ckl := cos(2θkl), Skl :=
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sin(2θkl) for a mixing angle θkl. For the mixing
angles we have the following values [9]: θ12 = 33.62◦,
θ23 = 47.2◦, θ13 = 8.54◦.

Neutrinos are produced in flavor eigenstates so
that their density matrices are diagonal. The off-
diagonal ρ elements remain small unless something
new happens in the form of self-induced flavor con-
version caused by the neutrino-neutrino interaction.
Matter effects in our case suppress vacuum flavor
conversions. Thus, the self-induced oscillations can
become large purely from the self-amplification which
in turn requires instabilities (collective run-away so-
lutions) in flavor space. To study these instabilities we

can treat flavor correlations (off-diagonal terms of the
density matrix) as plane waves ρij = Qij e

−iΩt. This
is the basis of the linearized stability analysis. If the
frequency Ω has a nonzero imaginary part, then fla-
vor conversions can occur driven by an exponentially
growing factor.

After the evaluation of the commutators in Eq. (2)
(see [9] for details on the Hamiltonian part and [6] for
the dissipator’s part) one can arrive at the following
equation for eigenvalues for the four beam model with
the decoherence term for the NO:

⎛

⎜⎜⎜⎜⎜⎜⎝
Ω+ i

⎛

⎜⎜⎜⎜⎜⎜⎝

Γ 0 0 0

0 −Γ 0 0

0 0 Γ 0

0 0 0 −Γ

⎞

⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠
Q =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|ω|

⎛

⎜⎜⎜⎜⎜⎜⎝

A+ ηB 0 0 0

0 −A− ηB 0 0

0 0 A+ ηB 0

0 0 0 −A− ηB

⎞

⎟⎟⎟⎟⎟⎟⎠
+ λ

⎛

⎜⎜⎜⎜⎜⎜⎝

Λ 0 0 0

0 Λ 0 0

0 0 Λ 0

0 0 0 Λ

⎞

⎟⎟⎟⎟⎟⎟⎠

+ μ

⎡

⎢⎢⎢⎢⎢⎢⎣
2

⎛

⎜⎜⎜⎜⎜⎜⎝

gl̄Λ 0 0 −gl̄Λ

0 glΛ −glΛ 0

0 −gr̄Λ gr̄Λ 0

−grΛ 0 0 grΛ

⎞

⎟⎟⎟⎟⎟⎟⎠
+ (1− cosα)

⎛

⎜⎜⎜⎜⎜⎜⎝

gr̄Λ −gr̄Λ 0 0

−grΛ grΛ 0 0

0 0 gl̄Λ −gl̄Λ

0 0 −glΛ glΛ

⎞

⎟⎟⎟⎟⎟⎟⎠

+ (1 + cosα)

⎛

⎜⎜⎜⎜⎜⎜⎝

glΛ 0 −glΛ 0

0 gl̄Λ 0 −gl̄Λ

−grΛ 0 grΛ 0

0 −gr̄Λ 0 gr̄Λ

⎞

⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Q. (8)

Here, Q = (Qr, Qr̄, Ql, Ql̄)
T is a 12 dimensional

vector, where each Qi consists of the three off-
diagonal elements of the corresponding neutrino
density matrix. To obtain a similar equation for the IO
one can perform a simple substitution: |ω| → −|ω|.

The matrices A and B in Eq. (8) contain combi-
nations of mixing angles and come from the vacuum
term (3) and read:

A0 =

⎛

⎜⎜⎜⎝

−c212 + c213s
2
12

1
2S12s13 0

1
2S12s13 C13s

2
12

1
2S12c13

0 1
2S12c13 c212 − s212s

2
13

⎞

⎟⎟⎟⎠ ,

B0 =

⎛

⎜⎜⎜⎝

s213 0 0

0 C13 0

0 0 −c213

⎞

⎟⎟⎟⎠ . (9)

The matrix Λ originates from the matter part of the
Hamiltonian (4) and is defined as Λ = diag(1, 1, 0).
Γ is the decoherence matrix which in case of three
neutrino flavors reads: Γ = −diag(γ21, γ31, γ32). For
simplicity in our qualitative analysis we consider
γ21 = γ31 = γ32 = γ.

The equation (8) has been solved numerically for
the eigenvalues Ω with the neutrino–antineutrino and
left–right asymmetry parameters a = 0 and b = 0 ac-
cordingly. In case of the relative angle α = 0 we
discover only the slow oscillation modes of two kinds:
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Fig. 1. Dependence of the slow symmetric instability Im(Ω) on the relative angle α in the 4 beam model and decoherence
parameter γ for both mass orderings. Here we have set a matter potential λ = 102 1/km, a neutrino–neutrino interaction
potential μ = 10 1/km, a vacuum oscillation frequency ωvac = 0.015 1/km, a mass square ratio |η| = 33.

symmetric ones (solar) and antisymmetric (atmo-
spheric). The growth rate of the latter is significantly
larger than for the solar one. For α ∈ (0, π/2) an
another faster growing mode appears.

For our purposes we have chosen to analyze the
symmetric mode as it is persistent for all of the relative
angles α and its characteristic value is rather small, so
it’s more prone to suppression. The results are shown
in Fig. 1.

One can clearly see that the unstable mode result-
ing from a forward collision in the 4 beam model is
suppressed for γ ∼ 0.3 1/km for the NO, while the
unstable mode for the IO are still present. It is known
that neutrino radiation field range from isotropic in-
side the proto-neutron star to being forward peaked
at large distances (such as in the present study where
r ∼ 102 km) [10]. Given this distribution, we can as-
sume that these collective modes might be effectively
suppressed by the quantum decoherence in the case
of the NO for essentially lower values of γ than for
the IO. A similar behavior is present for asymmetric
modes for overall larger value of γ.
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